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Abstract

Label Distribution Learning is a novel machine
learning paradigm that assigns label distribution to
each instance. Numerous LDL methods proposed
to leverage label correlation in the learning process
to solve the exponential-sized output space; among
these, many exploited the low-rank structure of la-
bel distribution to capture label correlation. How-
ever, recent research has unveiled that label distri-
bution matrices typically maintain full rank, pos-
ing a challenge to approaches relying on low-rank
label correlation. Notably, low-rank label correla-
tion finds widespread adoption in multi-label learn-
ing literature due to the often low-rank nature of
multi-label matrices. Inspired by that, we introduce
an auxiliary MLL process within the LDL frame-
work, focusing on capturing low-rank label corre-
lation within this auxiliary MLL component rather
than the LDL itself. By doing so, we adeptly ex-
ploited low-rank label correlation in our LDL meth-
ods. We conduct comprehensive experiments and
demonstrate that our methods are superior to ex-
isting LDL methods. Besides, the ablation studies
justify the advantages of exploiting low-rank label
correlation in the auxiliary MLL.

1 Introduction
Label distribution learning (LDL) [Geng, 2016] is a novel
learning paradigm that provides fine-grained label informa-
tion for each instance. Unlike traditional learning paradigms,
it introduces the label description degree [Geng, 2016] that
is a real value and quantifies the relevance of one label to
a specific instance. The label description degrees of all la-
bels form a label distribution, which provides a comprehen-
sive representation of label information. Fig.1 showcases an
image from a natural-scene dataset [Geng and Luo, 2014].
The average ratings are rescaled to form a label distribution
{0.25, 0.4, 0.25, 0.1}, effectively capturing the varying de-
grees of importance assigned to labels. LDL utilizes label de-
scription degrees to solve label ambiguity [Gao et al., 2017].
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Figure 1: An image from a natural-scene dataset with a label distri-
bution.

LDL has an overwhelming output space, exponentially
growing with the number of potential labels [Wang and Geng,
2023]. To address this, label correlation has emerged as
a promising solution. Many LDL works have proposed to
leverage label correlation in the learning processes. To name
a few, [Xu and Zhou, 2017] captured the low-rank structure of
the label distribution matrix to incorporate label correlation.
[Jia et al., 2021] leveraged the low-rank assumption to cap-
ture label correlations shared by different groups of samples.
They captured label correlations in a local context. Addition-
ally, [Ren et al., 2019] utilized a low-rank matrix to capture
global label correlation and further updated it based on differ-
ent clusters to explore local label correlations. Label correla-
tion helps improve the performance of these LDL methods.

The above LDL algorithms assumed that label distribution
has a low-rank structure and relied on it to exploit label cor-
relation. However, [Wang and Geng, 2023] has demonstrated
that label distribution matrices are usually full-rank, which
challenges the suitability of these approaches with low-rank
assumptions. So, we may raise the following question: Is
it possible to exploit the low-rank label correlation in LDL
more efficiently?

Our work is mainly inspired by two observations. The first
one is that low-rank has been extensively applied to multi-
label learning (MLL) to capture label correlation [Jing et al.,
2015; Liu et al., 2021; Wu et al., 2020; Xu et al., 2016;
Yu et al., 2018] since MLL matrices are typically low-rank.
The second one is that label distribution has rich supervision
information and implicitly contains multi-label. To see that,
for the example in Fig. 1, we can observe that the given label
distribution contains implicit multi-labels of {tree, mountain,
water}. Our basic idea is to introduce an auxiliary MLL pro-
cess in LDL and then exploit the low-rank label correlation
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on the MLL part, for example, by assuming the MLL matrix
is low-rank. That is, the low-rank assumption is added to the
MLL part instead of the LDL part.

Following the strategy, we propose two novel LDL meth-
ods, TLRLDL and TKLRLDL, to exploit low-rank label cor-
relation. First, we propose two methods to generate multi-
label from label distribution. The first one utilizes a threshold
to separate label distribution into multi-label, and the second
one selects the top-k labels having the most significant label
description degrees as the positive labels. Next, we simulta-
neously learn label distribution and the generated multi-label
and capture the low-rank label correlation in the MLL pro-
cess. We conduct extensive experiments to justify that the
proposed methods outperform existing LDL approaches. Be-
sides, the ablation studies validate the advantages of exploit-
ing the low-rank label correlation in the auxiliary MLL pro-
cess. To sum up, our significant contributions are as follows:

• As far as we know, this is the first work to introduce
an auxiliary MLL process in LDL and exploit the MLL
label correlation for LDL to relieve the unsuitability of
low-rank label correlation of LDL.

• We exploit label correlation in LDL by capturing the
low-rank structure in an auxiliary MLL process, which
is more reasonable than directly exploiting the low-rank
label correlation of LDL.

