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Abstract
Temporal Domain Generalization (TDG) aims at
learning models under temporally evolving data
distributions and achieving generalization to un-
seen future data distributions following the evolv-
ing trend. Existing advanced TDG methods learn
the evolving patterns through the collective be-
haviors observed at the population-level of in-
stances, such as time-varying statistics and param-
eters, tending to overlook the impact of individual-
level instance evolving processes on the decision
boundary. However, a major obstacle is that
datasets at different timestamps may comprise un-
related instances and there is no inherent existence
of the instance-level evolving trajectories, which
hinders us from learning how the decision bound-
ary changes. To address the above challenges,
we propose a Continuous-Time modelling Optimal
Transport trajectories (CTOT) framework in this
paper. Specifically, we utilize optimal transport
to align the data distributions between each pair
of adjacent source domains to construct instance
evolving trajectories. Subsequently, they are mod-
elled by a continuous-time model and extrapolated
to generate future virtual instances, which help the
model to adapt its decision boundary to the future
domain. Extensive experiments on multiple clas-
sification and regression benchmarks demonstrate
the effectiveness of the proposed CTOT frame-
work. The code and appendix are both available
on https://github.com/JinYujie99/CTOT.

1 Introduction
The success of most machine learning methods typically lies
on the assumption that the training (source) data and test (tar-
get) data are independently and identically distributed. When
this assumption does not hold, i.e., in the presence of distri-
bution shift, the model’s performance may degrade dramati-
cally [Torralba and Efros, 2011]. To alleviate this problem,
Domain Generalization (DG) has been studied widely in re-
cent years [Wang et al., 2022], whose aim is to learn a robust

∗Corresponding author.

model from source domains that can generalize to unseen tar-
get domains. Existing DG methods focus on generalization
across discrete and stationary domains. However, in many
real-world applications, data distribution may continuously
evolve over time, leading to the emergence of temporal do-
mains [Bai et al., 2023; Tang et al., 2024]. For example, in
seasonal flu prediction via Twitter data [Bai et al., 2023], as
the platform undergoes user growth, the formation of new re-
lationships, and shifts in demographic distribution, the cor-
relation between user profiles and flu predictions changes
over time, leading to outdated models that cannot generalize
well to the future. Most DG methods fail to achieve satis-
factory performance under temporal distribution shift, since
they treat each domain in a separate manner and do not con-
sider the continuous evolving pattern of domains. To address
the challenge, Temporal Domain Generalization (TDG) has
been proposed recently [Nasery et al., 2021; Bai et al., 2023;
Xie et al., 2023], with the goal of training a model based on
historical source domains that can generalize to future target
domains in a dynamically changing environment.

In contrast to the mainstream DG methods which try
to learn domain-invariant representations across domains,
the key to successful TDG is capturing and leveraging the
evolving patterns of domain data distribution to achieve
generalization[Qin et al., 2022; Zeng et al., 2023; Xie et al.,
2023; Bai et al., 2023]. For example, DRAIN [Bai et al.,
2023] assumes time-varying model parameters and uses re-
current neural networks to autoregressively predict the op-
timal parameters of the next domain, trying to capture the
temporal drift of model parameters. EvoS [Xie et al., 2023]
assumes that the feature distribution in each domain follows
a Gaussian distribution and learns the evolving patterns of its
sufficient statistics, namely, the mean and the standard devi-
ation.While progress has been made, a common challenge is
that they learn the evolving patterns from the collective be-
haviors of instances at the population-level. On one hand, as
the optimal parameters of the model are mainly determined
by the instances near the decision boundary, utilizing the drift
of parameters to reflect data distribution shifts leads to a loss
of instance-level information. On the other hand, the assump-
tion of a unimodal and symmetric Gaussian distribution may
be overly simplistic and may not adequately address the more
complex data distributions encountered in practical scenarios.
In summary, they ignore the impact of instance-level evolv-
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ing processes on the decision boundary.
In this paper, we argue that capturing the evolving pro-

cesses at the individual instance granularity would be bet-
ter suited for various complex or irregular data distributions,
providing us with finer-grained information on how the de-
cision boundary changes. However, in TDG, such instance
evolving trajectories do not naturally exist, since different
temporal domains may consist of entirely unrelated instances
without any inherent correspondence between them, which
presents a fundamental challenge for TDG.

