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Abstract
Hybrid models that combine CNNs and ViTs have
recently emerged as state-of-the-art computer vi-
sion models. To efficiently deploy these hybrid
models on resource-constrained mobile/edge de-
vices, quantization is emerging as a promising so-
lution. However, post-training quantization (PTQ),
which does not require retraining or labeled data,
has not been extensively studied for hybrid models.
In this study, we propose a novel PTQ technique
specialized for CNN-transformer hybrid models by
considering the hardware design of hybrid models
on AI accelerators such as GPUs and FPGAs. First,
we introduce quantization-aware distribution scal-
ing to address the large outliers caused by inter-
channel variance in convolution layers. Further-
more, in the transformer block, we propose ap-
proximating the integer-only softmax with a linear
function. This approach allows us to avoid costly
FP32/INT32 multiplications, resulting in more effi-
cient computations. Experimental results show that
the proposed quantization method with INT8 pre-
cision demonstrated a 0.39% accuracy drop com-
pared with the FP32 baseline on MobileViT-s with
the ImageNet-1k dataset. Furthermore, when im-
plemented on the FPGA platform, the proposed
linear softmax achieved significant resource sav-
ings, reducing the look-up table and flip-flop us-
age by 1.8 ∼ 2.1× and 1.3 ∼ 1.9×, respec-
tively, compared with the existing second-order
polynomial approximation. The code is available
at https://github.com/IDSL-SeoulTech/HyQ.

1 Introduction
Convolutional neural networks (CNNs), which are widely
used in computer vision tasks, learn translation equivariance
properties using small local receptive fields and thus have
high computational and parameter efficiencies [He et al.,
2016]. However, the local connectivity structure limits their
ability to model global contexts and long-range dependen-
cies in the data [Naseer et al., 2021]. Conversely, emerging
vision transformers (ViTs) apply global self-attention mech-
anisms to capture non-local relationships between all spa-

tial locations, achieving higher accuracy than CNNs ow-
ing to their large representational capacity [Dosovitskiy et
al., 2020]. Although ViTs can acquire such a high self-
attention capacity, they also increase computational com-
plexity and parameter size [Liu et al., 2021a]. For exam-
ple, the ViT-Base [Dosovitskiy et al., 2020] and Swin-Base
[Liu et al., 2021a] models have 86M and 87M parame-
ters, respectively. Accordingly, these models require mas-
sive DRAM access during inference, resulting in significant
energy consumption[Nguyen et al., 2020b], making them un-
suitable for deployment on resource-constrained mobile/edge
platforms [Zhou et al., 2022; Nguyen et al., 2020a].

To address this limitation, hybrid models that com-
bine CNNs and ViTs have recently achieved state-of-the-
art (SOTA) performance in various vision tasks [Mehta and
Rastegari, 2021; Yang et al., 2022; Li et al., 2022]. To exploit
the strengths of both CNNs and ViTs in CNN-transformer
hybrid models, mobile convolution (MBConv) layers [San-
dler et al., 2018] are used in the early stages to extract
local features and then passed to transformer encoders to
learn global representations [Mehta and Rastegari, 2021;
Yang et al., 2022]. Although these hybrid models achieve
SOTA performance in the trade-off between computation and
accuracy, their high computational cost and memory footprint
still impede the real-time inference of neural network (NN)
models on resource-constrained mobile/edge devices. For
example, MobileViT-s [Mehta and Rastegari, 2021] has 2G
floating-point operations (FLOPs), which exceeds the typical
mobile inference budget (<600M FLOPs) [Cai et al., 2019].

Quantization has become the most widely used approach
for ensuring efficient deployment of NN models on resource-
constrained mobile/edge devices [Kim and Kim, 2021].
Among the various quantization techniques, quantization-
aware training (QAT) compensates for accuracy drops by
retraining a quantized model using a full training set [Ja-
cob et al., 2018]. However, QAT complicates the training
process and adds significant time costs. Specialized train-
ing techniques (such as straight-through estimators [Yin et
al., 2019]) or hyper-parameter tuning may also be required.
Conversely, post-training quantization (PTQ) compresses the
high-precision (e.g., FP32) weights and activations of a pre-
trained NN into low-precision values (e.g., INT8) to accel-
erate hardware inference without requiring access to train-
ing data or retraining [Nagel et al., 2021]. This makes PTQ
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highly useful when training data are unavailable or additional
training is infeasible. However, applying PTQ to neural net-
works (NNs) without considering their characteristics signifi-
cantly reduces accuracy, particularly for complex ViT models
compared with CNNs [Liu et al., 2021b]. Based on in-depth
analyses, new quantization techniques tailored to ViTs have
recently been proposed, including FQ-ViT [Lin et al., 2021],
PTQ4ViT [Yuan et al., 2022], I-ViT [Li and Gu, 2022], and
NoisyQuant [Liu et al., 2023]. However, these methods are
limited to standard transformer models and are difficult to
apply to hybrid models containing convolutional blocks that
have different characteristics than transformer models. The
quantization solution for the hybrid model, Q-HyViT [Lee et
al., 2023], determines the mixed quantization granularity and
schemes for each layer using Hessian information. However,
mixed granularity and schemes require complex implementa-
tion and dedicated kernels for inference acceleration. In addi-
tion, Q-HyViT is specific to the MobileViT architecture and
consequently exhibits poor compatibility.

