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Abstract

In a regression task, a function is learned from la-
beled data to predict the labels at new data points.
The goal is to achieve small prediction errors.
In symbolic regression, the goal is more ambi-
tious, namely, to learn an interpretable function
that makes small prediction errors. This addi-
tional goal largely rules out the standard approach
used in regression, that is, reducing the learning
problem to learning parameters of an expansion
of basis functions by optimization. Instead, sym-
bolic regression methods search for a good solu-
tion in a space of symbolic expressions. To cope
with the typically vast search space, most sym-
bolic regression methods make implicit, or some-
times even explicit, assumptions about its struc-
ture. Here, we argue that the only obvious struc-
ture of the search space is that it contains small ex-
pressions, that is, expressions that can be decom-
posed into a few subexpressions. We show that sys-
tematically searching spaces of small expressions
finds solutions that are more accurate and more ro-
bust against noise than those obtained by state-of-
the-art symbolic regression methods. In particular,
systematic search outperforms state-of-the-art sym-
bolic regressors in terms of its ability to recover
the true underlying symbolic expressions on estab-
lished benchmark data sets.

1 Introduction
Given a training set of labeled data, the goal in regression
is to find a model that generalizes well beyond the training
data. At its core, regression problems are search problems on
some space of functions that map data points to labels. Typi-
cally, the function space is structured along two dimensions,
a space of structural frames and a set of parameters. Tradi-
tionally, the search space of structural frames is kept rather
simple, as a set of linear combinations of some basis func-
tions. For a given regression problem, by considering only
one frame, that is, traditionally the number and form of basis
functions, the search problem can be cast as the optimiza-
tion problem to find the parameters that give the best fit on
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Figure 1: Interpretability goes beyond generalization. Data
from a dampened pendulum are fitted by the symbolic re-
gressor e−x cos(6x) and the cosine expansion 0.06 cos(4x) +
0.13 cos(5x)+0.30 cos(6x)+0.23 cos(7x)+0.08 cos(8x). While
both models generalize well outside the training data, the symbolic
regressor can be interpreted as the multiplicative composition of an
exponential decay and an oscillation (light orange). The cosine ex-
pansion lacks such an interpretation.

the training data. Therefore, the focus shifts to the param-
eter space. Restricting the parameter space by adding reg-
ularization terms to the optimization problem can provably
improve the ability to generalize [Hoerl and Kennard, 1970;
Tibshirani, 1996].

Generalization is not the only goal of symbolic regression.
The second goal is interpretability. Interpretability, facilitat-
ing fundamental insights by inspecting and interpreting the
symbolic expressions, is the reason why symbolic regres-
sion has found applications in almost all areas of the nat-
ural sciences [Keren et al., 2023; Liu and Tegmark, 2021;
Liu and Tegmark, 2022], social sciences [Aryadoust, 2015;
Truscott and Korns, 2011], and engineering [Can and Heavey,
2011; Quade et al., 2016; Wang et al., 2019; Landajuela et
al., 2021]. We illustrate this point using the example shown
in Figure 1. Data points that are sampled from a dampened
pendulum are fitted by two models. The first model is a linear
combination of cosine basis functions (blue) and the second
model is a symbolic regressor (orange). Both models gen-
eralize well beyond the training data and could be used for
prediction. From the symbolic form of the polynomial, how-
ever, we do not gain further insights. The symbolic regressor
provides such insights: it is composed of an exponential de-
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cay and an oscillation that are coupled through multiplication,
meaning that the oscillation is dampened by the decay.

Because of the second goal, interpretability, symbolic re-
gression algorithms are evaluated differently than standard
regression algorithms. Good prediction performance on test
data is still important, but for symbolic regression algorithms
the ability to recover known ground-truth formulas, up to
symbolic equivalence, has become an accepted validation
measure. Complete symbolic recovery, however, is a very
strict quality measure. Therefore, we propose also a relaxed
measure, namely, the successful recovery of subexpressions.
For instance, recovering only the dampening or only the oscil-
lation term of the dampened pendulum, still provides valuable
insights.