To address the challenge, we propose a Continuous-Time
modelling Optimal Transport trajectories (CTOT) frame-
work to tackle the aforementioned issue. CTOT makes no
assumption about the moments or other statistics of the data,
and focuses on capturing the evolving patterns at the instance-
level rather than population-level. Specifically, CTOT con-
sists of two steps: instance evolving trajectory mining and
continuous-time modelling of trajectories. In the first step,
CTOT uses optimal transport [Torres et al., 2021] as a prin-
cipled way to seek instance-to-instance correspondence by
aligning data distributions between each pair of adjacent tem-
poral domains, whose optimization objective is to minimize a
transportation cost in the joint space of representation and la-
bel. Bridging each pair of adjacent temporal domains with the
instance-to-instance correspondence makes us obtain multi-
ple instance evolving trajectories over time. Then, in the sec-
ond step, CTOT utilizes the continuous-time modelling ca-
pability of neural differential equations [Chen et al., 2018;
Li et al., 2020] to learn the latent evolving dynamic from
these trajectories and extrapolate them into the future to gen-
erate virtual instances. These virtual instances facilitate the
model’s adaptation of its decision boundary to the future do-
main, achieved by fitting a new prediction model based on
them. To avoid the degeneration caused by unlimited tem-
poral drift, we further introduce a novel regularization term
which restricts limited temporal drift within any given short
time interval. We conduct extensive experiments on multiple
TDG benchmark datasets in both classification and regression
tasks to validate the effectiveness of CTOT and demonstrate
that it achieves superior performance over the existing base-
lines. The main contributions are summarized as follows:

1. For the first time in TDG, we propose to capture tem-
poral evolving patterns at the instance-level, rather than
from the collective behaviors of instances.

2. We propose a novel framework CTOT, which con-
sists of instance evolving trajectory mining via optimal
transport, and continuous-time modelling of trajectories
through neural differential equations.

3. Experimental results show that CTOT achieves superior
performance than state-of-the-art methods on multiple
classification and regression benchmark datasets.

2 Related Work
2.1 Domain Generalization (DG)
DG aims at generalizing the model trained on multiple source
domains to perform well on a related but unseen target do-
main [Gulrajani and Lopez-Paz, 2021; Wang et al., 2022].

Existing DG methods can be broadly categorized into three
groups: (1) Data manipulation: This category of methods
implicitly reduce domain gap by data augmentation or data
generation [Wang et al., 2020b; Garg et al., 2021]. (2) Rep-
resentation learning: This line of work tries to learn invari-
ant or causal representations across domains by techniques
such as domain-invariant learning, causal inference and fea-
ture disentanglement [Blanchard et al., 2021; Mahajan et
al., 2021; Zhang et al., 2022; Jin et al., 2022]. This cate-
gory stands out as the most prominent and extensively re-
searched in DG. (3) Other general learning strategies: A
common strategy is meta-learning, which constructs meta-
learning tasks to simulate domain shift [Li et al., 2018; Bui
et al., 2021]. Another prevalent strategy is weight averaging,
which enhances the generalization ability of a model by av-
eraging the model weights during training [Cha et al., 2021;
Chu et al., 2022]. Existing DG methods treat each domain
separately, thus are not well suited for handling continuous
distribution shift [Zeng et al., 2023].

2.2 Temporal Domain Generalization (TDG)
TDG is a challenging but less-explored case of DG, which
aims to achieve generalization from historical domains to
future domains under temporal distribution shift. Differ-
ent from DG, TDG focuses on capturing and leveraging the
evolving patterns of domain distribution. To address the prob-
lem of TDG, GI [Nasery et al., 2021] introduces a time-
sensitive model architecture and supervises the first-order
Taylor expansion of the loss function, encouraging the model
to learn decision functions that are smooth over time. LSSAE
[Qin et al., 2022] employs variational inference to capture the
evolving dynamic of covariate shift and concept shift in the
latent space. Recently, DRAIN [Bai et al., 2023] assumes
time-varying parameters within a fixed model architecture
and uses recurrent neural networks to autoregressively predict
the optimal parameters of the next domain. EvoS [Xie et al.,
2023] assumes Gaussian feature distributions and employs an
attention module to learn the evolving patterns of its mean
and variance. However, a common drawback is that they fo-
cus on the collective behaviors observed at the population-
level of instances, and ignore the impact of individual-level
evolving processes on the decision boundary. In contrast
to them, we try to capture instance-level evolving patterns
and predict the data distribution in the future, which pro-
vides finer-grained information on how the decision bound-
ary changes. Another work that is also based on data aug-
mentation is DDA [Zeng et al., 2023], which simulates the
unseen target data by mapping source data through a meta-
learned transformation function. Although conceptually sim-
ilar to our approach in predicting future instances, it does not
model the correspondence at the instance-level.

