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Abstract

In offline Reinforcement Learning (RL), the pre-
trained policies are utilized for initialization and
subsequent online fine-tuning. However, existing
methods suffer from instability and low sample ef-
ficiency compared to pure online learning. This pa-
per identifies these limitations stemming from di-
rect policy initialization using offline-trained policy
models. We propose Continual Policy Revitaliza-
tion (CPR) as a novel efficient, stable fine-tuning
method. CPR incorporates a periodic policy revi-
talization technique, restoring the overtrained pol-
icy network to full learning capacity while ensuring
stable initial performance. This approach enables
fine-tuning without being adversely affected by
low-quality pre-trained policies. In contrast to pre-
vious research, CPR initializes the new policy with
an adaptive policy constraint in policy optimiza-
tion. Such optimization keeps the new policy close
to behavior policy constructed from historical poli-
cies. This contributes to stable policy improvement
and optimal converged performance. Practically,
CPR can seamlessly integrate into existing offline
RL algorithms with minimal modification. We em-
pirically validate the effectiveness of our method
through extensive experiments, demonstrating sub-
stantial improvements in learning stability and ef-
ficiency compared to previous approaches. Our
code is available at https://github.com/LAMDA-
RL/CPR.

1 Introduction
Deep Reinforcement Learning (RL) involves agents learn-
ing through interactions with the environment and encod-
ing decision-making knowledge with neural networks. It has
demonstrated significant potential in mastering complex tasks
and developing robust policies. However, attaining high per-
formance often demands millions or even billions of sam-
ples [Ye et al., 2021; Wu and Zhang, 2023]. The notorious
sample inefficiency of deep RL obstructs its application to
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many problems where only limited interactions with the en-
vironment are acceptable [Yu, 2018; Zhou et al., 2024].

Offline RL algorithms offer a novel approach, enabling
the learning of policies from offline data generated by a
behavior policy. This avenue has garnered significant in-
terest from both academia and industry [Gao et al., 2024;
Ran et al., 2023]. Though the offline methods exempt RL
from costly online interactions, they often learn policies in-
adequate to meet the practical needs due to the insufficient
data coverage [Kumar et al., 2019].

To further fine-tune these agents in the online environ-
ment, Offline-to-Online (O2O) RL [Lee et al., 2021] is pro-
posed. Fine-tuning is expected to increase the agent’s per-
formance monotonically in RL just as the supervised fine-
tuning. Still, it is observed empirically that directly tuning the
pre-trained policy model gets it ruined [Uchendu et al., 2022;
Yu and Zhang, 2023]. We refer to this paradigm of updat-
ing policy function with offline trained checkpoints as direct
policy initialization. We argue such a paradigm would cause
instability and low sample efficiency due to two issues:

• Distribution shift between the offline state-action dis-
tributions and the online environment would cause un-
reliable value prediction. On the one hand, extrapola-
tion error propagation [Fujimoto et al., 2019] in Out-
Of-Distribution (OOD) data devastates the pre-trained
policy quickly with a few online updates. On the other
hand, over-conservatism in offline learning [Nakamoto
et al., 2023] hinders online value function updating.

• Primacy bias of the overtrained policy function im-
pedes subsequent learning [Nikishin et al., 2022]. The
loss of plasticity in pre-trained policy [Abbas et al.,
2023] hinders continual learning and degenerates the
agent’s asymptotic performance especially when the of-
fline dataset is of low quality.

Existing work focuses on alleviating the negative impact
caused by direct policy initialization. Several O2O algo-
rithms have been proposed to mitigate this issue of distri-
bution shift. Unfortunately, these methods have their draw-
backs. In addition, the primacy bias issue has not been iden-
tified in the context of O2O RL previously.