Interpretability of symbolic regressors comes at the price
of a much larger search space of structural frames, which
consists of all mathematical expressions that are specified in
a formal language, where constants are not instantiated but
represented by a placeholder symbol. State-of-the-art sym-
bolic regressors tackle the search problem by various tech-
niques such as genetic programming, reinforcement learning,
or transformers that all make some implicit assumptions to
reduce the effective size of the search space. In this work,
we take a step back and explore a basic, unbiased and thus
assumption-free search. It turns out, that this basic approach
fares well in comparison to current state-of-the-art regres-
sors on small instances of established benchmark data sets.
It does not, however, scale to moderately large expressions.
For scaling up the basic search, we combine it with a vari-
able augmentation approach that aims at identifying subex-
pressions in the target expression that can be eliminated from
the search process. Variable augmentation itself constitutes a
search problem for subexpressions, that can be addressed by
the same technique as the overall symbolic regression task.
Our experimental results on the standard benchmark data sets
show that the combination of unbiased search and variable
augmentation improves the state of the art in terms of accu-
racy, that is, its ability to recover known ground truth formu-
las, but also in terms of robustness, that is, its ability to cope
with noise.

2 Related Work
The core problem in symbolic regression is searching the
space of structural frames. For a given frame, the parame-
ters are mostly estimated by minimizing a loss function on
hold-out data. The space of frames is usually given in the
form of expression trees for expressions from a given formal
language. Symbolic regression algorithms differ in the way
they search the space of expression trees.

Genetic Programming. The majority of symbolic re-
gression algorithms follow the genetic programming
paradigm [Koza, 1994; Holland, 1975]. The paradigm has
been implemented in the seminal Eureqa system by [Schmidt
and Lipson, 2009] and in gplearn by [Stephens, 2016].
More recent implementations include [La Cava et al., 2016;
Kommenda et al., 2020; Virgolin et al., 2021]. The basic
idea is to create a population of expression trees, to turn
the trees into symbolic regressors by estimating the param-

eters, and to recombine the expression trees for the best
performing regressors into a new population of expression
trees by (ex)changing subtrees. Here, the assumption is, that
expression trees for symbolic regressors that perform well
contain at least parts of the target expression. Therefore,
recombining the best performing expression trees shall keep
these parts within the population.

Bayesian Inference. A different approach is to use
Bayesian inference for symbolic regression. In the Bayesian
inference approach, MCMC (Markov Chain Monte Carlo)
is used for sampling expressions from a posterior distribu-
tion. Implementations of the Bayesian approach differ in
the choice of prior distribution. [Jin et al., 2020] use a
hand-designed prior distribution on expression trees, whereas
[Guimerà et al., 2020] compile a prior distribution from a
corpus of 4,080 mathematical expressions that have been ex-
tracted from Wikipedia articles on problems from physics and
the social sciences. Both implementations define the likeli-
hood in terms of model fit. Here, the assumption is, that, by
the choice of prior and likelihood, expression trees that are
similar to well performing trees have a higher posterior prob-
ability to be sampled.

Neural Networks. [Petersen et al., 2021; Mundhenk et al.,
2021] train a recurrent neural network for sampling expres-
sion trees token-by-token in preorder. Here, the assump-
tion is similar to the assumption underlying the Bayesian ap-
proach, namely that the loss used during reinforcement learn-
ing shifts the token-generating distribution toward sequences
of good performing expressions. The work by [Kamienny et
al., 2022] also falls into this category. Here, a transformer
is trained in an end-to-end fashion on a large data set of re-
gression problems to translate regression tasks, given as a se-
quence of input output pairs, into a sequence of tokens for an
expression tree in preorder. At inference, for a given regres-
sion problem, beam search is used to return preorders with the
highest likelihood. Here, the assumption is that the data set
for pretraining the transformer covers the search space well,
because the probability distribution favors token sequences
that are similar to well-fitting sequences seen during training.

Ensemble. Recently, [Landajuela et al., 2022] have com-
bined different symbolic regressors based on genetic pro-
gramming, reinforcement learning, and transformers together
with problem simplification into a unified symbolic regres-
sor. The ensemble approach is more robust with respect to
the assumptions for its constituent approaches, that is, it can
cope better with some of the assumptions not met. Essen-
tially, however, it adheres to the same assumptions.