In this study, we propose HyQ, a novel quantization
method for CNN-transformer hybrid models. First, we in-
troduce quantization-aware distribution scaling (QADS) to
eliminate large outliers caused by inter-channel variances in
CNNs (i.e., MBConvs). We also propose approximating the
computationally expensive softmax function in transformer
blocks with an integer-only linear exponential function while
considering hardware efficiency. As shown in Fig.1, we quan-
tize various hybrid models, including MobileViT [Mehta and
Rastegari, 2021], MobileViTv2 [Mehta and Rastegari, 2022],
and EfficientFormer [Li et al., 2022], using the ImageNet-1k
dataset [Deng et al., 2009] to evaluate HyQ. Using HyQ, the
quantized MobileViT-s can achieve a 75% parameter size re-
duction with only a 0.39% accuracy drop decrease from the
FP32 baseline, demonstrating SOTA results. Moreover, us-
ing hardware-friendly techniques, HyQ overcomes the limi-
tations of previous research in terms of hardware usage. As
a result of implementing the proposed linear softmax at the
register-transfer level (RTL), the proposed linear softmax sig-
nificantly reduces lookup table (LUT) and flip-flop (FF) us-
age without the utilization of digital signal processor (DSP),
outperforming the existing second-order polynomial approx-
imations. Our contributions can be summarized as follows:

• The QADS addresses the inter-channel variance chal-
lenges caused by depth-wise convolutions in MBConvs.
Before quantization, QADS scales the original distribu-
tions with large outliers in the activations and weights in
a quantization-aware manner.

• We propose a method to approximate the computation-
ally expensive softmax, originally performed in FP32
precision, as a simple yet efficient linear function with
integer-only computation.

• We demonstrate high hardware-friendliness and compat-
ibility of QADS and linear softmax, emphasizing their
practical and broad applicability.

Figure 1: Comparison of Top-1 accuracy drops with various quanti-
zation methods and our proposed HyQ on the ImageNet-1k dataset
for MobileViTs and EfficientFormers. All weights and activations
were quantized to 8-bit integers (INT8).

2 Related Works
2.1 CNN-Transformer Hybrid Models
ViTs using self-attention have significant interest in com-
puter vision tasks owing to their remarkable performance im-
provements in various tasks, such as image classification, ob-
ject detection, and segmentation [Dosovitskiy et al., 2020;
Liu et al., 2021a; Liu et al., 2022]. Such advantages of ViTs
over CNNs stem from the self-attention mechanism’s ability
to capture global contexts more accurately, whereas CNNs
extract local features [Steiner et al., 2021]. However, ViTs
are often computationally costly and require substantial train-
ing data to achieve such performance gains. Therefore, vari-
ous CNN-transformer hybrid models have recently been pro-
posed, achieving improved trade-offs between accuracy and
efficiency by combining the high computational efficiency of
CNNs and the global modeling capacity of transformers.