• We conduct extensive experiments to validate the advan-
tages of our methods over existing LDL algorithms and
the superiority of exploiting the low-rank label correla-
tion in the auxiliary MLL process.

2 Related Work
2.1 Label Distribution Learning
As a novel learning paradigm, LDL introduces label distribu-
tion to capture the crucial degrees of labels, attracting much
interest in machine learning. In this section, we provide a
brief overview of the existing studies of LDL.

The existing LDL [Le et al., 2023; Tan et al., 2023] algo-
rithms can be broadly classified into three categories. The
first category involves transforming the LDL problem into
a single-label learning problem by assigning weights to the
training samples. Representative algorithms in this cate-
gory include PT-SVM and PT-Bayes, which utilize SVM and
Bayes classifiers to solve the transformed weighted single-
label learning problems. The second category focuses on
adapting traditional machine learning algorithms to handle
the LDL problem. For instance, AA-kNN identifies the k
nearest neighbors of an instance and predicts its label dis-
tribution by averaging the labels of these neighbors. AA-
BP learns label distribution through the Back-Propagation
(BP) algorithm. The third category includes specialized al-
gorithms, such as IIS-LDL and BFGS-LDL, which primarily
consider label distribution characteristics. However, these al-
gorithms ignore label correlation.

2.2 Label Correlation in LDL
In recent years, researchers have recognized the challenge
of the vast output space of LDL [Gao et al., 2017; Wang

and Geng, 2019; Shen et al., 2017; Wang and Geng, 2021;
Ren and Geng, 2017] and have developed various approaches
to address this issue. These methods can be categorized into
three types: (1) global label correlation, (2) local label cor-
relation, and (3) both global and local label correlations. In
the first category, [Zhou et al., 2015] introduced a weighted
Jeffrey’s divergence [Cha, 2007] to capture label correlation
by assigning weights based on the Pearson correlation coeffi-
cient. [Xu and Zhou, 2017] incorporated the low-rank struc-
ture of label distribution by applying trace-norm regulariza-
tion. In the second category, [Jia et al., 2019] utilized a local
low-rank structure to capture the local label correlations im-
plicitly. In the third category, [Ren et al., 2019] introduced
LDL-LCLR, a method that leverages global and local label
correlations. It utilizes a low-rank matrix to capture global
label correlation and updates the matrix based on different
clusters to explore local label correlation.

However, many of these works rely on the assumption of
low-rank to exploit label correlation. As reported by [Wang
and Geng, 2023], the label distribution matrix is generally
full rank, which poses a challenge to those exploiting low-
rank label correlation of LDL. Instead of directly exploiting
the low-rank label correlation of LDL, this study introduces
an auxiliary MLL. It exploits the low-rank label correlation
on the MLL process, which can efficiently solve the problem
mentioned above.

3 The Proposed Methods
Notations Let X = [x1,x2, . . . ,xn] ∈ Rn×d be the
feature matrix and Y = {y1, y2, . . . , ym} be the label
space, where n, m, and d denote the numbers of in-
stances, labels, and the dimension of features, respec-
tively. The training set of the LDL is represented as
T = {(x1,d1) , (x2,d2) , . . . , (xn,dn)}, where di =[
dy1
xi
, dy2

xi
, . . . , dym

xi

]
is the label distribution of the ith sam-

ple xi. dyxi
is the label description degree of y to xi, which

satisfies dyxi
∈ [0, 1] and

∑
y d

y
x = 1. The label distribution

matrix is denoted as D = [d1,d2, . . . ,dn] ∈ Rm×n. LDL
aims to learn a mapping function from T and predict the label
distribution for unseen instances.

3.1 Transforming Label Distribution to
Multi-Label

This subsection will introduce two methods for transforming
label distribution into multi-label. The first is threshold-based
degradation, and the second is top-k degradation. Next, we
provide details of these two methods.

Threshold-Based Multi-Label Generation
To convert label distribution into multi-label, we simulate
users’ labelling process when assigning labels to images or
adding keywords to texts. Users continue adding the most
relevant labels until they perceive the labelling is sufficiently
comprehensive [Xu et al., 2019]. Based on that, we can de-
rive multi-label from label distribution through this iterative
labelling procedure. The process is outlined as follows:

• For each instance x, find the label yj with the highest
description degree d

yj
x and add it to relevant label set.
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• Calculate the sum of the description degrees of all the
currently relevant labels H =

∑
yj∈Y+ d

yj
x , where Y+

is the set of the currently relevant labels.
• If H is less than a predefined threshold T , continue find-

ing the label with the highest description degree from
the labels not included in Y , and add it to Y . Repeat this
process until H > T .

Following this process, we can generate multi-label from la-
bel distribution that mimics how users label data.

