
EFEVD: Enhanced Feature Extraction for Smart Contract Vulnerability Detection

Chi Jiang1 , Xihan Liu1 , Shenao Wang1 , Jinzhuo Liu2 , Yin Zhang1∗

1University of Electronic Science and Technology of China
2Yunnan University

{chijiang, xihanliu, shenaowang}@std.uestc.edu.cn, jinzhuo.liu@hotmail.com,
zhangyin123@uestc.edu.cn

Abstract
Because of the wide deployment of smart con-
tracts, smart contract vulnerabilities pose a chal-
lenging risk to blockchain security. Currently, deep
learning-based vulnerability detection is a very at-
tractive solution due to its ability to identify com-
plex patterns and features. The existing meth-
ods mainly consider the contract code content fea-
tures, expert knowledge patterns, and contract code
modalities. To further enhance smart contract vul-
nerability detection, this paper attempts to identify
community features from smart contracts with sim-
ilar semantic and syntactic structures, and shared
features from two related vulnerability detection
tasks, vulnerability classification and localization.
The experimental results verify that the proposed
approach significantly outperforms the state-of-the-
art methods in terms of accuracy, recall, precision,
and F1-score.

1 Introduction
As a core component of blockchain technology, smart con-
tracts significantly enhance the blockchain application po-
tential through their ability to automatically execute trans-
actions. However, this characteristic also creates substan-
tial security risks. Once a smart contract is deployed, its
code becomes immutable, meaning that any existing vul-
nerabilities can lead to irreversible losses. A prime exam-
ple of this is the reentrancy vulnerability found in the DAO
smart contract. As shown in Fig.1, in this vulnerability,
the contract executed an external call (msg.sender.call) be-
fore updating its internal state (account balance), which al-
lowed attackers to repeatedly trigger the withdrawal func-
tion and extract funds before the balance was updated. This
demonstrates that contract vulnerabilities are intimately con-
nected with code variables (semantics) and code structures
(syntax). Building on this, Liu et al. [Liu et al., 2021a;
Liu et al., 2021b] summarized expert knowledge patterns for
reentrancy, timestamp, and infinite loop vulnerabilities, in-
tegrating expert pattern features with semantic and synthetic
code analysis to enhance vulnerability detection performance.

∗Corresponding Author

Figure 1: DAO smart contract with Reentrancy vulnerability

Subsequent works [Sendner et al., 2023; Li et al., 2023;
Xie et al., 2023] continued to explore expert patterns for
additional vulnerability types, enhancing feature extractions.
However, this expert pattern-based vulnerability detection
approach, which relies on domain expertise, lacks gener-
alizability. Another category of deep learning-based vul-
nerability detection methods focuses on the code’s modal-
ity features[Qian et al., 2023; Jie et al., 2023]. These stud-
ies comprehensively consider the two primary modalities of
smart contracts—the source code and EVM (ethereum vir-
tual machine) bytecode—along with their respective features.
However, methods based on code modality feature enhance-
ment pose high demands on datasets, and are prone to in-
troducing overlapping redundant features between different
modalities, which can limit model performance.

Therefore, this paper considers two novel dimensions of
feature enhancement for smart contract vulnerability detec-
tion. First, we introduce community features for smart con-
tracts. In domains such as social networks, financial transac-
tions, and academic citations, the related community specifies
the common interests of the individuals, which are charac-
terized by similar patterns and preferences[Hu et al., 2023].
Given the close relationship between smart contract vulner-
abilities and their semantic and syntactic properties, we de-
fine a community as a group of smart contracts with sim-
ilar semantics and syntax. By analyzing patterns and vul-
nerabilities in similar contracts, we can extract a broader
context, effectively aiding in the identification of the vul-
nerabilities. Second, we focus on the shared features re-
lated to two prevalent tasks in vulnerability detection, vul-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4246

nerability classification and vulnerability localization. Vul-
nerability classification refers to deciding whether a smart
contract contains vulnerabilities, while vulnerability local-
ization involves classifying specific functions or variables
within a contract for fine-grained vulnerability pinpointing.
These cross-task shared features encompass not only the de-
tails of specific code segments but also the overall struc-
ture and behavioral patterns of the contracts[Xie et al., 2020;
Takiddin et al., 2023], enabling the model to identify and lo-
cate vulnerabilities more effectively.