MobileViT [Mehta and Rastegari, 2021] was designed to
combine the strengths of CNNs and ViTs in mobile vision
tasks. MobileViT reduces model complexity while main-
taining accuracy by selectively replacing certain convolutions
in MobileNetV2 [Sandler et al., 2018]. Conversely, MOAT
[Yang et al., 2022] uses a different approach, which com-
bines mobile convolution and transformer blocks into a sin-
gle block, simplifying the model architecture. Moreover,
MOAT can handle tasks that require high-resolution inputs
by converting global attention to window attention. Efficient-
Former [Li et al., 2022] addresses the challenge of ViTs be-
ing slower than lightweight CNNs, which makes their deploy-
ment on mobile devices challenging, by using the dimension-
consistent design and latency-driven slimming method. De-
spite being well-designed, hybrid models still have consider-
able model sizes of up to 82M parameters [Li et al., 2022],
requiring additional model compression techniques, such as
quantization [Nagel et al., 2021] and pruning [Kim and Kim,
2023], for efficient deployment on resource-constrained mo-
bile/edge devices.
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2.2 Post-Training Quantization
Quantization is an approach to improve the memory and com-
putational efficiency of NNs by reducing the high precision
of parameters to low precision. Quantization techniques are
divided into two categories: QAT and PTQ. To mitigate accu-
racy losses caused by quantization, the existing QAT research
necessitates access to the full training dataset, followed by
extensive retraining across multiple QAT epochs [Yin et al.,
2019; Gysel et al., 2018]. However, retraining quantized net-
works becomes infeasible in scenarios where data access is
restricted or hardware resources are limited. Given these
challenges, there is a growing preference for PTQ methods
that do not require additional retraining or data access. This
shift is further motivated by the rising costs of fine-tuning in-
creasingly complex ViTs and language models.

Several PTQ techniques for CNNs have been proposed.
Data-free quantization [Nagel et al., 2019] proposed weight
equalization to remove the large outliers of the weights and
bias correction to compensate for the quantization error in-
duced by the shifted output. OMSE [Choukroun et al., 2019]
utilized the mean squared error (MSE) function to identify the
scaling factor with the least quantization error. On the other
hand, for transformer models, NoisyQuant [Liu et al., 2023]
demonstrated that introducing minor random biases to activa-
tions can significantly reduce quantization errors. PTQ4ViT
[Yuan et al., 2022] applied twin uniform quantization to post-
softmax and post-GeLU activations [Hendrycks and Gimpel,
2016a] and determined the optimal scaling factor using a
hessian-guided metric. FQ-ViT [Lin et al., 2021] proposed
a power-of-two factor that enables integer-only operations to
address the significant inter-channel variance problem in Lay-
erNorm. SmoothQuant [Xiao et al., 2023] relieves the diffi-
culties of activation quantization by migrating channel-wise
outliers in LLM activation to weights. OutlierSuppression
[Wei et al., 2023] shifts the channel-wise center and scales
channel-wise outliers. However, one significant limitation of
these methods is their reliance on the specific structures of
CNNs or transformers. In other words, the direct application
of these techniques to hybrid models often results in signifi-
cant accuracy drops owing to the distinct parameter distribu-
tions and layer characteristics of CNNs and transformers.

To address this, Q-HyViT [Lee et al., 2023] analyzed
the activation distributions in hybrid models and then de-
termined the optimal quantization granularity (per-tensor or
per-channel factors) and scheme (asymmetric or symmetric)
using Hessian-based analysis. However, the mixed granu-
larity and schemes of Q-HyViT result in sub-optimal hard-
ware efficiency and increased resource demands, making it
less suitable for edge devices. Additionally, its applicability
is confined to a specific MobileViT architecture, limiting its
compatibility. In this study, we introduce HyQ, a hardware-
optimized quantization method specialized for the efficient
deployment of various hybrid models on edge devices.

3 Hardware-Friendly PTQ for Hybrid Models
3.1 Overview of the Proposed Quantization
For the CNN-transformer hybrid model, the proposed quan-
tization maps all layers with core operations represented by

Figure 2: Overview of the proposed HyQ. (a) The QADS optimiza-
tion process. First, a calibration set is used to determine the QADS
parameters that minimize the difference between the FP32 and
INT32 outputs. The obtained QADS parameters are then merged
into the existing quantizer module. (b) Attention operation using
conventional quantization (Left) vs. using the proposed linear soft-
max (Right).

high-precision values (e.g., FP32) to low-precision values
(e.g., INT8). We apply INT quantization to all operations,
including stem, convolution, MatMul, FC, softmax, Layer-
Norm, and shortcut layers. In particular, for fully integer
quantization, we fold the BatchNorm weights into the pre-
ceding convolution weights before quantization. In addition,
we employ uniform quantization with fixed step sizes for ef-
ficient support of diverse hardware (i.e., GPU, FPGA, ASIC).
For a b-bit unsigned uniform quantization, the quantized in-
put Xq is defined as follows:

Xq ≈ Q(X) = clip(round(
X

s
) + z, 0, 2b − 1), (1)

s =
max(X)−min(X)

2b − 1
, (2)

z = clip(round(−min(X)

s
), 0, 2b − 1), (3)

where Q(X) denotes the quantization function. The in-
put X ∈ RC×H×W denotes a floating-point real-value in-
put with channel C and H × W dimensions. In contrast,
Xq ∈ RC×H×W denotes a b-bit integer value. The scaling
factor s ∈ R1 denotes the step size of the quantizer, and the
zero point z ∈ R1 denotes the real value zero as an integer.