2.3 Optimal Transport for Domain Adaptation
Optimal Transport (OT) [Monge, 1781; Kantorovich, 1942]
aims to obtain a solution for transporting mass from one dis-
tribution to another. In machine learning, OT is often used
to measure similarity between distributions or datasets, es-
pecially when they do not share the same support, which is
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known as Wasserstein distance. When computing OT be-
tween discrete distributions, the optimal mapping matrix pro-
vides correspondences between the instances in each distri-
butions [Peyré et al., 2019; Torres et al., 2021]. Since this
correspondence is estimated w.r.t. the OT criterion in an un-
supervised manner, it has drawn attention on problems of
transfer and alignment between datasets, particularly in Do-
main Adaptation (DA) [Courty et al., 2014; Flamary et al.,
2016]. The main idea is to estimate a mapping of the in-
stances between source and target distributions, which allows
to transport labeled source instances onto the target distribu-
tion without labels. Labeled source instances of the same
class are constrained to remain close during transport. Then, a
new classifier is trained on the transported empirical distribu-
tion, which is expected to perform well on the target domain.
To relax the covariate shift assumption, [Courty et al., 2017;
Damodaran et al., 2018] propose to align the joint distribution
by simultaneously optimizing for an OT mapping and the tar-
get prediction function that solves the transfer problem. In
this paper, to tackle the challenge arising from the absence
of inherently existing instance-level evolving trajectories, we
for the first time utilize OT as a principled way to seek corre-
spondences between the instances from each pair of adjacent
temporal domains. This approach derives multiple instance
evolving trajectories over time, and enables us to learn and
extrapolate the evolving patterns from them to predict how
the decision boundary changes.

3 Preliminaries
3.1 Optimal Transport
Optimal Transport solves a constrained optimization problem
with the aim of transporting mass from one distribution to an-
other. We now briefly review the well-known optimal trans-
port formulations. Let Ω be a compact measurable space and
P(Ω) be the set of all the probability measures over Ω. Sup-
pose there are two distinct distributions µ1, µ2 ∈ P(Ω), the
Monge problem [Monge, 1781] seeks a map γ0 : Ω → Ω that
pushes µ1 towards µ2:

γ0 = argmin
γ

∫
Ω

c(x, γ(x)) dµ1(x), s.t. γ#µ1 = µ2, (1)

where γ#µ1 is the image measure of µ1 by γ, satisfying

γ#µ1(A) = µ2(γ
−1(A)), ∀Borel subsetA ⊂ Ω, (2)

and the cost function c : Ω × Ω → R is a distance function
defined over the metric space Ω. The Kantorovich formula-
tion [Kantorovich, 1942] is a convex relaxation of the Monge
problem. Let Π(µ1, µ2) be the space of joint probability dis-
tributions with marginals µ1 and µ2 in P(Ω×Ω), it searches
a general coupling γ ∈ Π(µ1, µ2) that minimizes the trans-
portation cost between µ1 and µ2:

γ0 = argmin
γ∈Π(µ1,µ2)

∫
Ω2

c(x1,x2) dγ(x1,x2) (3)

The minimizers for this problem are called optimal transport
plans between µ1 and µ2. The Kantorovich relaxation is eas-
ier to solve by linear program, with less constraints on the

existence and uniqueness of solutions [Santambrogio, 2015].
Regularizing the structure of γ, for instance through entropic
regularization [Cuturi, 2013], helps to promote the optimiza-
tion procedure and the uniqueness of solution.

3.2 Neural Differential Equations
Neural Differential Equations (NDEs) are suitable for mod-
elling dynamical systems and time series, with deterministic
or stochastic evolving dynamics. Neural Ordinary Differen-
tial Equations (ODEs) [Chen et al., 2018] parameterize the
continuous dynamics of a dh-dimensional latent state ht by
an ODE specified by a neural network ϕθ : Rdh ×R → Rdh :

dht = ϕθ(ht, t)dt, (4)

where θ denotes the learnable parameters. As the stochastic
analogue of neural ODEs, neural stochastic differential equa-
tions (SDEs) [Li et al., 2020; Kidger et al., 2021] define a
latent temporal process with an SDE that consists of a deter-
ministic term and a stochastic term:

dht = ϕθ(ht, t)dt+ σθ(ht, t)dWt, (5)

where θ denotes all learnable parameters of the model, σθ :
Rdh×R → Rdh×dw is the diffusion function and Wt is a dw-
dimensional Brownian motion. The model parameters θ are
trained by backpropagating through the computational graph
of the differential equation solver and performing stochastic
gradient descent as usual (Chapter 5 of [Kidger, 2021]).