Systematic Search. The assumptions made for the differ-
ent symbolic regression approaches are difficult to check.
Therefore, the idea of an unbiased, more or less assumption-
free search is appealing. So far, however, implementations
of an unbiased search have been limited to restricted search
spaces that can be searched exhaustively, namely, to ratio-
nal low-degree polynomials with linear and nonlinear terms
[Kammerer et al., 2020], and to univariate regression prob-
lems up to a certain depth [Bartlett et al., 2023]. The AIFeyn-
man project [Udrescu and Tegmark, 2020; Udrescu et al.,
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2020] uses a set of neural-network-based statistical prop-
erty tests to scale an unbiased search to larger search spaces.
Statistically significant properties, for example, additive or
multiplicative separability, are used to decompose the search
space into smaller parts, which are addressed by a brute-
force search. The search, however, is limited by the set of
available property tests. Our approach is similar in spirit to
AIFeynman, but different in implementation. At the core of
our approach is a succinct representation of symbolic expres-
sions, namely expression DAGs that are, as we will show,
well suited for a systematic unbiased, search-based approach.

3 DAGs as Structural Frames
The search space of structural frames in symbolic regression
consists of mathematical expressions that are defined by a for-
mal language. We provide the grammar for the formal lan-
guage of mathematical expressions that we are using here in
the supplemental material. The grammar, however, does not
completely specify the search space. There are two issues
that affect any search-based approach to symbolic regression:
First, the grammar specifies the syntax of valid expressions,
but does not fix the representation for its conforming expres-
sions. Second, by the rules of arithmetic, there are syntac-
tically different expressions that are semantically equivalent,
that is, they specify exactly the same function. Therefore, it
is important to find a representation for the expressions that
structures the search space so that the number of functions
that can be covered for a given size constraint on the search
space is maximized. The most direct representation of an ex-
pression is in the form of a string of tokens, but the most
commonly used representation in symbolic regression is an
expression tree. We illustrate the two issues on the example
of the function

f(x) = x4 + x3 ,

which has an expression tree with five operator nodes (ad-
dition, multiplication, and three times squaring). The same
function, however, has another expression as x2(x2+x) with
an expression tree that has only four operator nodes (addition,
multiplication, and two times squaring). Therefore, it is often
suffcient to exhaustively search the space of small expression
trees.

Moreover, it has been pointed out already by [Schmidt and
Lipson, 2007] and is also well known in compiler construc-
tion [Aho et al., 1986] that expression DAGs (directed acyclic
graphs), where common subexpressions have been eliminated
[Cocke, 1970], are an even more favorable because more suc-
cinct representation. The expression DAG for the expression
x2(x2 + x), that factors out the common subexpression x2,
has only three operator nodes (addition, multiplication, and
squaring). The difference in size becomes more pronounced
when we also consider the leafs, that either store variables
or constants, of the expression trees and expression DAGs,
respectively. We illustrate the difference between the expres-
sion tree and expression DAG representation in Figure 2.
Expression DAGs. Here, we describe the expression DAGs
that we use for arithmetic expressions in more detail. We
distinguish four types of nodes: variable nodes, parameter
nodes, intermediary nodes, and output nodes. Variable and
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Figure 2: Representation of the expression x2(x2+x) by an expres-
sion tree (left) and by an expression DAG (right).

parameter nodes are input nodes. An n-variate function has
n input nodes for the variables, that is, it is defined by the re-
gression task at hand, whereas the number of input nodes for
the parameters is not fixed, but part of the structural search
space. Both, the intermediary and the output nodes together
are operator nodes. The number of output nodes is also spec-
ified by the given regression task, whereas the number of in-
termediary nodes is not. Note that it can pay off to encode
a function with several components, that is, several output
nodes, into a single expression DAG, because the compo-
nents can share common subexpressions. This happens fre-
quently for systems of ordinary differential equations [Stro-
gatz, 2000]. The DAGs are oriented from the input to the
output nodes, that is, the input nodes are the roots of the
DAGs and the output nodes are its leafs. Only the interme-
diary nodes have incoming and outgoing edges. We distin-
guish two types of operator nodes, namely unary and binary
operator nodes. In symbolic regression, typically, the binary
operators

+, −, ×, and ÷,

and the unary operators

−, −1, sin, cos, log, exp, 2, and
√

are supported. Examples of expression DAGs are shown in
Figures 2 and 3.