Top-k Based Multi-Label Generation
Specifically, for any instance xi, we first sort the label de-
scription degrees in descending order. Then, we select the
top-k labels with the highest label description degrees as rel-
evant labels and assign the remaining labels as irrelevant la-
bels. The top-k labels with the highest label description de-
grees are considered relevant for each instance, while the rest
are deemed irrelevant.

3.2 Auxiliary MLL and Label Correlation
Initially, we employ the least square method to learn label dis-
tribution and minimize the F -norm loss between the ground-
truth label distribution and prediction, which can be formal-
ized as the following:

min
W

1

2

∥∥WX⊤ −D
∥∥2
F
+ λ∥W∥2F , (1)

where W ∈ Rm×d is the parameter matrix, ∥ · ∥F repre-
sents the Frobenius norm, and λ is a regularization param-
eter. Next, we establish the mapping relationship between
label distribution and multi-label generated in the previous
section. This linear mapping is formulated as follows:

min
O

∥DO− L∥2F + λ∥O∥2F , (2)

where L ∈ Rm×n is the ML matrix, and O ∈ Rn×n is the
transformation matrix. Nonlinear mapping is left for future
work. Accordingly, we utilize the low-rank label correlation.
However, given the full-rank nature of the label distribution
matrix, assuming a low-rank structure does not suit LDL. To
address that, we encourage the low-rank structure of the MLL
process, which has been widely accepted in MLL literature.
That is, the predicted ML matrix is assumed to be low-rank,
which further casts Eq. (2) as:

min
O

∥DO− L∥2F + αRank(WX⊤O) + λ∥O∥2F , (3)

where Rank(A) represents the rank of A, and α is a balance
parameters. By jointly optimizing Problem (1) and Problem
(3), we obtain the final formulation as follows:

min
W,O

1

2

∥∥∥WX⊤ −D
∥∥∥2

F
+

1

2

∥∥∥WX⊤O− L
∥∥∥2

F
+

αRank
(
WX⊤O

)
+ λ

(
∥W∥2F + ∥O∥2F

)
,

(4)

Rank(·) is difficult to solve due to the discrete nature of
the rank function. Fortunately, as suggested by [Candès et
al., 2011], the nuclear-norm [Fazel, 2002] is a good surrogate

for the rank function. Replacing the rank function with the
nuclear norm, we obtain the next optimization problem:

min
W,O

1

2

∥∥WX⊤ −D
∥∥2
F
+

1

2

∥∥WX⊤O− L
∥∥2
F
+

α
∥∥WX⊤O

∥∥
∗ + λ

(
∥W∥2F + ∥O∥2F

)
.

(5)

The method learning multi-label by threshold is called TL-
RLDL, and the other one learning multi-label from top-k is
called TKLRLDL.

3.3 Optimization
We utilize ADMM to address the problem (5), which is pro-
ficient in managing equality constraints. First, we introduce
an auxiliary variable G ∈ Rm×n and rewrite Eq. (5) as

min
W,O,G

1

2

∥∥WX⊤ −D
∥∥2
F
+

1

2

∥∥WX⊤O− L
∥∥2
F
+

α ∥G∥∗ + λ
(
∥W∥2F + ∥O∥2F

)
s.t. WX⊤O = G.

(6)

We introduce the augmented Lagrangian function for Eq. (6)

min
W,O,G

1

2

∥∥WX⊤ −D
∥∥2
F
+

1

2

∥∥WX⊤O− L
∥∥2
F
+ α ∥G∥∗

+λ
(
∥W∥2F + ∥O∥2F

)
+

µ

2

∥∥∥∥G−WX⊤O− Γ1

µ

∥∥∥∥2
F

,

where µ is a positive penalty parameter, and Γ1 ∈ Rm×n

denotes the Lagrangian multipliers. It can be solved by alter-
nately optimizing three sub-problems as follows. The whole
process is summarized in Algorithm 1.

Solving G-Subproblem
The subproblem w.r.t. G is

Gk+1 = argmin
G

α∥G∥∗ +
µ

2

∥∥∥∥G−WX⊤O− Γ1

µ

∥∥∥∥2
F

.

It is a nuclear norm minimization problem and has a closed-
form solution [Cai et al., 2010]:

Gk+1 = Sα/µ(T ), (7)

where T = WX⊤O+ Γ1

µ , and S(·) is single value threshold-
ing operator. It first performs singular value decomposition
on WX⊤O + Γ1

µ = UΣ̂V⊤, and then gives the solution as

UΣ̂V⊤, where Σ̂ii = max (0,Σii − α/µ).

Solving W-Subproblem
The subproblem w.r.t. W is

Wk+1 = argmin
W

1

2

∥∥∥WX⊤ −D
∥∥∥2

F
+

1

2

∥∥∥WX⊤O− L
∥∥∥2

T

+ λ∥W∥2F +
µ

2

∥∥∥∥G−WX⊤O− Γ1

µ

∥∥∥∥2

F

which is a quadratic optimization problem. The optimal so-
lution is obtained by setting the derivative to zero and equals

W =
(
X⊤X+ 2λ+ µX⊤OO⊤X+X⊤OO⊤X

)−1

(µGO⊤X− Γ1O
⊤X+ LO⊤X+DX).