First, we describe the overall flow of the proposed HyQ.
Fig. 2(a) illustrates the QADS process. Initially, during the
calibration step, an optimization process is conducted to de-
termine the optimal QADS parameters using the MSE loss (as
shown in the left side of Fig. 2(a)). Following the completion
of calibration, the obtained QADS parameters are merged
into the quantizer (as shown in the right side of Fig. 2(a)).
Fig. 2(b) depicts the attention mechanism of the transformer.
The left side depicts the conventional quantization method
that processes softmax in FP32. In contrast, on the right side,
the proposed linear softmax performs exponential operations
on the INT32 input using only add operations.

3.2 Quantization-Aware Distribution Scaling
MBConv is a module used in various lightweight mod-
els (e.g., MobileNetV2 [Sandler et al., 2018], EfficientNet
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Figure 3: Input activation histograms of the third convolution layer
in the MBConv blocks of MobileViT-xxs. The x-axis and y-axis
represent the input values and the count, respectively. The yellow
dotted lines indicate the quantization bins when quantizing the in-
put activation to 4-bit using min-max quantization. (a), (c): Activa-
tion distributions with large outliers before applying QADS for the
point-wise convolution layer of the first and second stages, respec-
tively. (b), (d): Activation distributions after applying QADS for
each stage, respectively.

[Tan and Le, 2019], and MobileViT [Mehta and Rastegari,
2021]) for efficient model usage on resource-constrained mo-
bile/edge devices. It has recently been widely used in hybrid
models that combine CNN and transformers to optimize the
trade-off between accuracy and efficiency in both computa-
tions and parameters. However, the depth-wise convolution
in MBConv causes significant inter-channel variance owing
to its channel-wise operation [Kulkarni et al., 2021]. As a re-
sult, this leads to large outliers, making quantization consid-
erably challenging. As shown in Fig. 3, the maximum values
of input activation for the point-wise convolution layer of the
first and second stage of MobileViT-xxs are 38.6 and 22.2,
respectively. When min-max quantization is applied to such
a distribution, most values are mapped to only a few quan-
tization bins (indicated by yellow dotted lines), resulting in
most values being quantized to zero. This implies that only
a few bits were used. Moreover, incorrect quantization of the
MBConv blocks in the initial layers of hybrid models results
in significant quantization errors. These quantization errors
accumulate gradually, leading to incorrect predictions in the
final layers.

To address this issue, we propose QADS. The core idea of
QADS is to scale down channels with large input values (i.e.,
outliers) to reduce the maximum value. This helps to map
values more evenly to the quantization bin. First, we apply a
per-channel scaling parameterααα ∈ RC to the input activation
X and weights W. The operation of the convolution layer
using the scaling parameter ααα is expressed as follows:

Y = (
X

ααα
)(αααW) = X̂Ŵ, (4)

where X̂ and Ŵ denote the scaled input and weight, respec-
tively. Convolution using the quantization function Q is de-
fined as follows:

Yq = Q(X̂) ∗Q(Ŵ). (5)

The new Ŵ(= Wααα) can be pre-computed offline, but X
changes dynamically and cannot be pre-scaled like weights.
Therefore, to avoid additional scaling operations on X, we
absorbααα for X into the quantization scale factor s as follows:

Q

(
X

ααα

)
= clip

(
round

(
X

s∗

)
+ z, 0, 2b − 1

)
, (6)

s∗ = ααα · s, (7)

where s∗ = ααα · s denotes the new quantization scale fac-
tor. Hence, QADS uses channel-wise scaling factors while
still achieving computationally efficient layer-wise quantiza-
tion. These additional scaling parameters accounted for only
0.05% and 0.07% of the total number of parameters in the
MobileViT-xxs and MobileViT-xs models, respectively, indi-
cating a negligible overhead.