4 Proposed Method
In this section, we first provide the problem formulation for
TDG and then introduce our proposed CTOT framework, as
depicted in Figure 1. Specifically, starting with the observed
source domains, CTOT first conducts a pretraining phase to
obtain a shared feature extractor that transforms input fea-
tures into a representation space, then it employs OT to mine
instance evolving trajectories in the joint space of representa-
tion and label. Leveraging NDEs, CTOT fits the trajectories
and extrapolates them into the future domain to predict the
subsequent states of the instances. These predicted virtual in-
stances assist the model in adapting its decision boundary to
the future domain. The pseudo code of the overall CTOT is
provided in Appendix A.2.

4.1 Problem Formulation
In TDG, we consider prediction tasks over an input space X
and an output space Y where the joint distribution P (x, y|t)
evolves with time t. In the training stage, we are given
T observed source domains D1,D2, . . . ,DT sampled from
data distributions on T arbitrary timestamps t1 ≤ t2 ≤
. . . ≤ tT , with each Ds =

{
(xi

s, y
i
s) ∼ P (x, y|ts)

}ns

i=1
, s =

1, 2, . . . , T where xi
s ∈ X , yis ∈ Y , ns denote the instance

feature, label and sample size at timestamp ts, respectively.
The goal of TDG is to learn a model which can generalize
well on some target domain in the near future, i.e., DT+1.
Note that the model is only tested once on time tT+1, differ-
ing from the online learning setting where regret is computed
incrementally. Following existing TDG works [Nasery et al.,
2021; Qin et al., 2022; Bai et al., 2023], we further make

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4257



      …

NDE Solve



    

  …

Observed Trajectory



S
am

p
li

n
g

Encode
Extrapolation



Prediction

Time

  …
Interpolation



  

Domain Shared Feature Extractor 

R
ep

re
se

n
ta

ti
o
n

 s
p
ac

e

 

…

…

Instance Evolving Trajectory Mining Continuous-time Modelling of  Trajectories

Optimal Transport

…

Figure 1: An overview of our CTOT framework, which consists of two phases: instance evolving trajectory mining and continuous-time
modelling of trajectories. Best viewed in color.

a necessary assumption that the joint distribution P (x, y|t)
drifts smoothly over time following some underlying but un-
known patterns. The main challenge of TDG is to character-
ize the evolving patterns of data distribution and achieve gen-
eralization using the learned evolving patterns. In the next
two subsections, we will detail the two key components of
CTOT: instance evolving trajectory mining and continuous-
time modelling of instance evolving trajectories.

4.2 Instance Evolving Trajectory Mining
Our key insight is that capturing the instance-level evolving
processes would be better suited for various complex or ir-
regular data distributions, providing us with finer-grained in-
formation on how the decision boundary changes. For exam-
ple, in influenza outbreak event prediction via Twitter [Zhao,
2023], where the task involves utilizing the counts of specific
keywords across all tweets in a given region and the goal is
to predict whether there will be an influenza outbreak in that
region during the next week, we can get access to the infor-
mation of the same region at different timestamps. However,
in the case of TDG, there are no ground truth instance-to-
instance correspondences between domains, or different tem-
poral domains Ds may comprise unrelated instances (xi

s, y
i
s)

without inherent correspondences. Therefore, such instance
evolving trajectories do not naturally exist. To tackle the chal-
lenge, we propose to utilize OT as a principled way to seek
instance-to-instance correspondences between domains and
construct the instance evolving trajectories to facilitate the
learning of temporal evolving patterns.

Specifically, in the context of deep learning, a model is usu-
ally composed of a feature extractor f : X → Z which
maps from the original input space X to a representation
space Z , and a task head g : Z → Y which outputs predic-
tions to accomplish the task, such as classification and regres-
sion. Compared to the input space, the representation space
typically exhibits advantages such as higher discriminability,
lower dimensionality and better adaptability to downstream
tasks through training. For these reasons, we choose to con-
duct instance evolving trajectory mining in the product space
of representation and label, i.e., Z × Y , rather than X × Y .
To obtain such a representation space, we pretrain a domain-

shared feature extractor f and equip each domain s with its
domain-specific task head gs to accommodate the concept
drift [Lu et al., 2018]. The f and {gs}Ts=1 are jointly trained
on all source domains with the pretraining loss:

Lpt =

T∑
s=1

ns∑
i=1

1

ns
ℓtask(gs(f(x

i
s)), y

i
s), (6)

where ℓtask denotes the loss function associated with a spe-
cific task, which can be cross entropy loss for classification or
mean-squared-error for regression. As discovered in [Gulra-
jani and Lopez-Paz, 2021], even in the presence of covariate
shift across domains, feature extractors trained using empir-
ical risk minimization (ERM) on mixed source domains ex-
hibit good domain generalization capabilities if the number of
source domains is sufficient. Therefore, we expect that after
pretraining, f can extract features for completing the predic-
tion task and can generalize well to the target domain.