In this work, we delve into the negative effects of direct
policy initialization in O2O RL. Our contributions unfold in
two main facets: firstly, the identification and analysis of is-
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sues associated with direct policy initialization, substantiated
by empirical evidence; and secondly, the introduction of a
stable and efficient O2O RL methodology named Continual
Policy Revitalization (CPR). CPR is designed to replace an
overtrained offline policy with a newly revitalized one during
the policy revitalization stage. This revitalized policy begins
as a blank slate, maintaining receptiveness to new knowledge,
whereas the historical policies are preserved in the policy set
to prevent forgetting. To balance learning and forgetting,
we compose all existing policies to decide which action to
choose. The new policy is initialized by efficient offline train-
ing with an adaptive policy constraint. CPR enjoys benefits
absent from the previous methods. It is free of assumptions
about offline pre-trained algorithms and does not assume ac-
cess to offline datasets. The combination of policy revitaliza-
tion and adaptive policy constraint provides stability and ef-
ficiency in the learning process. We empirically confirm the
effectiveness of our method by a comprehensive comparison
with existing algorithms, highlighting the efficacy of indepen-
dent components within CPR.

2 Background
2.1 Markov Decision Process
We consider a standard Markov Decision Process (MDP) de-
fined by M = (S,A,P, R, ρ, γ), where S is the state space,
A is the action space, R : S × A 7→ [0, 1] is the normalized
reward function, P : S ×A 7→ ∆S is the transition function,
∆X is the set of distribution over the set X , ρ is the initial
state distribution, and γ ∈ [0, 1) is the discount factor.

A deterministic policy π : S 7→ A is a function that maps
a state to an action. For each policy, the corresponding value
function V π : S 7→ R and Q-function Qπ : S × A 7→ R are
the expected discounted cumulative reward (a.k.a. return):

V π(s) = Eπ

[∑∞

t=0
γtrt | s0 = s

]
,

Qπ(s, a) = Eπ

[∑∞

t=0
γtrt | s0 = s, a0 = a

]
.

We measure the performance of a policy by its expected re-
turn J(π) = Es∼ρ [V

π(s)]. The goal in an MDP is to find a
policy that maximizes J(π), i.e., π⋆ = argmaxπ J(π).

2.2 Offline RL
Online interaction with real environments could be costly or
unsafe, in which cases offline RL algorithms [Levine et al.,
2020] are preferred. These algorithms train a policy πβ on
an offline logged dataset D collected by a behavior policy
from the environment. The dataset is composed of transition
tuples (s, a, r, s′), where r = R(s, a) is the reward obtained
when taking action a at state s, and s′ ∼ P (· | s, a) is the
next state sampled by the environment. The trained policy
πβ is expected to maximize the expected return as much as
possible given the information presented by the dataset.

2.3 Offline-to-Online (O2O) RL
O2O RL learns the optimal policy by interacting with the en-
vironment starting with a pre-trained policy πβ obtained by
offline RL training. Other forms of knowledge can also be
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Figure 1: D4RL normalized return and mean Q-value of SAC on
Walker. Normalized return of 0 corresponds to a random policy and
100 corresponds to an expert policy. The network is initialized from
an offline pre-trained AWAC model on walker2d-medium-v2. The
results are averaged on experiments of 5 random seeds.

accessible under certain assumptions, such as offline datasets
and value functions. An O2O method tries to transfer the
knowledge acquired in the offline stage to enable sample-
efficient online learning and poses unique challenges.

3 Issues of Direct Policy Initialization
This section exposes the main issues of direct policy initial-
ization in O2O RL. We empirically demonstrate the damage
of these issues, which motivates the proposal of our method.

3.1 Distribution Shift
It is observed in previous research that O2O RL via off-policy
RL algorithms suffers from a performance drop in the ini-
tial stage, which is attributed to distribution shift [Lee et al.,
2021; Yu and Zhang, 2023]. As demonstrated in Figure 1,
we conduct a tuning experiment with direct policy initializa-
tion. We train a SAC policy [Haarnoja et al., 2018] initialized
from an AWAC [Nair et al., 2020] model pre-trained on the
same task. We observe the performance drop is concomi-
tant with severe value overestimation of the Q-value func-
tion. Therefore, we hypothesize that the distribution shift in
the tuning stage leads to the well-known extrapolation error
problem [Fujimoto et al., 2019] and the extrapolation error
further leads to performance drop.