4 Searching the Space of Expression DAGs
As we have pointed out already, the number of variable nodes
and the number of output nodes are specified by the given
regression problem. It remains to parameterize the space of
expression DAG by the number p of parameter nodes and by
the number i of intermediary nodes. That is, the regression
problem together with a tuple (p, i) defines the search space.
Here, we always use p = 1, that is, only one parameter node.
Different parameters can be expressed as functions of a sin-
gle parameter, for instance 2(x2 + 1) can be expressed as
(1 + 1)(x2 + 1) or as 2x2 + 2, which only need one param-
eter. More details are provided in the supplemental material.
We use the term DAG skeleton for DAGs with unlabeled op-
erator nodes, and the term DAG frame for DAGs with labeled
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operator nodes. Both, DAG skeletons and DAG frames, only
have constant placeholders for the input nodes.

4.1 Unbiased Search of Expression DAGs
Our randomized search of the search space of expression
DAGs given by (1, i) is unbiased, but not exhaustive. An
exhaustive search would not scale and, as it turns out (see
section 6), is often not necessary. The search procedure has
two phases: In the first phase, we construct a DAG skeleton,
that is, a DAG without labeling of the operator nodes. In the
second phase, we search over all DAG frames for a skeleton,
by considering all operator node labelings from the sets of
unary and binary operator symbols.
Sampling DAG Skeletons. For sampling DAG skeletons,
we number the intermediary nodes from 1 to i to ensure a
topological order on the nodes.

1. Unary output nodes sample its predecessor uniformly at
random from all non-output nodes, and binary output
nodes samples a pair of predecessors uniformly at ran-
dom from all pairs of non-output nodes.

2. Unary intermediary nodes sample their predecessor uni-
formly at random from all input nodes and all intermedi-
ary nodes with smaller number, and binary intermediary
nodes sample a pair of predecessors uniformly at ran-
dom from all pairs made up from input nodes and inter-
mediary nodes with smaller number.

Finally, we recursively remove all intermediary nodes that
have no successor, that is, no outgoing edge. Note that in-
put nodes have by definition no predecessors. Sampling of a
DAG skeleton is illustrated in Figure 3.

x c

1

2

x c

1

2

x c

Figure 3: DAG skeletons are generated by enumerating intermedi-
ary nodes (left), selecting predecessors according to the numbering
(middle), and deleting intermediary nodes without connection to the
output (right). The shown DAG covers expressions such as x(x+c),
x+ xc or cx2.

Operator Node Labeling. For a DAG skeleton, we exhaus-
tively search the space of all DAG frames, that is, we consider
all combinations of operator node labelings from the set of
unary and binary operator labels for unary and binary opera-
tor nodes respectively.

4.2 Scoring Expression DAG Frames
An expression DAG frame ∆ is not a regressor yet. It re-
mains to find values for the DAG’s parameter node. Here,

we follow the classical approach and optimize the parameters
with respect to the model fit on training data. Let ∆(x, θ) be
the function that results when the DAG’s input nodes are in-
stantiated by x ∈ Rn, where n is the number of input nodes,
and its parameter nodes are instantiated by the parameter vec-
tor θ ∈ Rp, where p is the number of parameter nodes in
∆. Given training data (x1, y1), . . . , (xℓ, yℓ) ∈ Rn×m for
a regression problem with n input and m output variables,
we compute the parameter values for the parameter nodes by
minimizing the following square-loss

θ̂ = arg min
θ∈Rp

ℓ∑
i=1

∥∥∆(xi, θ)− yi
∥∥2 =: arg min

θ∈Rp
L(∆, θ).

Every function ∆(·, θ̂) is a regressor. Among all the regres-
sors ∆(·, θ̂) from the search space, that is, a search over ∆,
we choose one that fits the data best, that is, has a minimal
loss L(∆, θ̂).

5 Variable Augmentation
So far, we have argued that expression DAGs provide rather
small search spaces for symbolic regression. However, even
these search spaces grow so fast that they can only support
very small expressions. Here, we describe our main contribu-
tion, namely, we introduce symbolic variable augmentations
for simplifying symbolic regression problems.