However, determining the optimal QADS factor ααα poses a
significant challenge. If ααα corresponding to input channels is
very large, quantization of the input X becomes easier while
weight quantization becomes more difficult. Conversely, if ααα
is very small, the large outliers in input X make input quanti-
zation more difficult. Therefore, the optimal ααα must be care-
fully determined by considering both input and weight val-
ues. To automatically explore ααα without requiring heuristic
knowledge, we employ a training-based method using the fol-
lowing objective function to determine the optimal α∗α∗α∗:

ααα∗ = argmin L(ααα) = argmin

∥∥∥∥Q(
X

ααα
)Q(αααW)−XW

∥∥∥∥ .
(8)

In other words, we search for ααα that minimizes the MSE
between the quantized output of the scaled input and weights
and the original FP32 output. As shown in Fig. 3(b) and (d),
the resulting scaled activation distributions using the optimal
ααα∗ have lower maximum values (i.e., 38.6 → 11.0, 22.2 →
9.98) and a more even mapping to quantization bins than the
original distributions. In conclusion, the proposed QADS can
significantly reduce quantization errors caused by activation.
It is noteworthy that we have applied this approach to non-
linear functions, such as swish activation, addressing issues
that SmoothQuant [Xiao et al., 2023] or OutlierSuppression
[Wei et al., 2023] cannot.

3.3 Linear Softmax: LinMax
In the transformer, softmax is used to convert the input val-
ues into a probability distribution between 0 and 1, and is
expressed as follows:

Softmax(xi) =
expxi∑k
j=1 exp

xj

, (9)

where i = 1, ..., k. The exponential (exp) function in softmax
generally does not have linear properties like MatMul, mak-
ing integer arithmetic operations infeasible (i.e., MatMul(s
· Xq) = s · MatMul(Xq)); however, Softmax(s · Xq) ̸= s
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Algorithm 1 Integer-only Linear Exponential

1: Input: q, s: quantized input and scale
2: Output: qout,sout: quantized output and scale
3: function Linear-EXP(q, s)
4: qln 2 ← round(− ln 2/s)
5: z ← round(q/qln 2)
6: qp ← q − z · qln 2

7: qb ← floor(b/s)
8: sL ← floor(a · s)
9: qL = q + qb

10: qout, sout ← qL << n− z, sL/2
n

11: return qout, sout
12: end function

· Softmax(Xq)). Hence, enabling integer computations for
softmax is challenging. To address this, I-BERT [Kim et al.,
2021] approximated the exponential over a very small range
(− ln 2, 0] using a second-order polynomial (i.e., ax2+bx+c)
and processed it with INT32 precision to maintain network
accuracy. However, INT32 multiplications consume substan-
tial energy on hardware platforms, such as ASICs and FP-
GAs. For example, INT32 consumes energy ×15.5 and ×98
more than INT8 on ASIC and FPGA implementations, re-
spectively [You et al., 2020]. Furthermore, I-BERT requires
additional QAT training.

Considering the efficiency of implementing CNN-
transformer hybrid models on hardware platforms, we
approximated softmax using a lower-order polynomial (i.e.,
first-order) rather than the second-order polynomial used in
I-BERT. Algorithm 1 presents the proposed integer-only lin-
ear exponential process. First, to ensure numerical stability,
we restrict the range of the original exponential input by
subtracting the maximum value as follows:

Softmax(xi) =
exp(xi−xmax)∑k
j=1 exp

(xj−xmax)
=

expx̃i∑k
j=1 exp

x̃j

,

(10)
where xmax denotes max(xi). x̃i = xi − xmax is a non-
positive value. We can then decompose x̃ as (− ln 2)z + p,
where z is the non-negative integer quotient of dividing x̃ by
− ln 2 and p is the remainder in the range (− ln 2, 0]. Then,
the exponential for the input x̃i can be expressed as follows:

exp(x̃) = 2−z exp(p) = exp(p) >> z, (11)
where 2−z is efficiently converted to bit-shifting in hard-
ware design. We seek approximation with a more hardware-
efficient first-order polynomial (i.e., a linear function) than
the second-order polynomial approximation in I-BERT. A
naive approach would be to use a linear function that passes
through the points (− ln 2, exp(− ln 2)) and (0, 1) within the
range (− ln 2, 0]. Alternatively, we can reduce the approxi-
mation error by narrowing the approximation range, such as
using the range (− ln

√
2, 0]. However, these methods would

incur significant approximation errors compared with second-
order polynomials. Therefore, rather than approximating the
original exponential function, we use a smoothed exponen-
tial (e.g., exp(x)/8, exp(x)/16). For example, exp(x)/16

Figure 4: Comparison between the approximated second-order poly-
nomial and the proposed first-order polynomial

has a shape more akin to a linear function than exp(x) over
(− ln 2, 0]. We reformulate softmax by scaling the exponen-
tial by 1/16 as follows:

Softmax(xi) =
expx̃i

16∑k
j=1

expx̃j

16

, (12)

Then, the smoothed exponential for the input x̃i can be ex-
pressed as follows:

exp(x̃)

16
= 2−z exp(p)

16
=

exp(p)