Though extrapolation error is thoroughly discussed in of-
fline RL, we would like to take one step further in the context
of O2O RL. The OOD actions would also be encountered in
off-policy learning, however, direct policy initialization from
a checkpoint and updating the model with naive off-policy
learning is a common practice in online RL. In online off-
policy learning, things do not get too bad because the overes-
timated value gets corrected when the policy executes these
actions in the stage of training. Nevertheless, this problem
is exacerbated in offline RL, where the policy does not get
a chance to interact with the environment to fix its value es-
timation. In this case, the extrapolation error of value esti-
mation at OOD actions gets continuously amplified by boot-
strapping and makes the Q-value estimation unreliable. Ini-
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Step Average Return R̂′ Drop Ratio ρ
0 3135.55 34.15%

1000 2745.57 42.34%
3000 2516.06 47.16%
5000 2377.49 50.07%

Table 1: The performance drop of SAC after updating the policy on
Hopper. The average return, denoted as R̂′, is computed based on
the evaluation of 100 episodes using 5 different random seeds. In
each run, the policy is initialized with the offline model pre-trained
by AWAC with the same seed. The drop ratio is denoted as ρ =
R̂−R̂′

R̂
, where R̂ is the evaluated return of the pre-trained models.

tializing from offline Q-value function makes finetuning ex-
tremely unstable compared to common off-policy learning.

This distinction is the fundamental difference between the
tuning processes of offline models and online learning. At the
initial stage of O2O RL, the online buffer contains only a few
samples, which makes numerous actions out-of-distribution,
and the extrapolated value estimate for some of them could
be fairly high. Therefore, the policy has an incentive for de-
viating from the pre-trained policy and selecting these OOD
actions, which immediately causes a performance drop.

Since Figure 1 only presents the co-occurrence of perfor-
mance drop and over-estimation, more evidence is required
to confirm it. We designed a controlled experiment to investi-
gate whether the policy update is biased because of the unrea-
sonable Q-value prediction. We fine-tune a pre-trained policy
with the SAC algorithm in the online MuJoCo [Todorov et
al., 2012] Hopper environment. The policy is pre-trained on
the D4RL [Fu et al., 2020] hopper-medium-expert-v2 dataset
with the AWAC algorithm. During O2O RL, we first collect
10000 transition tuples from the online environment with pre-
trained policy and update the policy with the SAC algorithm.
Then, we keep the policy unchanged and update the Q-value
function with additional gradient steps using online data. Af-
ter that, the Q-value network is frozen and we conduct policy
improvement for 1000 gradient steps. As shown in Table 1,
additional updates hurt the performance due to the amplifica-
tion of value extrapolation error and policy deviation.

Our analysis and empirical results show that visiting OOD
actions should be avoided in online fine-tuning updates to
achieve a stable fine-tuning process, especially in the begin-
ning stage. This requires adding constraints on the policy
update to make the visiting distribution not too far from the
offline dataset. When it comes to the case that the offline
dataset is not accessible, we should let the policy stay close
to the offline trained policy.

3.2 Primacy Bias in Offline RL
Another issue of direct policy initialization in O2O RL is the
primacy bias in neural networks. The primacy bias in deep
RL is first observed as a tendency to overfit early experiences
in online learning, which damages the rest of the learning pro-
cess [Nikishin et al., 2022]. Although such observation is in-
tuitive in supervised learning and transfer learning, primacy
bias in single-task offline RL is more difficult to identify. Ex-
cessive training on the early collected data could trap the neu-
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Figure 2: The performance of TD3+BC on the Walker2d-medium-
expert-v2 dataset when loading pre-trained model after different
epochs (1000 updates) of training on the Walker2d-random-v2
dataset. Scores are averaged over five random seeds, and the shaded
areas in the plot represent the standard deviation. A score of 100
represents the average performance of a domain expert, and a score
of 0 represents the performance of a uniform random policy.

ral network into unrecoverable plasticity loss. In common of-
fline RL experiments, networks are trained for hundreds or
thousands of epochs on the offline dataset, inevitably leading
to overfitting.