Specifically, this paper introduces an enhanced feature-
based vulnerability detection (EFEVD) method for smart
contracts. Initially, we employ the TextCNN and Transformer
approaches for feature embedding of the internal function
codes of smart contracts, and for extracting semantic features
and sequence dependencies. Subsequently, a smart contract
graph is constructed with functions as nodes and call relation-
ships as edges. Using graph neural network (GNN) methods,
the features encompassing the semantic and syntactic infor-
mation of the contract graph are obtained. Thereafter, smart
contracts are categorized into different communities based
on the semantic and syntactic similarity between the con-
tract graphs, and the commodity features are extracted. Fi-
nally, two downstream tasks for vulnerability detection are
designed, classification of the contract graph and classifica-
tion of the nodes within the graph. The model not only inte-
grates the original features of the contract graph with the cor-
responding community features but also learns the cross-task
shared features through the multitask learning architecture.
This approach enhances the accuracy of the graph classifi-
cation task while simultaneously locating specific vulnerable
code segments through node classification.

Our main contributions can be summarized as follows:

• We explore the community features of smart contracts
by defining communities based on semantic and syntac-
tic similarities. Community features provide wider con-
textual information, enhancing the detection of vulnera-
bilities.

• We leverage shared features across two related tasks
in vulnerability detection. By combining both detailed
code segments and overarching contract analysis, our
approach enhances the model’s performance in identi-
fying vulnerabilities.

• We employ a multitask learning architecture, learning
and fusing enhanced features. We conduct extensive ex-
periments on a real-world smart contract dataset, and our
method outperforms the state-of-the-art methods, recall
increases by 10.12%, F1-score increases by 8.17%, pre-
cision increases by 4%, and accuracy increases by 3.1%.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a comprehensive review of related work in the
field of smart contract vulnerability detection. Section 3 for-
mulates the proposed problem. Section 4 describes the pro-
posed EFEVD method in detail. Section 5 presents the exper-
imental information, including the dataset, evaluation met-
rics, and experimental results. Finally, Section 6 concludes
the paper.

2 Related Work

Early works on vulnerability detection were primarily di-
vided into two types, static analysis and dynamic analysis.
Static analysis involves analyzing code without running the
program, while dynamic analysis monitors the behavior of
the code during its execution to detect vulnerabilities and er-
rors. Chen et al[Chen et al., 2021] developed a smart con-
tract vulnerability detection tool called DefectChecker, which
uses symbolic execution to detect eight types of vulnerabil-
ities. Li et al[Li et al., 2022] proposed a new tool called
ReDefender, which uses fuzzy testing to detect reentrancy
vulnerabilities. Osiris[Torres et al., 2018], which used sym-
bolic execution to verify potential integer overflow vulnera-
bilities in smart contract bytecode. Oyente[Luu et al., 2016],
which generates symbolic paths through symbolic execution
to detect timestamp dependencies and reentrancy vulnerabili-
ties; Smartcheck[Tikhomirov et al., 2018], an Ethereum static
analysis tool that uses an syntax parser and specifies Solidity
syntax rules to detect various types of vulnerabilities. Con-
tract Fuzzer[Jiang et al., 2018], is a fuzz testing-based smart
contract vulnerability detection framework.

However, static analysis often results in high false-positive
rates and fails to capture runtime dynamics, while dynamic
analysis is limited to executed code paths and is resource in-
tensive. These drawbacks highlight the need for more effec-
tive strategies, which has led to an increasing focus on deep
learning-based detection methods as promising alternatives.

Currently, deep learning-based methods in the blockchain
domain predominantly leverage three categories of features.
First, there are contract code content features. Ren et al.[Ren
et al., 2023] utilized complete semantic structure information
(CPSs) to construct program slices, facilitating the learning
of syntactic structures, keywords, and other pertinent infor-
mation. Chen et al.[Chen et al., 2023] introduced a novel se-
mantic graph incorporating syntax and semantic information
to represent the semantic details of each function comprehen-
sively, enabling a more holistic capture of contract vulnerabil-
ities. Liu et al.[Liu et al., 2023] pioneered the construction of
a Multi-Relationship Nested Contract Graph to better char-
acterized the syntax and semantics of smart contract code.
Second, expert knowledge pattern features are proposed. Liu
et al.[Liu et al., 2021b] designed specific expert patterns and
integrated them with contract graph features, to construct a
final vulnerability detection system. Based on this, an in-
creasing number of vulnerability expert patterns are being
progressively analyzed and proposed[Sendner et al., 2023;
Li et al., 2023; Xie et al., 2023]. Finally, the contract modal-
ity feature is considered. Qian et al.[Qian et al., 2023] distin-
guished between two modalities: control flow graphs gener-
ated from bytecode and code semantic graphs generated from
source code. Wang et al.[Wang et al., 2023] proposed the
DEEPVD model, which leverages three hierarchical modal-
ity features, including statement types, post-dominator trees,
and exception flow graphs. These features are meticulously
designed to enhance discriminative performance.