Then, we encode each instance xi
s with the frozen fea-

ture extractor f to get its representation zis = f(xi
s). We

construct instance-to-instance correspondences between ad-
jacent source domains by minimizing the transportation cost
between them. Let µs be the empirical joint distributions of
domain s over the space Ω = Z × Y , which is:

µs =
1

ns

ns∑
i=1

δzi
s,y

i
s
, (7)

where δz,y is the Dirac function located at (z, y). We apply
the Kantorovich formulation (Eq. (3)) to this discrete case to
search the optimal transport plan γs between the distributions
of domain s and domain s+ 1, which is given by:

γs = argmin
γ∈∆s

⟨γ,C⟩F , (8)

where ⟨·, ·⟩F denotes the Frobenius dot product, and ∆s is
the transportation polytope of nonnegative matrices between
two uniform distributions with dimensions ns and ns+1, i.e.,

∆s =
{
γ ∈ Rns×ns+1

+ | γ1ns+1 = 1ns , γ
⊤1ns = 1ns+1

}
,

(9)
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and C ≥ 0 is the cost function matrix whose term C(i, j) =

c(zis, y
i
s, z

j
s+1, y

j
s+1) denotes the transportation cost between

instance (zis, y
i
s) and (zjs+1, y

j
s+1). In this paper, we use a

specific form of joint cost which separately considers the dis-
tance between representations and the discrepancy between
labels: c(zi, yi, zj , yj) = d(zi, zj) + αdl(y

i, yj). Following
[Damodaran et al., 2018], the distance d is chosen as squared
Euclidean distance d(zi, zj) = ∥zi−zj∥22. For classification,
we choose the label discrepancy dl to be cross-entropy, which
means the distance is 0 for instances of the same class and in-
finite for instances of different classes. For regression, we
choose dl to be squared-loss, i.e., dl(yi, yj) = ∥yi − yj∥2.
The scalar α is a parameter weighting the contributions of
the two terms. Convergence speedup techniques such as en-
tropic regularization [Cuturi, 2013] are compatible with our
framework and we omit it for simplicity of notation. For each
instance (zis, y

i
s) at timestamp ts, we take the the instance

(zjs+1, y
j
s+1) at ts+1 with the maximum transportation prob-

ability in solution of Eq. (8), as its subsequent state to form
instance-to-instance correspondence,i.e.,

ji,ts→ts+1 = argmax
k

γs[i, k], (10)

and the value of γs[i, j] can be treated as the confidence
of this correspondence relationship. We build instance-to-
instance correspondences as Eq. (10) for each pair of adjacent
domains, thus obtaining multiple complete instance evolv-
ing trajectories from timestamp t1 to tT , denoted by Dtra ={
(zis, y

i
s, ts)

s=T
s=1

}N

i=1
. Note that in practice, there may be an

imbalance in the number of instances among source domains.
To avoid information loss, we construct correspondences si-
multaneously in both forward and backward directions from
the domain with the largest number of instances and obtain
totally N = max{n1, n2, . . . , nT } trajectories.

4.3 Continuous-time Modelling of Trajectories
After obtaining the instance evolving trajectories Dtra, we
choose to use NDEs to model them in continuous time
for these reasons: (1) They offer the flexibility to han-
dle irregularly-sampled time series, and in TDG there may
be irregular time intervals between the sampled timestamps
{ts}Ts=1. (2) They are suitable for modelling continuous dy-
namics, and in TDG we assume the data distribution drifts
smoothly following some underlying continuous dynamics.
(3) They exhibit stronger extrapolation capabilities than re-
current neural networks (RNNs), especially when observa-
tions are sparse [Rubanova et al., 2019]. Note that there are
other advanced continuous-time modelling approaches based
on stochastic process [Deng et al., 2020; Schirmer et al.,
2022; Biloš et al., 2023], we leave them for future work and
focus only on NDEs in this paper. Specifically, we follow
the latent variable time series model proposed in [Chen et al.,
2018], where the generative model is defined by an NDE:

h0 ∼ pθ(h0), (11)
h1, · · · ,hT = NDESolve(θ,h0, (t1, · · · , tT )), (12)

(zs, ys) = ψθ(hs), s = 1, · · · , T, (13)
where θ denotes all the learnable parameters of the model,
hs is the latent state with its initial state h0 sampled from a

prior , and the dynamic of hs is governed by an NDE. ψθ is
an encoder which generates the observations. For classifica-
tion, we learn an NDE for each class separately to model the
evolving dynamic of the representations zs within that cate-
gory (We only include one NDE in Eq. (12) to keep the no-
tation simple). For regression, we learn a single NDE which
models the evolving dynamic of the concatenation of zs and
ys. More detailed formulas are provided in Appendix A.1.