Unfortunately, even if the policy suffers from plasticity
loss, popular evaluation metrics may fail to exhibit any evi-
dence of primacy bias. A policy may perform well in terms of
evaluation scores but can also be extremely inefficient in the
further learning process. So, simple online evaluation cannot
reflect the actual continual learning ability of a policy.

We design a learning ability test experiment to demon-
strate how primacy bias could suppress the learning abil-
ity of a pre-trained model. We first train the offline model
by the TD3+BC algorithm [Fujimoto and Gu, 2021] in the
walker2d-random-v2 dataset of D4RL. We then use the saved
checkpoint of different training epochs to initialize the pol-
icy that is further trained on the walker2d-medium-expert-v2
dataset. We use this dataset as an unseen data distribution
to test the continual learning capability. This fixed dataset
helps to ablate the effects of data collection in the online
stage. As depicted in Figure 2, the policy initialized with a
model trained for 500 epochs falls short of attaining the per-
formance level it would have reached if learned from scratch.
On the contrary, the policy initialized with an insufficiently
fitted model recovers from the distribution shift at the begin-
ning stage. Considering that offline RL algorithms normally
train over 1000 epochs on the D4RL MuJoCo datasets, 500
epochs should be considered as a common setting in practice.

The damage of primacy bias in offline RL suggests di-
rect policy initialization from the offline trained policy could
cause low learning efficiency. This issue limits the perfor-
mance of direct policy initialization.

4 Methodology
This section presents our method to resolve the issues of di-
rect policy initialization. In Section 4.1, we first introduce the
continual policy revitalization technique. Then we discuss the
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Figure 3: The overall framework of CPR. It maintains a policy set
Π to preserve all frozen historical policies {πβ , π

1, . . . , πk−1} and
the current policy πk. These policies are composed to be π̂ as the
online behavior policy. Periodically, CPR adds a new policy with
full learning capacity to Π. This new policy is initialized with an
adaptive policy constraint in the policy revitalization procedure.

proper design of policy constraint after revitalization in Sec-
tion 4.2. The practical implementation is given in Section 4.3.
The overall framework is shown in Figure 3.

4.1 Continual Policy Revitalization
As discussed before, the existing issues of direct policy ini-
tialization pose a challenge to designing appropriate O2O RL
algorithms. On the one hand, the policy should be as close
to the offline trained policy to alleviate the distribution shift.
On the other hand, direct policy initialization from the over-
trained offline policy could cause primacy bias, hindering on-
line learning efficiency. Our intuitive idea is to find a surro-
gate of the given offline model with full learning capacity and
comparable performance.

Inspired by this intuition, we propose Continual Policy Re-
vitalization (CPR) to reinvigorate the continual learning ca-
pability of the policy function. Specifically, we first define
the procedure of policy revitalization which is periodically
performed every Tr epoch. At the k-th round of policy revi-
talization, we initialize the parameter of the policy network
to generate a new policy πk+1. While maintaining the value
network Qµ of parameter µ unchanged, we exploit an arbi-
trary offline training algorithm Aoffline to initialize πk+1 on
the online replay buffer D with batch RL training:

πk+1 ← Aoffline(D, Qµ). (1)

This designed procedure ensures that the revitalized policy
πk+1 is not severely affected by previous training and is well-
conditioned for continual learning. Since the size of the on-
line replay buffer D is limited, policy revitalization uses the

offline RL method to achieve sample efficiency and stable
policy initialization with a high replay ratio in batch training.