In summary, although existing works have considered
some feature enhancements, there are still some limitations.
Expert knowledge pattern features require predefined domain

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4247

Figure 2: The overall architecture of the proposed method EFEVD

knowledge, while multi-modal features demand high-quality
datasets and are prone to introducing redundant features.
Therefore, we propose the extraction of two new types of
readily obtainable smart contract features to enhance feature
representation and improve detection performance.

3 Problem Formulation
In the enhanced feature extraction for smart contract vulner-
ability detection (EFEVD), we formalize the problem as fol-
lows:

Consider a smart contract graph g derived from the smart
contract space G. Each contract graph g is composed of nodes
N , representing contract functions, and edges representing
call relationships between functions. We define two tasks
within a multitask learning framework: graph classification
(GC) for overall contract vulnerabilities, and node classifica-
tion (NC) for function-specific vulnerabilities.

GC : g → [0, 1]

NC : N → [0, 1]

where GC(g) and NC(N) yield a probabilistic estimate of
the presence of vulnerabilities in contract g and its functions
N . The objective of the EFEVD is to minimize the cross-
entropy between the predicted results and the true labels.

Let G̃ represent community features. The shared features
are refined through a multitask learning process (MTL):

gupdated, Nupdated = MTL(g,N, G̃)

(gupdated, Nupdated, G̃) → (GC,NC)

This formulation reflects the community and shared feature
enhancement of the EFEVD method, highlighting the integra-
tion of feature extraction techniques to enhance the vulnera-
bility detection results of smart contracts.

4 Proposed Method
An overview of the proposed system is illustrated in Fig.2,
which consists of three components, a community feature ex-
traction module, a graph construction module, and a multitask
downstream output module.

4.1 Community Feature Extraction
As mentioned before, we define a community in smart con-
tracts as a group of contracts with similar semantic and syn-
tactic features. Therefore, our first step is to extract the se-
mantic and syntactic features of smart contracts. For the
source code of smart contracts, the semantic features are em-
bedded into vector space based on the word2vec method. The
syntactic features are obtained by parsing the abstract syntax
tree (AST) of the code, as shown in Fig.4. We classify smart
contracts into different communities based on the similarity
of their semantic and syntactic features. The similarity Simi
is defined as:

Simi =
SemanSimi+ SyntSimi

2
(1)

where SemanSimi represents the semantic similarity be-
tween contracts, and SyntSimi represents their syntactic
similarity. Contracts with a similarity exceeding a certain
threshold are classified into the same community. Addition-
ally, to mine the feature embeddings corresponding to each

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4248

Figure 3: Function feature embedding procedure

Figure 4: An example of the abstract syntax tree of smart contract
code

community, we establish edge connections between smart
contracts within the same community. If the similarity be-
tween two smart contracts exceeds 80%, an edge is created
between their respective nodes. This process transforms each
community into a graph form, and then, based on GNN meth-
ods, we extract the feature representations for each type of
community, defined as G̃ = {G̃1, G̃2, . . . G̃n}

4.2 Contract Graph Construction
For each smart contract, a smart contract graph is constructed
with its functions as nodes and the invocation relationships
between the functions as edges. To extract the node feature,
each function is embedded into the features as a sequence.
First, word2vec is used to generate word embeddings for each
word in the function. Then, the TextCNN and Transformer
are used to generate feature embedding for the function, bet-
ter capturing short and long term sequence features.

Formally, after word2vec embedding, each function is rep-
resented as x = [x1, x2, ..., xn] ∈ Rn×d, where n is the se-
quence length and d is the dimension of the word vector. The

TextCNN feature extractor can slide different sizes of con-
volutional kernels over the input sequence to aggregate local
features of different lengths. Assuming M filters with R con-
volution kernels of size h × d are used, the feature vector
obtained by the m− th filter is represented as:

cm = max((f(Wmxi:i+hm−1 + b))n−hm+1
i=1) (2)

Here, Wm ∈ Rhm×d represents the weight matrix of the
m − th filter in the convolution operation, b is the bias, f(·)
denotes the activation function, and max(·) represents max
pooling. Finally, all feature vectors of the filters are concate-
nated into a complete sequence C = [c1, c2, ..., cm] as the
input to the Transformer.