5.1 Input Variable Augmentation
We describe the basic idea on a simple regression problem
with two input and one output variable. Assume that we are
given data that have been sampled from the function

f(x1, x2) =
x1x

2
2 + x1

x2

that has a corresponding expression DAG with six nodes,
among them four operator nodes. Using a new variable
z(x1, x2) = x1/x2, the function can be represented by the
expression

x1x2 + z

that has an expression with only five nodes, among them three
input nodes. That is, it is possible to find a DAG frame for
the function f in a smaller search space, if we increase the
number of input variables.

Given a regression problem, we call any symbolic expres-
sion in the input variables a potential input variable augmen-
tation, where we only consider expressions without parame-
ters (p = 0). The challenge is to identify variable augmenta-
tions that lead to smaller expression DAGs. We address the
challenge by a combination of searching expression DAGs
and standard, that is, non-symbolic, regression. The search
of small expression DAGs is used to enumerate potential in-
put variable augmentations, and a standard regressor is used
to score the potential augmentations.

Given a regression problem, expression DAGs for poten-
tial variable augmentations are sampled using the unbiased
expression DAG search from Section 4.1. Here, we sample
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only expression DAGs that feature a subset of the input vari-
ables nodes and no parameter nodes. Since the sampled ex-
pression DAGs ∆ do not have parameter nodes, they each de-
scribe a unique univariate function z∆ on the corresponding
selected subset of the input variables. The functions z∆ are
then scored on training data (x1, y1), . . . , (xℓ, yℓ) ∈ Rn×m

for a regression problem with n input and m output variables
that are augmented as,

(x1, z1, y1), . . . , (xℓ, zℓ, yℓ) ∈ R(n+1)×m,

where zi = z∆(xi|∆) ∈ R and xi|∆ is the projection of the
i-th vector of input variables onto the input variables that ap-
pear in the expression DAG ∆. For a given class F of stan-
dard regressors, for instance, polynomial regressors or a class
of neural networks, we use a scoring function that is derived
from the coefficient of determination R2 [Wright, 1921]

min
f∈F

∑ℓ
i=1 ∥f(xi, zi)− yi∥2∑ℓ

i=1 ∥yi − ȳ∥2
=: min

f∈F

(
1−R2(X,Y, f)

)
,

which is frequently used in symbolic regression. Here, ȳ is
the mean of the output variables in the training data set, and
X and Y are matrices of the respective input and output data
vectors.

5.2 Augmented Expression DAG Search Algorithm
We have integrated the variable augmentation into an unbi-
ased, search-based algorithm for symbolic regression that is
shown in Figure 4. Given a regression problem in terms of
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Figure 4: Conceptual sketch of the unbiased, search-based symbolic
regression algorithm: From the original problem (1) we select top-k
augmentations (2) and solve those problems, creating a Pareto front
(3). The returned expression (4) is the best one with complexity
below a threshold, or the smallest expression if the complexity of all
expressions is above the threshold.

a data sample of input and corresponding output variables,

our unbiased, search-based symbolic regression algorithm
has two main steps:

1. Selecting Variable Augmentations. Given a standard
family F of regression functions, such as linear re-
gression, polynomial regression, neural networks, and
a value k, we use the standard family of regression func-
tions and the unbiased expression DAG search to select
the top-k scoring variable augmentations.

2. Solving Augmented Regression Problems. For the se-
lected variable augmentations, we compute k symbolic
regressors as described in Section 4. For each regressor,
we compute its model fit in terms of the coefficient of
determination R2 and its model complexity as the num-
ber of nodes in the expression DAG. Similar to [Udrescu
et al., 2020], we always keep the models on the Pareto
front with respect to model fit and model complexity. If
we have to return a single model, then we return the best
fitting model with a complexity below a given threshold.
If there is no such model, we simply return the smallest
model.

6 Experimental Evaluation
We conducted two types of experiments. In the first experi-
ment, we compare the performance of our unbiased, search-
based approach to the state of the art in symbolic regression
on the established and comprehensive SRBench test suite by
[La Cava et al., 2021]. In the second experiment, we evaluate
the scalability advantage that variable augmentation brings to
the unbiased, search-based approach.

Unless stated otherwise, our method, named UDFS (Un-
biased DAG Frame Search) was used with five intermediary
nodes and a maximum of 200 000 DAG skeletons. For the
variable augmentation, we have used polynomial regression
(UDFS + Aug) to select k = 1 augmentations and up to 30
nodes in the corresponding DAG search.