The model is trained to fit the trajectory data Dtra us-
ing a variational autoencoder framework [Chen et al., 2018;
Li et al., 2020]. We compute the approximate posterior based
on a trajectory of observations {zs, ys, ts}Ts=1 (omit the su-
perscript i for simplicity) as:

qν(h0| {zs, ys, ts}s=T
s=1 ) = N (mh0

,vh0
), (14)

where mh0
and vh0

are the mean and variance of the poste-
rior, which are parameterized by some neural networks with
parameters ν. Abbreviate the posterior as qν , the optimization
objective is to maximize the evidence lower bound (ELBO):

Eh0∼qν

[
log pθ({zs, ys, ts}Ts=1)

]
− KL(qν(h0)∥pθ(h0)). (15)

To avoid the degenerated dynamics caused by unlimited
temporal drift, we propose a regularization term that con-
strains smooth distribution shifts between two timestamps.
Specifically, we interpolate some timestamps ts+ϵ (0 < ϵ <
1) between ts and ts+1, and generate the virtual instance
(ẑs+ϵ, ŷs+ϵ) at ts+ϵ according to Eq. (11) to Eq. (13). Since
it represents the instance evolved up to time ts+ϵ, we use a
weighted ensemble of the domain-specific task heads gs and
gs+1, with 1 − ϵ and ϵ as weights respectively, to make pre-
diction for the interpolated instance:

ỹs+ϵ = (1− ϵ)gs(ẑs+ϵ) + ϵgs+1(ẑs+ϵ), (16)

which is then regularized by the prediction loss w.r.t. the task:

Litp = ℓtask(ỹs+ϵ, ŷs+ϵ). (17)

The rationale here lies in the fact that the domain-specific task
head gs reflects the conditional distribution p(y|z) of that do-
main, and we attempt to learn evolving patterns that exhibit
smoothness over time, ensuring limited temporal drift within
any given short time interval. Overall, the optimization objec-
tive is maximizing Eq. (15) while minimizing Eq. (17), with
two hyperparameters λkl and λitp controlling the trade-off of
the KL term and the interpolation loss, respectively.

Finally, we extrapolate the learned NDE dynamic of latent
state into the future tT+1 to collect a set of virtual instances
D̂T+1 =

{
(ẑiT+1, ŷ

i
T+1)

}N

i=1
. They are used to adapt the

model’s decision boundary to the future to make predictions
for the real test domain DT+1. In classification tasks, for each
class k, we use kernel density estimation [Terrell and Scott,
1992] to estimate the conditional distribution p(z|y = k),
and use time series forecasting methods to predict the prior
p(y = k). The classification is performed using Bayes’ rule:

p(y = k|z) = p(z|y = k)p(y = k)∑K
i=1 p(z|y = i)p(y = i)

. (18)

In regression tasks, we fit a regression model based on the
virtual representations and labels. More detailed descriptions
are provided in Appendix A.3.
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Method Classification (%) Regression

2-Moons Rot-MNIST ONP Shuttle Elec2 House Appliance

Offline 22.4±4.6 18.6±4.0 33.8±0.6 0.77±0.10 23.0±3.1 11.0±0.36 10.2±1.1
LastDomain 14.9±0.9 17.2±3.1 36.0±0.2 0.91±0.18 25.8±0.6 10.3±0.16 9.1±0.7
IncFinetune 16.7±3.4 10.1±0.8 34.0±0.3 0.83±0.07 27.3±4.2 9.7±0.01 8.9±0.5
CDOT [Ortiz-Jimenez et al., 2019] 9.3±1.0 14.2±1.0 34.1±0.0 0.94±0.17 17.8±0.6 - -
CIDA [Wang et al., 2020a] 10.8±1.6 9.3±0.7 34.7±0.6 DNC 14.1±0.2 9.7±0.06 8.7±0.2
GI [Nasery et al., 2021] 3.5±1.4 7.7±1.3 36.4±0.8 0.29±0.05 16.9±0.7 9.6±0.02 8.2±0.6
LSSAE [Qin et al., 2022] 9.9±1.1 9.8±3.6 38.8±1.1 0.22±0.01 16.1±1.4 - -
DDA [Zeng et al., 2023] 9.7±1.5 7.6±0.7 34.0±0.3 0.21±0.02 12.8±1.1 9.5±0.12 6.1±0.1
DRAIN [Bai et al., 2023] 3.2±1.2 7.5±1.1 38.3±1.2 0.26±0.05 12.7±0.8 9.3±0.14 6.4±0.4
EvoS [Xie et al., 2023] 3.0±0.4 7.3±0.6 35.4±0.2 0.23±0.01 11.8±0.5 9.8±0.10 7.2±0.1