The Transformer encoding layer consists of a multi-head
Attention mechanism and a feedforward neural network. The
self-attention layer computes attention weights between input
embedding vectors to represent the importance of each input
vector in the sequence. The multi-head attention layers and
feedforward networks further process these encoded vectors
to obtain more semantically meaningful textual representa-
tions, as shown below:

Attention(Q,K, V) = softmax(
QKT

√
dk

)V (3)

Here,Q,K, V represent the query, key, and value vectors,
respectively, with dk being the vector dimension. In our
model, we first utilize TextCNN with various kernel sizes
to capture multi-scale features, defined as C. C is then fed
into Transformer to learn inter-scale relationships. In Trans-
former, C is first transformed into three different sets of vec-
tors: query (Q = CWQ), key (K = CWK), and value (V =
CWV), where WQ, WQ, and WV are learnable weight ma-
trix. The resulting Q, K, and V vectors are then used in the
computation of attention scores and the subsequent genera-
tion of the output sequence C̃. The new sequence representa-
tion C̃ generated by multi-head self-attention on the input se-
quence C is processed through a feedforward neural network,

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4249

where a non-linear transformation is applied to each token in
the sequence. The function feature embedding is denoted as
Ef :

Ef = FFN(Ĉ) = max(0, ĈW1 + b1)W2 + b2 (4)

where W1, b1, W2 and b2 are the learnable weight matrices
and bias vectors. The overall process of function feature em-
bedding is illustrated in Fig.3.

After obtaining the node feature in the contract graph, the
node feature is propagated according to the order of edges
based on GNN. At time step t, node information is transmit-
ted through edge ek to its end node. Specifically, the message
mk is computed based on the hidden state of the start node of
ek, and the edge embedding ek:

xk = hestart
k

⊕ ek (5)
mk = Wkxk + bk (6)

where ⊕ denotes the concatenation operation, and Wk and bk
are network parameters. Upon receiving the message feature,
the end node of the edge updates its current hidden state hek

by considering the previous hidden state and the edge-specific
update mk:

ĥek = tanh(Umk + Zhek + b3) (7)

h
′

ek = softmax(Rĥek + b4) (8)
where U , Z and R are matrices, b3 and b4 are bias vectors. Fi-
nally, for the smart contract graph with |V | nodes, the overall
feature embedding of the smart contract obtained by aggre-
gating the node features is:

Ec =

|V |∑
i=1

h
′

i (9)

4.3 Multi-task Downstream Output
In the final output layer, we defined two tasks related to vul-
nerability detection: vulnerability classification and vulner-
ability localization, corresponding to the classification of the
smart contract graph and the classification of individual graph
nodes, respectively. In the process of multi-task learning, in-
formation pertinent to the tasks is interchanged and enriched
through a shared feature at an early stage, leading to simulta-
neous refinement of both node and graph classification tasks.
For the contract graph classification task, the input is the fu-
sion of contract graph feature Ec from the multi-task learn-
ing process and contract community feature G̃. The output of
the classifier is defined as ŷ1, and y1 is the true label of the
sample. The cross-entropy loss function is used to train the
model:

LossGC = −y1logŷ1 − (1− y1)log(1− ŷ1) (10)

The loss of node classification LossNC is similar to Equa-
tion(10). We achieve multi-task learning on graphs by de-
signing a joint loss function that combines the two masked
categorical cross-entropy losses for graph classification and
node classification:

Loss = LossGC + LossNC (11)

5 Experiments
In this section, we conduct experiments on a real-world smart
contract dataset. We endeavor to investigate the following
research questions:

RQ1: How does the proposed EFEVD method perform
compared with traditional detection methods and state-of-the-
art deep learning based methods?

RQ2: How do the proposed enhanced features in EFEVD
perform with each other to improve the performance?

RQ3: How do hyper-parameters impact performance?