All experiments were run on a computer with an Intel Xeon
Gold 6226R 64-core processor, 128 GB of RAM, and Python
3.10.

6.1 The SRBench Symbolic Regression Test Suite
SRBench [La Cava et al., 2021] is an open-source bench-
marking project for symbolic regression. It comprises 14 of
the state-of-the-art symbolic regression models, a set of 252
regression problems from a wide range of applications, and a
model evaluation and analysis environment. It is designed to
easily include new symbolic regression models, such as the
UDFS + Aug model that we propose here, for benchmarking
against the state-of-the-art.

The models’ performance is measured along three dimen-
sions, namely model fit on test data, complexity, and accu-
racy, that is, the ability to recover ground truth expressions.
Model fit is measured by the coefficient of determination R2,
and complexity is measured by the number of nodes in the
expression tree of an expression. Most important for us, a
ground truth expression f is considered as recovered by a
model f̂ , if either f − f̂ can be symbolically resolved to a
constant or f̂ is non-zero and f̂/f can be symbolically re-
solved to a constant. The symbolical checks are delegated
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Figure 5: Left: Recovery rate, center: model complexity, right: model fit for UDFS and UDFS + Aug as scored by the SRBench test suite.
The reported values average over 10 runs for the complexity and recovery measures. The reported R2 values are medians from 10 runs,
because R2 values can vary significantly.

to the Python library SymPy [Meurer et al., 2017]. The
ground truth is only known for 130 out of the 252 problems,
namely, the problems from the Feynman Symbolic Regres-
sion Database1 and the ODE-Strogatz Repository2. Since we
consider ground truth recovery as the most important quality
measure for symbolic regressors, as it is a direct measure of
interpretability, we restrict ourselves to these 130 problems
that are described in the supplemental material.

The comparative experiments summarized in Figure 5
show that the unbiased search UDFS + Aug is on average
more accurate, that is, it can recover more known ground
truth expressions, and also more robust, that is, it can recover
more ground truth expressions from noisy data, than the state
of the art. Furthermore, UDFS + Aug produces small mod-
els with an average R2- test score that is close to the optimal
score of 1.0. The second-best regressor in terms of recovery,
AIFeynman, gives significantly larger and worse fitting mod-
els when it cannot recover the ground truth. That is, in these
cases, AIFeynman is also not a good regressor in the standard
sense of regression. There is a large group of regression mod-
els that produce extremely well fitting models with an average
R2 close to 1.0. However, these models are mostly approx-
imations of the ground truth functions, as their recovery rate
is significantly lower and the model complexity is quite high.
For a high R2 score, however, one could simply resort to stan-
dard regressors, such as neural networks. But even in terms of
standard model fitting performance, UDFS and UDFS+ Aug
place reasonably well among the other symbolic regression
methods. Figure 6 shows the different Pareto fronts with re-
spect to the model fit and model complexity. Both, UDFS and
its variable augmented extension, are on the first Pareto front.

However, both, UDFS and UDFS + Aug are not perfect. To
gain a better understanding of the expressions that could not
be recovered, we did a more fine-grained analysis and also
looked at partial recovery of expressions. For an example,

1https://space.mit.edu/home/tegmark/aifeynman.html
2https://github.com/lacava/ode-strogatz
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Figure 6: Pareto fronts generated by SRBench for symbolic regres-
sion models with respect to the dimensions complexity and model
fit (R2 rank).

consider the expression Feynman II 6 11

ϕ(x, y, z) =
1

4πε0

p cos θ

r2

from the Feynman Lectures on Physics [Feynman et al.,
2011], where r, θ, and p are functions of x, y, and z, and the
permittivity of free space ε0 is a constant that here is also con-
sidered as a regression variable. Our search-based regressor
returns the expression

ϕ(x, y, z) =
1

10.44ε1.50

p cos θ

r2
,

which fully recovers the functional dependency on the phys-
ical variables r, θ, and p, and only misses the correct form
of the dependence on ε0. That is, the expression returned by
the algorithm still provides profound insights into the physics
behind the data on which it was run. Nevertheless, the recov-
ery measure by [La Cava et al., 2021] considers the problem
just as not recovered. Therefore, we also consider a weaker
version of recovery instead. For comparing two normalized
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expressions e1 and e2, let S1 and S2 be the corresponding
sets of subexpressions. The Jaccard index [Jaccard, 1902], a
similarity measure between sets,