CTOT (ODE) 1.5±0.6 6.8±0.2 33.8±0.3 0.19±0.03 10.6±1.8 8.7±0.08 5.4±0.8
CTOT (SDE) 2.0±1.2 6.7±0.2 33.3±0.4 0.19±0.01 10.2±1.7 8.6±0.09 5.1±0.4

Table 1: Performance comparisons in terms of misclassification error ( %) for classification and mean absolute error (MAE) for regression
(both smaller the better). DNC indicates that the method did not converge on the specific dataset. “-” indicates inapplicability to regression.
The best results and the second-best results are highlighted in bold and underlined, respectively. Each experiment is repeated 5 times.

5 Experiments
In this section, we conduct extensive experiments to demon-
strate the effectiveness of CTOT, including baseline compar-
isons (Section 5.2), ablation studies (Section 5.3) and hyper-
parameter sensitivity analysis (Section 5.4).

5.1 Experimental Settings
Datasets. Following existing works [Nasery et al., 2021;
Bai et al., 2023], we conduct experiments on the following
five classification datasets: Rotated Moons (2-Moons), Ro-
tated MNIST (Rot-MNIST), Online News Popularity (ONP),
Shuttle, and Electrical Demand (Elec2); and the following
two regression datasets: House prices dataset (House), Ap-
pliances energy prediction dataset (Appliance). The first
two datasets are synthetic, where the rotation angle serves
as a proxy for time. The remaining datasets are real-world
datasets with temporally evolving characteristics. More
dataset details can be found in Appendix B.1.

Comparison Methods. We compare CTOT against three
group of baseline methods. Time-Agnostic Baselines: These
methods do not consider the temporal drift, including Of-
fline (train on all source domains), LastDomain (train on
the last source domain) and IncFinetune (sequentially train
on each source domain). Continuous Domain Adaptation:
CDOT [Ortiz-Jimenez et al., 2019] and CIDA [Wang et al.,
2020a]. Temporal Domain Generalization: GI [Nasery et
al., 2021], LSSAE [Qin et al., 2022], DDA [Zeng et al.,
2023], DRAIN [Bai et al., 2023] and EvoS [Xie et al., 2023].
More baseline details can be found in Appendix B.2.

Implementation Details. To ensure a fair comparison, the
network architectures for the feature extractor and task head
are kept the same across all the compared methods, as em-
ployed in [Nasery et al., 2021; Bai et al., 2023]. For tuning
hyperparameters, we consider data from the last source do-
main (DT ) as the validation set. We control the number of
generated instances to be close to the number of instances in
a single source domain. For each method, the experiments

are repeated 5 times with different random seeds, and we re-
port the mean results and standard deviation. More details are
given in Appendix B.3 and B.4.

5.2 Performance Comparisons
Table 1 shows the comparative results of test performance
on the target domain. As shown, CTOT outperforms all the
baselines on the seven datasets. Additionally, we observe
that CTOT with SDE demonstrates superior performance than
CTOT with ODE on five of the seven datasets. This improve-
ment is attributed to the injected noise term in an SDE, which
reflects the stochasticity in the latent dynamics and the uncer-
tainty of the instance evolving trajectories, thereby enhanc-
ing generalization. It is worth noting that the ONP dataset is
exceptional, which has been shown by [Nasery et al., 2021;
Bai et al., 2023] to not exhibit a strong temporal distribution
shift. Therefore, the performance of all TDG baselines on
ONP cannot surpass that of the time-agnostic Offline method.
However, CTOT outperforms Offline on ONP, demonstrating
our approach’s effectiveness in capturing both time-invariant
information and temporal evolving patterns. Furthermore,
CTOT is applicable for both classification and regression
tasks, whereas some baselines, including CDOT and LSSAE,
are only suitable for classification. These results demonstrate
the effectiveness and generality of CTOT. We also provide a
qualitative analysis which visualizes the decision boundary
predicted by CTOT in Appendix B.5.