16
>> z, (13)

where we approximate the smoothed exponential using a first-
order polynomial (i.e., ax+ b) over (− ln 2, 0]. We determine
the coefficients a and b by minimizing the L2 distance be-
tween the smoothed exponential and first-order polynomials.
Finally, we obtain the following approximated linear function
as follows:

L(p) = 0.045p+ 0.061 ≈ exp(p)

16
, (14)

exp(x̃)

16
≈ Linear− exp(x̃) = L(p) >> z, (15)

where z = round(−x̃ ln 2) and p = x̃ + z ln 2. Fig. 4 plots
the results of the proposed linear softmax. The smoothed ex-
ponential and first-order functions are nearly identical. Par-
ticularly, the largest gap between these two functions over
(− ln 2, 0] is 1.89 × 10−3. Compared with the second-order
polynomial approximation in I-BERT, which has a maximum
gap of 1.91 × 10−3, our proposed method provides superior
approximation while retaining the hardware implementation
advantages. Furthermore, the first coefficient (i.e. ’α’ in
α(x+β)) is absorbed into the scaling factor s (in lines 8-9 of
Algorithm 1). Therefore, the linear exponential needs only a
simple and hardware-efficient operation of adding an integer
value qb. It should be noted that the second-order polynomial
exponential in I-BERT can also absorb the first coefficient,
but it requires two addition operations and one multiplication
operation in INT32 precision (i.e., α((x+ β)2 + γ)).
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Model Method Prec. (W/A) Size (MB) Top-1 Acc. (%) Acc. Drop (%)

MobileViT-xxs

Baseline 32/32 1.27M 68.94 -
FQ-ViT 8/8 0.32M 66.46 2.48

Percentile 8/8 0.32M 67.54 1.40
OMSE 8/8 0.32M 66.69 2.25

Q-HyViT 8/8 0.32M 67.20 1.74
Ours 8/8 0.32M 68.15 0.79

MobileViT-xs

Baseline 32/32 2.32M 74.63 -
FQ-ViT 8/8 0.58M 68.28 6.35

Percentile 8/8 0.58M 62.96 11.67
OMSE 8/8 0.58M 68.41 6.22

Q-HyViT 8/8 0.58M 73.89 0.75
Ours 8/8 0.58M 73.99 0.64

MobileViT-s

Baseline 32/32 5.58M 78.32 -
FQ-ViT 8/8 1.40M 77.67 0.65

Percentile 8/8 1.40M 77.85 0.47
OMSE 8/8 1.40M 77.61 0.71

Q-HyViT 8/8 1.40M 77.72 0.59
Ours 8/8 1.40M 77.93 0.39

Table 1: Comparison of top-1 accuracy with other quantization
methods on ImageNet-1k

4 Experiments
4.1 Experimental Environments
The proposed HyQ framework was validated using the
ImageNet-1k benchmark dataset [Deng et al., 2009]. The
hybrid models used in the experiments include MobileViT
[Mehta and Rastegari, 2021], MobileViT-v2 [Mehta and
Rastegari, 2022], and EfficientFormer [Li et al., 2022]. Addi-
tionally, ViT, DeiT, and Swin models are used as ViT-type
models for the ablation study. We applied the INT8 uni-
form PTQ to all layers except the activation function (e.g.,
Swish [Ramachandran et al., 2017], GeLU [Hendrycks and
Gimpel, 2016b]) and attention output (following FQ-ViT, we
used a more challenging INT4 logarithmic quantization for
the attention output). To optimize the QADS parameters, we
used 100 unlabeled images from the ImageNet-1k training
set. We performed 1,000 iterations with a batch size of 100
using the Adam optimizer [Kingma and Ba, 2014]. We used
the PyTorch framework [Paszke et al., 2019] for all experi-
ments and quantized the pre-trained models provided by the
PyTorch Image Models library [Wightman, 2019]. Notably,
applying QADS to MobileViT-xxs took only 2.5 minutes on
a single NVIDIA GeForce RTX 3090 GPU.