J(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

can then be used to indirectly measure the similarity of e1 and
e2. We have J(S0, S1) ∈ [0, 1] and J(S0, S1) = 1, if e0 and
e1 have the same subexpressions, which means that they are
equal. For the example given above, we get a Jaccard index
of 0.47, reflecting the partial recovery of the ground truth.

Figure 7 shows the results of the SRBench test suite using
the Jaccard index instead of the full recovery rate. Note, that
DSR now ranks higher than AIFeynman, because it is more
robust against noise. The UDFS and the UDFS+ Aug regres-
sors, however, are still more accurate and robust.

0.0 0.2 0.4 0.6
Jaccard index

UDFS + Aug
UDFS

DSR
AIFeynman

ITEA
AFP

AFP_FE
gplearn

GP-GOMEA
EPLEX
Operon

BSR
FEAT

SBP-GP
MRGP

FFX

Target Noise
0.0
0.001
0.01
0.1

Figure 7: Results of the SRBench test suite for the Jaccard index.

6.2 Scalability
The results shown in Figure 5 show that UDFS without
variable augmentation compares fairly well to the state of
the art. UDFS + Aug, however, that reduces the effective
size of the search space, performs even better. To see at
which search space size variable augmentation does start to
improve the performance of UDFS, we have compared the
performance of UDFS and UDFS + Aug on the Nguyen
problems, a collection of small but challenging regression
problems that have been used in [Petersen et al., 2021;
Mundhenk et al., 2021]. The results are shown in Figure 8.

Interestingly, the Nguyen-2 expression x4+x3+x2+x,
which has a larger expression tree than the Nguyen-6 ex-
pression sin(x) + sin(x2 + x), can be recovered by UDFS,
whereas Nguyen-6 can not. UDFS however, does not re-
cover the ground truth expression, but the semantically equiv-
alent expression x2(x2 + x) + x2 + x, which has a com-
pact DAG representation with only three intermediary nodes
that reuse the common subexpressions x2 and x2 + x. The
complexity of UDFS, however, is not only controlled by the
number of intermediary nodes within the DAG frames, but
also by the number of DAG skeletons. Both, the Nguyen-6
and Nguyen-7 problems, have DAG representations with
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Figure 8: Recovery of Nguyen problems sorted by the number
of nodes in the expression tree for the ground truth expression.
The shown results are computed with five intermediary nodes and
200 000 DAG skeletons for UDFS (left) and UDFS + Aug (right).

four intermediary nodes, but only the latter has been found
by UDFS. The reason why Nguyen-6 was not recovered is
that the corresponding DAG frame was not included in the
search by the random sampling process. As can be seen from
Figure 9 the probability to recover Nguyen-6 increases with
the number of sampled DAG skeletons, but so does the com-
putational effort.
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Figure 9: Recovery rate and computation time averaged over 100
runs for the Nguyen-6 problem for an increasing number of DAG
skeletons with four intermediary nodes.

For the Nguyen-4 and Nguyen-12 problems, that have
DAG representations with more intermediary nodes, it is no
longer feasible to increase the number of DAG skeletons to
such a degree that they cover the search space reasonably
well. Both problems, however, benefit from the variable aug-
mentations that are used by UDFS + Aug.

More experimental results on scalability, including running
times, can be found in the supplemental material.

7 Conclusions
Symbolic regression is the problem of searching for a well-
fitting function in a space of symbolic function expressions.
Since the search space of potential symbolic function expres-
sions is vast, most symbolic regression approaches are biased
in the sense that they make implicit, or sometimes also ex-
plicit assumptions, to reduce the effective size of the search
space. Here, we have discussed how to scale up an unbiased
search for symbolic regression to problem instances that are
used to establish the state of the art in symbolic regression.
Our unbiased, search-based regressor improves the state of
the art in terms of both accuracy and robustness.
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[Guimerà et al., 2020] Roger Guimerà, Ignasi Reichardt,
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