5.3 Ablation Studies
To verify the effectiveness of all components of CTOT, we
conduct ablation studies on three datasets including 2-Moons,
Elec2 and House. The results are shown in Table 2.

Effect of optimal transport. To verify the effectiveness of
mining instance evolving trajectories through OT, we com-
pare CTOT with two variants: (1) CT+R, where the trajecto-
ries are constructed by randomly matching instances between
each pair of adjacent domains, and (2) CT+N, where for each
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Ablation OT Time Model w/ Litp
Classification (%) Regression

2-Moons Elec2 House

CT+R × (Random) ODE ✓ 7.1±3.0 18.4±8.7 9.6±0.33
CT+N × (Nearest) ODE ✓ 25.3±0.8 19.4±9.1 9.3±0.26
RNN+OT ✓ RNN × 3.5±1.4 16.2±0.6 9.3±0.32
CTOT− ✓ ODE × 3.0±1.0 14.8±0.8 9.0±0.22
CTOT ✓ ODE ✓ 1.5±0.6 10.6±1.8 8.7±0.08

Table 2: Ablation studies. Misclassification error (%) or MAE of different CTOT variants on the test data are shown. “OT” denotes whether
the instance evolving trajectories are constructed by optimal transport. “w/ Litp” indicates whether the interpolation loss is enforced.

(a) Sensitivity of λkl (b) Sensitivity of λitp (c) Sensitivity of ϵ

Figure 2: Hyperparameter sensitivity analysis. Classification accuracy (%) with standard deviation are shown.

instance, we select the one in the next domain that is near-
est to it in representation space, constructing the trajectory
accordingly. As shown in Table 2, the performance of these
two variants is comparatively poorer. This implies that con-
structing instance correspondences using a naive approach is
difficult to accurately reflect the temporal trends, while OT
has a stronger ability to align distributions by minimizing the
global transportation cost.
Effect of continuous-time modelling. We further compare
CTOT with two variants: (1) RNN+OT, where we employ
an RNN model to fit the trajectory data and predict future
data, and (2) CTOT−, where the interpolation loss Litp is
not applied. We observe from Table 2 that the performance
of RNN+OT is worse than CTOT−, and both are inferior
to CTOT. As elaborated in [Rubanova et al., 2019], stan-
dard RNNs perform worse when observations are sparse
and exhibit limited extrapolation capabilities compared to
continuous-time models. Besides, applying the interpolation
loss helps the model learn smoother temporal dynamics, lead-
ing to the generation of higher-quality extrapolated instances.

5.4 Hyperparameter Sensitivity Analysis
In this section, we study the effects of some key hyperparam-
eters in our method, including the KL loss coefficient λkl,
interpolation loss coefficient λitp, and interpolation point ϵ.
We vary these hyperparameters and report the average and
the standard deviation of the accuracy with five different ran-
dom seeds on 2-Moons dataset using CTOT with ODEs.

The results of λkl are shown in Figure 2a. The curve ex-
hibits a bell shape, which means that small λkl might result in
a significant gap between the prior and posterior, impacting

the quality of generated instances and large λkl might hin-
der the model from fitting the instance evolving trajectories.
Overall, an appropriate KL coefficient is essential to learning
the latent variable model defined in Eq. (11) to Eq. (13).

The results of λitp are shown in Figure 2b. We observe that
the curve also exhibits a bell shape, indicating that too small
λitp cannot effectively constrain the smooth distribution shift
between time steps, while excessively large λitp might lead
to overfitting on interpolated virtual instances, compromising
the learning from real instance evolving trajectories.

The results of ϵ are reported in Figure 2c. It is shown that
interpolation with different values of ϵ achieves high perfor-
mance across a wide range. This suggests that our method is
not highly sensitive to the specific value chosen for ϵ.

6 Conclusion
In this paper, we propose a CTOT framework for TDG. The
key insight is to capture temporal evolving patterns at the in-
stance level rather than relying on the collective behaviors
of instances. The proposed CTOT framework involves two
components: instance evolving trajectory mining by optimal
transport and continuous-time modelling of trajectories. To
facilitate the learning of continuous-time dynamics, we also
introduce a novel interpolation loss which avoids the degen-
eration caused by unlimited temporal drift. Extensive experi-
ments on multiple benchmark datasets demonstrate the effec-
tiveness of CTOT compared with state-of-the-art methods.
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