(8)
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Solving O-Subproblem
The subproblem w.r.t. O is

Ok+1 =
1

2

∥∥∥WX⊤O− L
∥∥∥2
F
+ λ∥O∥2F

+
µ

2

∥∥∥∥G−WX⊤O− Γ1

µ

∥∥∥∥2
F

(9)

which is a quadratic optimization problem. The optimal so-
lution is obtained by setting the derivative to zero and equals

Ok+1 =
(
XW⊤WX⊤ + 2λ+ µXW⊤WX⊤

)−1

+
(
XW⊤L+ µXW⊤G−XW⊤Γ1

)
.

(10)

Updating Multipliers and Penalty Parameter
Finally, the Lagrange multiplier matrix and penalty parameter
are updated based on following rules:{

Γk+1
1 = Γk

1 + µk
(
Gk+1 −Wk+1X⊤Ok+1

)
µk+1 = min (1.1µ, µmax)

(11)

where µmax is the maximum value of µ.

Algorithm 1 The pseudo-code for TLRLDL and TKLRLDL
Input: training set T, parameters α, λ, and text data x∗.
Output: Predict the label distribution of x∗.

1: Transforming label distribution matrix into multi-label
matrix according to the method in the preceding section;

2: Initialize W, O, G, Γ1, and µ;
3: t=1;
4: repeat
5: Update G according to Eq. (7);
6: Update W according to Eq. (8);
7: Update O according to Eq. (10);
8: Update Γ1 and µ according to Eq. (11);
9: t=t+1;

10: until stopping criterion is satisfied
11: return the label distribution d∗ = W(x∗).

4 Experiments
4.1 Experimental Configuration
Experimental Datasets: The experiments are conducted on
16 real-world datasets with label distribution. The key char-
acteristics of these datasets are summarized in Table 1. Geng
collects the first 12 datasets [Geng, 2016]. Among these,
the first eight (from Spoem to Alpha) are from the clustering
analysis of genome-wide expression in Yeast Saccharomyces
cerevisiae [Eisen et al., 1998]. The SJAFFE is collected from
JAFFE [Lyons et al., 1998], and the SBU 3DFE is obtained
from BU 3DFE [Yin et al., 2006]. The Gene is obtained from
the research on the relationship between genes and diseases
[Yu et al., 2012]. The Scene consists of multi-label images,
where the label distributions are transformed from rankings
[Geng and Xia, 2014]. Besides, the SCUT-FBP, M2B, and
fbp5500 are about facial beauty perception [Ren and Geng,
2017]. The last one, RAF-ML is a facial expression dataset

ID Data sets #Examples #Features #Labels

1 Spoem 2465 24 2
2 Spo5 2465 24 3
3 Heat 2465 24 6
4 Elu 2465 24 14
5 Dtt 2465 24 4
6 Cold 2465 24 4
7 Cdc 2465 24 15
8 Alpha 2465 24 18
9 SJAFFE 213 243 6

10 SBU-3DFE 2500 243 6
11 Gene 17892 36 68
12 Scene 2000 294 9
13 SCUT-FBP 1500 300 5
14 M2B 1240 250 5
15 fbp5500 5500 512 5
16 RAF-ML 4908 200 6

Table 1: Details of the dataset.

[Li and Deng, 2019] with six-dimension expression distribu-
tion.

Evaluation Metrics: We adopt six metrics to evaluate
the performance of LDL methods, including Chebyshev (↓),
Clark (↓), Kullback-Leibler (KL) (↓), Canberra (↓), Intersec-
tion (↑), and Cosine (↑) [Geng, 2016]. Here, ↓ indicates that
smaller values are better, and ↑ indicates that larger values are
better.

Comparing Methods: We compare the proposed
methods with seven LDL methods, including IIS-LDL,
LDLLDM, EDL-LRL, IncomLDL, Adam-LDL-SCL, LCLR,
and LDLLC, which are briefly introduced as follows:

• IIS-LDL [Geng, 2016]: It utilizes the maximum entropy
model and KL divergence to learn the label distribution
and does not consider label correlation.

• LDLLDM [Wang and Geng, 2023]: It learns the global
and local label distribution manifolds to exploit label
correlations and can handle incomplete label distribution
learning.

• EDL-LRL [Jia et al., 2019]: It captures the low-rank
structure locally when learning the label distribution to
exploit local label correlations.

• IncomLDL [Xu and Zhou, 2017]: It utilizes trace-norm
regularization and the alternating direction multiplier to
exploit low-rank label correlation.

• Adam-LDL-SCL [Jia et al., 2021]: It incorporates lo-
cal label correlation by encoding it as additional features
and simultaneously learns the label distribution and la-
bel correlation encoding.