4.2 Comparison with Other Quantization Methods
on MobileViT Models

In this subsection, we compare the performances of Mo-
bileViT on the ImageNet-1k dataset with other quantiza-
tion methods. As shown in Table 1, the proposed method
demonstrated SOTA performance for the quantized Mobile-
ViT. In particular, for MobileViT-xxs, our method mitigates a
0.95% accuracy drop compared with Q-HyViT [Lee et al.,
2023] with the same quantization precision (i.e., W8A8).
For larger MobileViT-s models, our proposed HyQ out-
performs Q-HyViT, despite using fully integer quantization
with hardware-friendly linear softmax. Furthermore, for
MobileViT-xs, due to zero point overflow [Lee et al., 2023],
existing quantization methods like OMSE [Choukroun et al.,
2019] and Percentile [Li et al., 2019] exhibit severe perfor-

Model Method Prec. (W/A) Top-1 Acc. (%) Acc. Drop (%)

EfficientFormer-L1

Baseline 32/32 80.50 -
FQ-ViT 8/8 66.63 13.87

Percentile 8/8 77.15 3.35
OMSE 8/8 76.90 3.6
Ours 8/8 78.55 1.95

EfficientFormer-L3

Baseline 32/32 82.55 -
FQ-ViT 8/8 81.85 0.7

Percentile 8/8 80.37 2.18
OMSE 8/8 81.69 0.86
Ours 8/8 82.26 0.29

EfficientFormer-L7

Baseline 32/32 83.38 -
FQ-ViT 8/8 82.47 0.91

Percentile 8/8 50.94 32.44
OMSE 8/8 3.23 80.15
Ours 8/8 82.66 0.72

MobileViTv2-50
Baseline 32/32 70.16 -
Q-HyViT 8/8 68.73 1.43

Ours 8/8 69.16 1.00

MobileViTv2-75
Baseline 32/32 75.61 -
Q-HyViT 8/8 74.36 1.25

Ours 8/8 74.47 1.14

Table 2: Performance comparison of HyQ using SOTA hybrid mod-
els (i.e., EfficientFormer and MobileViTv2) on ImageNet-1k

mance degradation. In contrast, HyQ can substantially miti-
gate this issue by exploiting the fact that the minimum value
of Swish used in MobileVit is fixed (−0.2785) when deter-
mining the scale and zero point for activation quantization.

4.3 Performance of HyQ with SOTA Hybrid
Models

In Table 2, we highlight the impressive performance of HyQ
on SOTA hybrid models. For the MobileViTv2 model, we
quantize all layers following the same approach as we em-
ploy for MobileViT. Notably, unlike Q-HyViT, we achieve
a smaller accuracy drop even without resorting to recon-
struction techniques based on the Hessian matrix. Moreover,
for the EfficientFormer model, we consistently maintain the
smallest accuracy drop across EfficientFormer-L1, L3, and
L7 models even though we apply quantization to the convo-
lution, softmax, pooling, LayerScale, and LayerNorm layers.
In contrast, other methods exhibited variable performance de-
pending on model size. Specifically, FQ-ViT suffered from
unacceptable performance degradation in the smallest mod-
els, while Percentile and OMSE methods encountered signif-
icant accuracy drops in the largest models. These results show
the robustness of the proposed HyQ approach across hybrid
models of various sizes.

4.4 Performance Analysis of Linear Softmax
Table 3 presents the performance of various ViT models (i.e.,
DeiT-T/S, ViT-B/L, and Swin-T/S) as well as MobileViT se-
ries, applied with only the proposed linear softmax with-
out QADS. We compare the accuracy of each model with
I-BERT [Kim et al., 2021], which proposed a second-order
polynomial approximation of the exponential function. As
shown in Table 3, our well-approximated first-order polyno-
mials achieve nearly identical accuracy to the second-order
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DeiT- ViT- Swin- MobileViT-
Tiny Small Base Large Tiny Small xxs xs s

Ours 70.90 78.47 82.63 84.92 79.94 82.37 67.18 73.95 77.83
I-BERT 70.82 78.36 82.64 84.91 79.97 82.43 67.05 73.93 77.88

Table 3: Top-1 Accuracy comparison of the proposed linear expo-
nential and the second-order polynomial exponential approximation
in I-BERT

Method Unroll LUT FF DSP Power (mW)

Ours / I-BERT
16 2096 / 3776 1068 / 2096 0 / 48 251 / 371

32 4237 / 7597 2087 / 3306 0 / 96 324 / 569

64 8391 / 17676 4131 / 5573 0 / 174 450 / 988

Table 4: Comparison of hardware resource utilization between the
proposed linear exponential and the second-order polynomial ap-
proximation in I-BERT when implemented on the FPGA platform

polynomial of I-BERT. Moreover, our proposed method out-
performs I-BERT in terms of hardware implementation and
computational complexity because it uses a first-order poly-
nomial approximation and avoids expensive multiplications.