Of course, the offline training in policy revitalization could
not clone the previous behavior policy perfectly. Inspired by
PEX [Zhang et al., 2023], we maintain a policy set Π and
add the policy composition mechanism in the action selec-
tion stage. At the k-th round of policy revitalization, we add
the current policy πk to the policy set Π ← Π ∪ {πk} to
avoid catastrophic forgetting. When interacting with the en-
vironment at state s, each policy πi in the policy set Π pro-
poses a candidate action ai and the agent would select the ac-
tion with the Boltzmann distribution of the predicted Q-value
Qπk

(s, ai). Here πk is the current policy. The probability of
selecting action proposed by policy πi, P ⋆(i), is defined as:

P ⋆(i) =
exp

(
Qπk

(s, ai) /η
)

∑
j exp

(
Qπk (s, aj) /η

) , i ∈ {1, · · · , k}. (2)

Here η is the temperature hyper-parameter to balance ex-
ploitation and exploration. In this way, we perform a one-step
policy improvement with maximal entropy at every action se-
lection step in the following form:

P ⋆ = argmax
P

[
k∑

i=1

P (i)Qπk

(s, ai)− ηP (i) logP (i)

]
.

(3)
We use the notation of π̂k to represent the composed policy
distribution at the k-th round of policy revitalization. By sam-
pling from the composed policy π̂k, we combine the decision
knowledge of all policies. With a higher η, the mixed policy
tends to explore and randomly choose from the proposed ac-
tions. On the contrary, with a small η, the mixed policy makes
greedy decisions based on the evaluated action quality of the
proposed actions. Since all policies are archived in the policy
set, historical knowledge could be preserved even if old data
is no longer stored. This mechanism protects the policy from
radical forgetting and policy improvement.

4.2 Adaptive Policy Constraint
Since we set the composed policy π̂ as the behavior policy in
the online replay buffer, CPR does not adopt a fixed policy
constraint in pure offline RL or an iterative policy regular-
ization in online off-policy learning. Instead, CPR uses the
policy set to propose an adaptive policy constraint. We use
subscript to denote the policy iteration step and superscript
to represent the number of policy revitalization rounds. Thus,
the optimization of the current policy at the k-th round of pol-
icy revitalization can be formalized as:

πk =argmax
π

Es∼ρ
π̂k
Ea∼π(·|s)Q

π(s, a)

s.t. Es∼ρ
π̂k
DKL

(
π̂k(· | s)∥π(· | s)

)
≤ ϵ,

(4)

where ρπ̂k is the state visitation distribution of π̂k, ϵ is a small
positive number, and DKL is the Kullback–Leibler (KL) di-
vergence. Eq. 4 implements a trust region policy update
adapting to the change of behavior policy.

Compared to iterative policy constraint in PPO [Schulman
et al., 2017] which constrains the updated policy to close with
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the current policy, our adaptive policy constraint can alleviate
harmful forgetting in recent policy updates with no signifi-
cant drop of useful knowledge from the offline dataset. Thus
CPR can gain a more stable performance improvement. Dif-
ferent from fixed policy constraints in offline RL [Fujimoto
et al., 2019], CPR can achieve higher performance even if the
offline pre-trained policy is of low quality.

All historical policies within the policy set engage in com-
petition, each vying for their actions to be manifested in the
behavioral policy. Over time, only proficient actions are pre-
served in the replay buffer. The quality of the behavior policy
of CPR is improved together with the update of the Q-value
function. This, in turn, elevates the initial performance of
the freshly revitalized policy. Thus our policy composition
mechanism leads to an adaptive policy constraint where the
target policy distribution is improved in learning.

4.3 Practical Implementation
Though the analytical distribution of π̂k is complex, we show
that the implementation can be simple in practice. The KL
divergence inequality constraint of Eq. 4 can be written as
the Lagrangian L(π, α) = Es∼ρ

π̂k
Ea∼π(·|s)Q

π(s, a)+α
[
ϵ−

Es∼ρ
π̂k
DKL

(
π̂k(· | s)∥π(· | s)

)]
, where α is a coefficient.