• LCLR [Ren et al., 2019]: It first models global label
correlation using a low-rank matrix and then updates the
matrix on clusters of samples to consider local label cor-
relation.

• LDLLC [Zheng et al., 2018]: LDLLC leverages local
label correlation to ensure that prediction distributions
between similar instances are as close as possible.

The parameters of the methods are as follows. The sug-
gested parameters are used for IIS-LLD, EDL-LRL, LDLLC,
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and LDL-LCLR. For LDLLDM, λ1, λ2, and λ3 are tuned
from

{
10−3, . . . , 103

}
, and g is tuned from 1 to 14. For

IncomLDL, λ is selected from the range
{
2−10, . . . , 210

}
,

and ρ = 1. For Adam-LDL-SCL, λ1, λ2, and λ3 are tuned
from the set

{
10−3, . . . , 103

}
, and m is tuned from 0 to

14. For TLRLDL and TKLRLDL, α, λ are tuned from
{0.005, 0.01, 0.05, 0.1, 0.5, 1, 10}, T is selected from 0.1 to
0.5, and k is tuned from 0 to m. We run each method for
ten-fold cross-validation.

4.2 Results and Discussion
Table 2 presents the experimental results (mean±std) of the
LDL algorithms on all datasets in terms of Clark, KL, and
Cosine (due to limited space, the results in terms of other
metrics are reported in the supplementary material1), with the
best results highlighted in boldface. Moreover, the last row
summarizes the top-one times of each method.

First, we conduct the Friedman test [Demšar, 2006] to
study the comparative performance of all methods. Table 3
shows the Friedman statistics for each metric and the criti-
cal value. At a confidence level of 0.05, the null hypothe-
sis that all algorithms achieve equal performance is rejected.
Next, we apply a posthoc test, i.e., the Bonferroni-Dunn test
[Demšar, 2006], to compare the relative performance of TL-
RLDL against the other algorithms with it as the control al-
gorithm2. One algorithm is deemed to achieve significantly
different performance from TLRLDL if its average rank dif-
fers from that of TLRLDL by at least one critical difference
(CD) [Demšar, 2006]. Figure 2 illustrates the CD diagrams
for each measure. If the average rank of a comparing algo-
rithm is within one CD to that of TLRLDL, they are con-
nected with a thick line; otherwise, it is considered to have a
significantly different performance from TLRLDL.

According to Table 2, TLRLDL demonstrates remarkable
performance; ranking first in 70.83% (34 out of 48) of the
cases and achieving the best mean performance across all
metrics. TLRLDL and TKLRLDL reach the top position
in 85.4% (41 out of 48) of the evaluations, underscoring the
methods’ effectiveness. Additionally, observations from Fig-
ure 2 include:

• TLRLDL significantly outperforms IIS-LLD across all
metrics due to its utilization of label correlation, under-
scoring its importance for LDL.

• TLRLDL shows superior performance over IncomLDL,
ED-LRL, and LCLR, suggesting the potential limita-
tion of low-rank label correlation in LDL. However, TL-
RLDL’s application of low-rank label correlation in the
auxiliary MLL process appears to be more appropriate
and effective for LDL.

• In contrast to LDLLC, LDLLDM, and Adam-LDL-SCL,
TLRLDL’s success further supports the competitiveness
of employing low-rank label correlation within the aux-
iliary MLL process as a strategy for LDL.

1https://github.com/users/zhiqiang-kou/projects/1
2The test results with TKLRLDL as the control algorithm are

presented in the supplementary material

In summary, the experimental results substantiate the com-
petitive performance of the proposed algorithms.

4.3 Ablation Study
Next, we study the advantages of exploiting the low-rank
label correlation on the auxiliary MLL. First, we derive
TLRLDL-a by

min
W

1

2

∥∥WX⊤ −D
∥∥2
F
+ α

∥∥WX⊤∥∥
∗ + λ∥W∥2F .

Second, we derive TLRLDL-b by keeping Eq.’s first and
fourth items (5). TLRLDL-a exploits low-rank label corre-
lation on LDL, and TLRLDL-b ignores label correlation. We
then compare TLRLDL with TLRLDL-a and TLRLDL-b.

Figure 3 presents the comparison results regarding Clark,
KL, Cosine, and Intersection. Further, we conduct the
Wilcoxon signed-rank tests [Demšar, 2006] for TLRLDL
against TLRLDL-a and TLRLDL-b and report the results
of the tests in Table 4. According to Figure 3 and Table
4, TLRLDL and TLRLDL-a have better performance than
TLRLDL-b. TLRLDL-b ignores label correlation, while TL-
RLDL and TLRLDL-a consider label correlation, which im-
proves their performance. This observation further justifies
the importance of label correlation for LDL. Besides, TL-
RLDL statistically outperforms TLRLDL-a. Since the differ-
ence between TLRLDL and TLRLDL-a lies in that the former
(respective the latter) exploits low-rank label correlation on
MLL (respective LDL), this observation clearly justifies the
benefits of exploiting low-rank label correlation on the auxil-
iary MLL. To summarize, exploiting the low-rank multi-label
correlation is more suitable for LDL.