Based on these advantages, we validate the hardware ef-
ficiency of the proposed approach. To demonstrate that our
proposed method is hardware-friendly, we compared the syn-
thesis results of two approaches (i.e., the proposed linear ex-
ponential and I-BERT) designed in RTL using the XC7Z0101
chipset in the Zynq-7000 board at 125 MHz. In Table 4, un-
roll [Rahman et al., 2016] indicates how much the input of
the exponential is pipelined, and LUT, FF, DSP, and Power
are used as evaluation metrics. In detail, we used an input size
of (4, 4, 64, 64) and the input data were unrolled for parallel
processing. In addition, to reduce power, the data was loaded
into BRAM and then processed. Experimental results show
that our linear exponential uses fewer hardware resources (ap-
proximately 1.8 ∼ 2.1× LUT savings and 1.3 ∼ 1.9× FF
savings) and consumes less power than the approximation
method in I-BERT for all unroll factors. Importantly, our pro-
posed method, which avoids INT32 multiplication, achieves
this hardware efficiency without requiring DSP.

4.5 Ablation Study: QADS
We further analyzed the impact of QADS alone. The accura-
cies of MobileVit-xxs, xs, and s without QADS are 67.05%,
68.28%, and 77.67%, respectively. Conversely, with QADS,
the accuracies become 68.15%, 73.99%, and 77.93%, respec-
tively. These results show that MobileVit-xxs gains most
from QADS, whereas MobileVit-s shows minimal improve-
ment. This can be interpreted that the smaller the model,
the more critical the impact of quantization of the backbone
model, and it can be seen that QADS makes a significant con-
tribution to minimizing this decrease in accuracy.

4.6 Ablation Study: Smoothed Exponentials
We demonstrate performance according to var-
ious smoothed exponential factors, specifically,
exp(x)

1 , exp(x)
2 , exp(x)

4 , exp(x)
8 , and exp(x)

16 . This experi-
ment was conducted using MobileViT-xxs on ImageNet
without applying QADS to verify the effectiveness of linear

Model Dataset Base Top-1/5
Acc. (%)

FQ-ViT Top-1/5
Acc. (%)

HyQ Top-1/5
Acc. (%)

MobileViT-xxs V2 56.86/79.59 54.42/78.09 56.1/79.08
Sketch 14.50/28.67 12.00/24.15 12.98/25.94

MobileViT-xs V2 62.94/84.65 52.34/76.36 62.38/84.42
Sketch 18.30/33.19 12.79/25.45 17.07/31.36

MobileViT-s V2 66.75/87.01 65.91/86.58 66.12/86.44
Sketch 22.48/38.67 21.01/36.26 21.81/37.65

Table 5: Accuracy comparison using MobileViT-xxs, xs, and s on
the ImageNet-V2 and ImageNet-Sketch datasets

softmax alone. The accuracies for smooth factors = 1, 2,
4, 8, 16 are 67.07%, 67.11%, 67.17%, 67.18%, 67.18%,
respectively. We can observe that as the smooth factor
decreases, the accuracy increases slightly and then saturates;
thus, we set this factor empirically based on these findings.

4.7 Ablation Study: Robustness on Other Datasets
The robustness of the proposed HyQ model is further evalu-
ated using the ImageNet-v2 and ImageNet-Sketch datasets to
examine performance against minor distributional shifts and
significant domain alterations, respectively. This evaluation
demonstrates the capability of HyQ to preserve feature recog-
nition and model efficiency in diverse conditions. We com-
pared the Top-1 & Top-5 accuracy of HyQ with FQ-ViT[Lin
et al., 2021] for MobileViT-xxs, xs, and s models. For QADS
parameter optimization, we utilized 100 unlabeled images
from the ImageNet-1k training set. As shown in Table 5, on
the ImageNet-V2 dataset, we mitigated the Top-1 accuracy
drop by 1.68%, 10.04%, and 0.21% for MobileViT-xxs, xs,
and s, respectively, compared to FQ-ViT. On the ImageNet-
Sketch dataset, HyQ exhibits slightly more accuracy degra-
dation than ImageNet-V2 but still significantly outperforms
FQ-ViT in reducing the accuracy loss.

5 Conclusion
In this study, we propose HyQ, a novel quantization technique
for CNN-transformer hybrid models. HyQ adaptively em-
ploys QADS to handle outliers in a CNN and approximates
softmax in the transformer as an integer-only linear function.
Compared with existing methods, HyQ achieves significant
performance gains in complex hybrid architectures. In par-
ticular, we demonstrate the superior hardware efficiency of
HyQ by considering implementations on AI accelerators. Ad-
ditionally, we verified the broad compatibility of HyQ by ap-
plying it to diverse hybrid models, and its high compatibility
was confirmed by applying the proposed QADS and linear
softmax to various CNN and ViT models, respectively.
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