To maximize L(π, α), we can simplify the optimization of
the second term into the following forms:

argmin
π

Es∼ρ
π̂k
DKL

(
π̂k(· | s)∥π(· | s)

)
=argmin

π
Es∼ρ

π̂k ,a∼π̂k

[
log π̂k(a | s)− log π(a | s)

]
=argmax

π
Es∼ρ

π̂k ,a∼π̂k log π(a | s).

(5)

Note this is the form of the Behavioral-Cloning (BC) objec-
tive [Pomerleau, 1991], which tries to mimic the likelihood
under the state-action distribution of π̂k. We use the BC loss
to minimize the proposed adaptive policy constraint.

Policy update through Eq. 4 is of on-policy fashion, which
uses only the data collected by the last behavior policy π̂k and
can be inefficient. Therefore, in practice, we instead update
the Q-function and enforce the constraint on all states in the
replay buffer, leading to a TD3+BC[Fujimoto and Gu, 2021]
update. The BC-regularized policy loss is given as:

Lπ(θ) = E(s,a)∼D

[
−λQµ

(
s, πθ(s)

)
+
(
πθ(s)− a

)2]
,

(6)
where θ is the policy function parameter, λ = ξ/Q̄, Q̄ =
E(s,a)∼D[|Qµ(s, a)|], and ξ is a hyper-parameter to balance
the Q loss and the BC loss term. The loss function of the
Q-value function Qµ is given as:

LQ(µ) = E(s,a,r,s′)∼D

[(
y(r, s′)−Qµ(s, a)

)2]
, (7)

where y(r, s′) = r +Qµ

(
s′, πθ(s)

)
.

We present the practical implementation of CPR in Algo-
rithm 1. The policy set Π starts with the pre-trained policy πβ

and the mixed policy specified by Eq. 2 is equivalent to πβ .
After collecting trajectories with πβ , we add a random policy
π1 to Π. Then CPR initializes π1 via offline batch updates
on the replay buffer to minimize Eq. 6. As Π contains more

Algorithm 1 CPR
Input: Pre-trained policy πβ , parameter µ of the
pre-trained Q-value function, revitalization interval
Tr

1: Initialize k with 0, parameters µ1, µ2 of twin Q-value
functions with µ, the online replay buffer D with ∅, and
the policy set Π with {πβ}

2: for each epoch do
3: for each sampling step t do
4: Select action with probabilities specified by Eq. 2
5: D ← D ∪ {(st, at, r (st, at) , st+1)}
6: if k > 0 then
7: Update the Q-value function by minimizing Eq. 7

for one step of stochastic gradient descent
8: Update the policy by minimizing Eq. 6 for one

step of stochastic gradient descent
9: end if

10: if t%Tr == 0 then
11: Initialize the new policy πk+1 by minimizing

Eq. 6 and add it to the policy set Π
12: k ← k + 1
13: end if
14: end for
15: end for

policies, CPR collects new samples using the mixed policy.
At each step, we make a gradient update to the Q-value func-
tion Qµ, and the current policy πk. All other policies in Π are
kept unchanged. Periodically, we add a new policy πk+1 to
Π to maintain the continual learning capability.

5 Related Work
Existing O2O RL Methods. Existing O2O RL methods
can be divided into policy constraint, pessimistic value es-
timation, and offline data replay. Explicit policy constraint
slows online learning by constraining the policy towards
the initial pre-trained policy [Nair et al., 2020; Beeson and
Montana, 2022; Zhao et al., 2022]. It is especially detri-
mental when the pre-trained policy is poor. Conservative
value function may hinder exploration and deteriorate learn-
ing efficiency [Kostrikov et al., 2022; Nakamoto et al., 2023;
Zhang et al., 2024]. The offline data replay requires access
to the offline dataset which might not be accessible due to
privacy and safety concerns [Lee et al., 2021].