4.4 Parameter Sensitivity Analysis
TLRLDL has two trade-off parameters, including α and
λ. Next, we analyze the sensitivity of them. First,
we run TLRLDL with α varying from the candidate set
{0.005, 0.01, 0.05, 0.1, 0.5, 1, 10} and report its performance
on SCUT-FBP, M2B, SJAFFE, SBU 3DFE, and Alpha in Fig-
ure 4. As seen from Figure 4, TLRLDL shows robustness
w.r.t. α. As a result, we can set α to 0.1 to get a satisfy-
ing performance. Likewise, we also run TLRLDL with λ
ranging from the same candidate set and present its perfor-
mance in Figure 4. As shown in Figure 4, TLRLDL is robust
w.r.t. λ. Therefore, we may expect satisfying performance
for λ = 0.1.

5 Conclusion
LDL has an exponential-size output space—with a size of
Rm—which may decrease the performance of existing algo-
rithms. To solve that, many LDL studies have proposed to
exploit label correlation. Among these, some have suggested
using low-rank label correlation of label distribution, which
may not hold as disclosed by [Wang and Geng, 2023] because
LDL matrices are typically full-rank. Addressing this, we’ve
implemented an auxiliary MLL process within LDL, utilizing
low-rank label correlation there, enhancing our methods’ per-
formance over current LDL approaches. Our results and fur-
ther studies confirm the benefits of this low-rank exploitation.
Future work will continue exploring this innovative direction,
focusing on local low-rank label correlations.
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Metric TLRLDL TKLRLDL IncomLDL IIS-LDL EDL-LRL Adam-LDL-SCL LCLR LDLLC LDLLDM

Spo
Clark 0.1238±.0038 0.1237±.0197 0.1314±.0028 0.1337±.0014 0.1291±.0000 0.1295±.0000 0.1302±.0001 0.1305±.0014 0.1301±.0303
KL 0.0264±.0311 0.0249±.0032 0.0288±.1709 0.0273±.0011 0.0317±.0000 0.0318±.0000 0.0246±.0001 0.0254±.0007 0.0264±.0061
Cosine 0.9794±.0007 0.9801±.0028 0.9769±.0239 0.9773±.0005 0.9789±.0000 0.9789±.0000 0.9783±.0003 0.9785±.0005 0.9772±.0071

Spo5
Clark 0.1769±.0810 0.1803±.0139 0.2027±.0046 0.1896±.0025 0.1853±.0000 0.1843±.0000 0.1893±.0007 0.1908±.0003 0.1860±.0390
KL 0.0292±.0343 0.0304±.0408 0.0376±.0148 0.0336±.0008 0.0362±.0000 0.0356±.0000 0.0309±.0000 0.0314±.0000 0.0298±.0336
Cosine 0.9759±.0213 0.9749±.0296 0.9700±.0520 0.9722±.0007 0.9738±.0000 0.9741±.0000 0.9725±.0001 0.9722±.0000 0.9737±.0301

Hea
Clark 0.1790±.0096 0.1809±.0056 0.1940±.0768 0.1998±.0014 0.1831±.0000 0.1826±.0000 0.1874±.0032 0.2717±.0064 0.1848±.0040
KL 0.0122±.0279 0.0128±.0005 0.0146±.0141 0.0155±.0002 0.0153±.0000 0.0153±.0000 0.0130±.0003 0.0302±.0020 0.0131±.0002
Cosine 0.9884±.0005 0.9882±.0005 0.9865±.0102 0.9855±.0002 0.9879±.0000 0.9880±.0000 0.9878±.0002 0.9695±.0022 0.9875±.0003

Elu
Clark 0.2028±.0024 0.2000±.0103 0.2325±.0612 0.2395±.0022 0.1998±.0000 0.1989±.0000 0.2032±.0028 0.4114±.0089 0.2010±.0011
KL 0.0062±.0706 0.0063±.0138 0.0066±.0123 0.0091±.0002 0.0073±.0000 0.0072±.0000 0.0064±.0001 0.0296±.0011 0.0063±.0003
Cosine 0.9941±.0010 0.9940±.0077 0.9918±.0049 0.9911±.0002 0.9940±.0000 0.9940±.0000 0.9938±.0001 0.9667±.0013 0.9940±.0005