Policy Set. The idea of maintaining more than one policy
function has been proposed for stabilizing the policy [Mnih
et al., 2016], exploration [Uchendu et al., 2022], knowledge
transfer [Lai et al., 2020], and safety concern [Xu et al.,
2021]. In O2O RL, it was first proposed in PEX to construct a
set containing two policies: the frozen policy πβ and the cur-
rent learnable policy πθ [Zhang et al., 2023]. CPR inherits
the idea of PEX and extends it. By periodically adding a new
policy to the policy set, CPR restores the learning capability
of the policy network while preserving historical knowledge.

Primacy Bias. Resetting sub-networks and the advantage
of forgetting have been discussed in supervised learning
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Figure 4: Normalized return learning curves on D4RL MuJoCo Locomotion benchmark.

[Zhou et al., 2022]. Early experiments on the effect of exam-
ple ordering report that early examples have greater influence
in supervised learning [Erhan et al., 2010]. The effect of pri-
macy bias in deep RL is currently considered in the area of
online RL [Nikishin et al., 2022] and multi-task RL [Abbas
et al., 2023]. To our knowledge, CPR is the first algorithm to
consider the primacy bias issue in O2O RL.

Reincarnating RL. Reincarnating RL (RRL) [Agarwal et
al., 2022] is proposed for reusing previous computation re-
sults without re-training from scratch in online learning. Dif-
ferent from RRL, CPR is designed for solving issues of direct
policy initialization in O2O RL.

6 Evaluation
In this section, we conduct extensive experiments on MuJoCo
to answer the following questions:

(i) How does CPR compare to other state-of-the-art meth-
ods for O2O RL? (See Section 6.2).

(ii) Can our continual policy revitalization method allevi-
ate the primacy bias issue and prevent forgetting? (See
Figure 4 and Section 6.3).

We present the ablation study of our method and extra exper-
iments in Appendix C1.

6.1 Experiment Settings
Our experiments are conducted with the following settings:

• Task and offline datasets. We select the popular Mu-
JoCo locomotion tasks from D4RL [Fu et al., 2020] as
our benchmark for performance comparison. We select

1https://www.lamda.nju.edu.cn/kongr/CPR/appendix.pdf

the random and three medium levels for each task to sim-
ulate offline datasets with different quality.

• Offline training protocol. All offline algorithms are
trained for 1000 epochs of 1000 random mini-batches
each. For each algorithm, we run 5 random seeds. The
last checkpoint file is used as the pre-trained model.

• Online training protocol. We run all methods for 300
episodes with 5 random seeds. In each episode, there are
1000 online interaction steps.

We compare the following baselines:
• TD3 [Fujimoto et al., 2018], which represents the per-

formance of learning from scratch with online RL.
• TD3+BC [Fujimoto and Gu, 2021], which adds a BC

regularization term upon the policy update loss in TD3.
As a pure offline RL algorithm, we initialize an offline
buffer by the offline dataset.

• TD3+BC-FT [Beeson and Montana, 2022], which an-
neals the weight of BC term in TD3+BC for fine-tuning.

• AWAC [Nair et al., 2020], which performs a KL diver-
gence constraint in the policy improvement step.

• IQL [Kostrikov et al., 2022], which uses expectile re-
gression to learn the policy. IQL can be directly trans-
ferred to online fine-tuning without any modification.

• PEX [Zhang et al., 2023], which freezes the pre-trained
policy and adds a learnable policy for online learning.

The offline performance of all baselines is listed in Ap-
pendix C.1 for a fair comparison. In the experiments, CPR
uses the same set of hyper-parameters on most tasks. We
set revitalization interval Tr = 10 and revitalization fitting
epochs Nr = 32. All hyper-parameter value selections are
discussed in Appendix B in detail.
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Figure 5: Aggregated learning curves of normalized return on all
MuJoCo Locomotion tasks. See Figure 4 for more details.