Cdc
Clark 0.2142±.0719 0.2094±.0127 0.2243±.0016 0.2537±.0026 0.2168±.0000 0.2161±.0000 0.2172±.0021 0.4259±.0013 0.2147±.0309
KL 0.0073±.0061 0.0070±.0017 0.0080±.0765 0.0099±.0002 0.0082±.0000 0.0082±.0000 0.0072±.0002 0.0291±.0001 0.0068±.0338
Cosine 0.9935±.0263 0.9934±.0016 0.9926±.0300 0.9905±.0002 0.9933±.0000 0.9933±.0000 0.9932±.0002 0.9680±.0003 0.9934±.0463

Dtt
Clark 0.0946±.0175 0.0975±.0013 0.1039±.0188 0.1162±.0009 0.0993±.0000 0.0986±.0000 0.0971±.0006 0.1738±.0011 0.0959±.0003
KL 0.0060±.0076 0.0062±.0008 0.0066±.0765 0.0088±.0002 0.0098±.0000 0.0098±.0000 0.0059±.0000 0.0223±.0005 0.0059±.0012
Cosine 0.9945±.0132 0.9942±.0013 0.9933±.0300 0.9916±.0001 0.9940±.0000 0.9940±.0000 0.9943±.0000 0.9783±.0004 0.9944±.0584

Alp
Clark 0.2072±.0042 0.2079±.0314 0.2156±.0775 0.2585±.0015 0.2107±.0000 0.2103±.0000 0.2085±.0012 0.4501±.0019 0.2116±.0236
KL 0.0052±.0016 0.0054±.0060 0.0058±.0232 0.0084±.0001 0.0063±.0000 0.0063±.0000 0.0054±.0001 0.0267±.0002 0.0055±.0857
Cosine 0.9948±.0015 0.9947±.0069 0.9943±.0052 0.9916±.0001 0.9946±.0000 0.9946±.0000 0.9947±.0001 0.9700±.0001 0.9946±.0362

Col
Clark 0.1378±.0014 0.1390±.0731 0.1463±.0338 0.1568±.0014 0.1403±.0000 0.1398±.0000 0.1416±.0042 0.1512±.0040 0.1363±.0190
KL 0.0118±.0042 0.0124±.0565 0.0139±.0056 0.0153±.0002 0.0162±.0000 0.0162±.0000 0.0128±.0009 0.0140±.0006 0.0116±.0154
Cosine 0.9892±.0061 0.9886±.0357 0.9873±.0047 0.9855±.0003 0.9885±.0000 0.9885±.0000 0.9880±.0008 0.9866±.0005 0.9889±.0390

SJA
Clark 0.3602±.0042 0.3657±.0099 0.4567±.0061 0.4516±.0181 0.4232±.0002 1.3730±.9671 0.4049±.0082 0.4369±.0034 0.4153±.0010
KL 0.0480±.0016 0.0518±.0277 0.0659±.0202 0.0790±.0053 0.0692±.0000 1.0106±.9024 0.0663±.0000 0.0791±.0019 0.0668±.0009
Cosine 0.9558±.0015 0.9509±.0528 0.9321±.0187 0.9208±.0062 0.9319±.0000 0.6503±.0850 0.9372±.0000 0.9245±.0019 0.9363±.0125

SCU
Clark 1.0793±.0061 1.4568±.0000 1.5459±.0016 1.5007±.0064 1.5146±.0000 1.4654±.0000 1.3859±.0062 2.6438±.0000 1.3978±.0009
KL 0.1779±.0015 0.1503±.0528 2.6539±.0221 0.1824±.0170 9.2314±.0504 7.4655±.0041 0.4248±.0047 16.040±.1750 0.3997±.0009
Cosine 0.8208±.0028 0.7436±.0202 0.6108±.0689 0.6627±.0028 0.6477±.0000 0.7436±.0000 0.8126±.0011 0.5144±.0002 0.8375±.0002

SBU
Clark 0.3455±.0043 0.3520±.0016 0.3692±.0011 0.4217±.0029 0.4061±.0000 0.3718±.0000 0.3956±.0039 0.4172±.0003 0.4056±.0071
KL 0.0502±.0857 0.0552±.0765 0.0619±.0036 0.0776±.0009 0.0726±.0000 0.0604±.0000 0.2008±.0026 0.0845±.0002 0.0791±.0370
Cosine 0.9474±.0012 0.9449±.0300 0.9410±.0013 0.9177±.0011 0.9232±.0000 0.9367±.0000 0.9267±.0011 0.9180±.0002 0.9226±.0010

RAF
Clark 0.8652±.0082 1.4327±.0528 1.5597±.0234 1.5581±.0086 1.4495±.0003 1.4585±.0000 1.5962±.0138 1.6210±.0034 1.4151±.0016
KL 0.0864±1.8674 0.2086±.0187 6.4358±.0090 3.5105±.0654 2.2182±.0013 5.6995±.0000 13.7926±1.8887 0.7347±.0001 0.2699±.0109
Cosine 0.9252±.0034 0.9234±.0115 0.5631±.0101 0.7351±.0020 0.9198±.0000 0.8706±.0000 0.7968±.0047 0.6453±.0007 0.8976±.0002

M2B
Clark 1.0224±.0009 1.5160±.0023 1.4832±.0878 1.2282±.0070 1.6770±.0046 1.2093±.0000 1.6902±.1999 1.6791±.0002 1.5538±.0029
KL 0.6972±.0108 0.7786±.0109 0.8180±.0301 0.8572±.0354 0.8632±.0044 0.8128±.0000 0.9528±.5826 0.9051±.0000 0.7556±.0083
Cosine 0.7431±.0004 0.7786±.0070 0.7583±.0308 0.7588±.0122 0.7423±.0006 0.7639±.0000 0.5786±.0325 0.6039±.0000 0.6953±.0054

Gen
Clark 2.0077±.0041 2.1086±.0036 2.1110±.0040 2.1734±.0269 2.1102±.0000 2.1144±.0000 2.0677±.0172 2.1162±.0009 2.1374±.0036
KL 0.2224±.0096 0.2236±.0091 0.2372±.0002 0.2380±.0069 0.2258±.0000 0.2256±.0000 0.3618±.0026 0.2374±.0054 0.2455±.0069
Cosine 0.8387±.0028 0.8376±.0038 0.8342±.0003 0.8274±.0036 0.8347±.0000 0.8345±.0000 0.8374±.0018 0.8338±.0027 0.8290±.0021

fbp
Clark 0.5510±.0036 0.6288±.0155 1.2938±.0011 1.5065±.0023 1.6994±.0001 1.2755±.0000 1.4102±.1809 1.8756±.0857 1.2747±.0122
KL 0.0904±.0091 0.0800±.0068 0.2017±.0003 4.2207±.0332 1.3803±.0029 0.7725±.0001 0.4208±.4110 1.7692±.4081 0.1149±.0047
Cosine 0.9567±.0038 0.9500±.0047 0.9412±.0005 0.6572±.0017 0.7943±.0000 0.9521±.0000 0.8527±.0051 0.8242±.0123 0.9528±.0056

Sce
Clark 2.1786±.0108 2.4959±.0061 2.4765±.0303 2.4685±.0135 2.4348±.0000 2.4665±.0000 2.4230±.0025 2.4784±.0007 2.6316±.0000
KL 2.1128±.0061 2.2857±.0015 0.2378±.0061 3.0463±.0490 2.3857±.0002 2.7001±.0000 0.8287±.0227 1.0243±.0027 4.4471±.0000
Cosine 0.7989±.0016 0.8346±.0008 0.7297±.0071 0.6614±.0044 0.7273±.0000 0.7163±.0000 0.7290±.0042 0.6446±.0001 0.3603±.0000

top-1 times 34 7 1 0 0 0 2 0 4

Table 2: Results (mean±std) of the comparing methods in terms of three metrics on 16 datasets (each is denoted by its first three letters with
an exception of Spo5 to distinguish Spo5 from Spoem), where the best results are highlighted in boldface.
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Critical Value (α = 0.05) Evaluation metric Chebyshev Clark Canberra KL Cosine Intersection
2.8500 Friedman Statistics FF 28.0098 44.9412 46.3235 38.0000 45.7059 44.0158

Table 3: Summary of the Friedman statistics FF in terms of six evaluation metrics, as well as the critical value at a significance level of 0.05
(9 algorithms on 16 datasets).
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Figure 2: CD diagrams of the comparing algorithms in terms of each evaluation criterion. For the tests, CD equals 2.3296 at 0.05 significance
level.

(a) Clark (b) KL

(c) Cosine (d) Intersection

Figure 3: Ablation results on seven datasets in terms of Clark ↓, KL ↓, Cosine ↑, and Intersection ↑.

TLRLDL vs. Chebyshev↓ Clark↓ Canberra↓ KL↓ Cosine↑ Intersection ↑
TLRLDL-a win[4.37e-04] win[4.38e-04] win [4.37e-04] win[4.46e-03] win[4.38e-04] win[4.38e-04]
TLRLDL-b win[4.38e-04] win [3.20e-03] win[1.61e-03] win[4.38e-04] win [4.38e-04] win[4.38e-04]

Table 4: The results (Win/Tie/Loss[p-value]) of the Wilcoxon signed-rank tests for TLRLDL against TLRLDL-a and TLRLDL-b at a confi-
dence level of 0.05.

(a) Chebyshev with varying α (b) Clark with varying α (c) Chebyshev with varying λ (d) Clark with varying λ

Figure 4: The performance of TLRLDL with α and λ varying from {0.005, 0.01, 0.05, 0.1, 0.5, 1, 10} in terms of Chebyshev and Clark on
SCUT-FBP, M2B, SJAFFE, SBU 3DFE, and Alpha.
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