6.2 Main Results
We demonstrate the normalized score curves of all the tasks
in Figure 4, and the aggregated normalized return across all
tasks is illustrated in Figure 5. From the reported results, the
dilemma of direct policy initialization is shown clearly. Be-
cause of the distribution shift issue, conservatism should be
considered in the algorithm design to overcome performance
drop in the early stage. However, over-conservatism severely
hinders policy improvement. TD3+BC shows little improve-
ment due to the fixed policy constraint to the offline dataset.
With an unchanged hyper-parameter during the whole tuning
process, IQL suffers from low sample efficiency compared to
other algorithms. AWAC and TD3+BC-FT share the advan-
tage of applying an implicit policy constraint over the online
replay buffer and outperforming on medium tasks. Compared
to AWAC, TD3+BC-FT updates the hyper-parameters with
annealing. Though this could support more improvement on
the top of the pre-trained policy, it also suffers from distribu-
tion shift when updating the actor too fast and causes policy
improvement unstable. The adaptive policy constraint and
policy design help CPR to achieve a stable policy improve-
ment without a severe performance drop.

For the initial model pre-trained on the random level
dataset, the primacy bias is observed and all the baseline al-
gorithms fail to beat online algorithm learning from scratch.
PEX uses a fresh learnable policy to learn from the online en-
vironment, it transfers knowledge from the offline model to
the new policy by directly accessing the offline dataset. This
could suppress the learning ability of the new policy and lead
to suboptimal performance and high variance. In contrast,
the policy revitalization procedure makes CPR achieve sig-
nificant improvement even on tasks with low-quality datasets.

Our proposed method CPR outperforms all the baseline
methods on most of the tasks and achieves the best overall
performance, demonstrating its effectiveness.

6.3 Memory Test
We conduct an experiment to show the agent’s memory
capacity after revitalization. We split the set of samples
(s, πβ(s)) collected by the pre-trained policy πβ to be a train-
ing set and a testing set. We keep the testing set not ex-
posed to the agent and only utilize the training set to train
a new policy π0. We then sample states s from the testing
set and let the agent predict actions π0(s) on those states. By
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Group
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Figure 6: MSE loss of different methods on the testing set. The error
bar in the plot represents the standard deviation over 50 seeds.

assessing the L2 loss Es∼Dv

(
πβ(s) − π0(s)

)2
on the vali-

dation set Dv , we show that expanding a new policy could
help in remembering. The Mean Squared Error (MSE) re-
sults are shown in Figure 6. The first number of each group
means the number of training epochs. We use NPR to de-
note the no-policy-revitalization group and PR for the policy-
revitalization group. PRC is the group where actions are se-
lected from composition policy π̂. As more rounds of fitting
on the training set are performed, the loss of the testing set de-
creases at first and then increases which suggests over-fitting
could happen when a high replay ratio is applied. As the con-
trol group, we also set an NPR group which simply fits the
training set in the same way as other revitalized policies.

Compared with the control group, simply increasing fitting
rounds only shows little improvement on memory and would
cause overfitting if the replay ratio is too high. However, by
introducing the policy composition mechanism CPR shows
good performance on memorizing actions from behavior pol-
icy and outperforms even with limited fitting rounds.

7 Limitations and Discussion
The limitations of CPR include the extra running time and
restricted policy model size. We list the analysis of running
time results in Appendix C.4. The extra cost of computa-
tion is acceptable for most tasks. Contrary to O2O RL algo-
rithms, our method does not introduce any specific constraints
to the offline training portion to adapt different offline RL al-
gorithms. This leads to a passive solution of primacy bias
by resetting a part of the parameters to obtain a policy with
full learning capacity. Appealing future directions are extend-
ing CPR to large-scale policy models and developing efficient
utilization methods of pre-trained models.

8 Conclusion
This paper identifies the distribution shift and primacy bias
issues and attributes these issues to direct policy initializa-
tion. Leveraging this analysis, we propose CPR to replace
direct policy initialization in O2O RL. Our method periodi-
cally performs policy revitalization to reactivate the learning
capacity and preserves good initial performance by adaptive
policy constraint. Our experiment results show CPR’s ability
to improve learning efficiency and stability.
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