5.1 Experimental Settings
Datasets. The dataset used in this paper comes from a real-
world smart contract dataset on Ethereum. The labels in the
smart contract dataset are binary, with 1 indicating the exis-
tence of vulnerabilities and 0 indicating the absence of vul-
nerabilities. The dataset mainly contains four types of vul-
nerabilities, namely reentrancy, timestamp, overflow, and se-
cure(No Vulnerability). The labels for the functions were
obtained using the Slither tool combined with manual veri-
fication. After filtering out samples with development lan-
guage types that do not match the vulnerabilities, the original
dataset is preprocessed and balanced, resulting in a total of
9742 smart contract data samples. The overall dataset is di-
vided into a train set and a test set at a ratio of 7:3, where the
train set is used for model training and the test set is used for
model performance evaluations.

Compared Methods. To evaluate the improvement of the
model’s performance compared to that of existing methods,
this paper adopts several highly recognized smart contract
vulnerability detection methods as comparative experimental
methods. The baselines can be categorized into four aspects:

• Static and dynamic analysis: This category includes
tools such as SmartCheck [Tikhomirov et al., 2018],
which uses static analysis to detect common vulnerabil-
ities. Oyente [Liu et al., 2018], on the other hand, is
a symbolic execution tool for detecting security flaws.
Mythril [Feist et al., 2019] combines concolic analysis
and taint analysis, while Securify [Tsankov et al., 2018]
identifies vulnerabilities by analyzing the data flow in
contracts.

• Semantics and syntax feature-based methods: These
methods leverage the intrinsic features of smart con-
tracts to detect vulnerabilities. Rechecker [Qian et al.,
2020] analyzes the semantic information to identify hid-
den bugs. TMP [Zhuang et al., 2020] and DR-GCN
[Zhuang et al., 2020] employs deep graph networks to
analyze the syntactic structure of smart contracts.

• Expert knowledge enhanced method: The AME [Liu et
al., 2021a] system incorporates expert knowledge into
the detection process, combining the insights of smart
contract security experts.

• Multi-modal feature enhancement method: SMS [Qian
et al., 2023] integrates features from two different
modalities: bytecode and source code.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4250

Figure 5: Comparison experimental results of smart contract vulnerability detection

Implementation details. All the models are trained by
the Adam optimizer. The loss function is the softmax cross-
entropy loss, which is consistent with the underlying model
architecture. The batch size is set to 64, and the learning
rate is initialized to 0.01 and is dynamic during training. All
the models are trained using an NVIDIA GeForce RTX 3060
GPU and implemented with TensorFlow 1.15. Our data and
code are available on GitHub1.

Metrics. This paper uses four evaluation metrics, accuracy,
recall, precision, and F1-score, to validate the experimen-
tal results. The accuracy represents the ability to correctly
identify each class. Recall represents the proportion of sam-
ples with existing vulnerabilities that are correctly predicted
as having vulnerabilities, which is mainly used to measure
the probability of missed detection. Precision measures the
proportion of samples predicted as the positive class that are
actually positive. The F1-score is the harmonic mean of pre-
cision and recall, providing a balanced consideration of the
model’s accuracy and coverage.

5.2 Overall Performance(RQ1)
The experimental results of the comparison of smart contract
vulnerability classification tasks are shown in Fig.5. Overall,
the deep learning-based detection methods are generally bet-
ter than the traditional detection tools, and their accuracy can
be maintained at approximately 80%. The recall results of tra-
ditional methods is less than 60%, indicating that they miss
a substantial number of true vulnerabilities. Within the deep
learning-based approaches, the DR-GCN and TMP methods
consider only the semantic and syntactic features of code, re-
sulting in relatively poor vulnerability detection outcomes.
Building upon this, the AME method integrates expert knowl-
edge features of code, and the SMS method incorporates mul-
timodal features of code, both demonstrating improved de-
tection results over the DR-GCN and TMP methods, which
substantiates the efficacy of feature enhancements. However,
neither of these feature enhancement approaches achieves the

1https://github.com/xawmx/MTLContractdetection

effectiveness of the proposed EFEVD method. EFEVD out-
performs the existing state-of-the-art methods, achieving a
10.12% increase in recall, an 8.17% increase in F1-score, a
4% increase in precision, and a 3.1% increase in accuracy,
demonstrating the effectiveness of the two types of enhanced
features considered in our proposed method.

5.3 Ablation Study(RQ2)
To discover the impact of our community- and shared- en-
hanced features, as well as the influence of several deep learn-
ing feature extraction methods used in our model on the vul-
nerability detection results, we conduct an ablation analysis
by altering the following components:

• EFEVD(tt-): Without employing TextCNN and Trans-
former for semantic feature extraction, instead exclu-
sively utilizing Word2Vec embedding along with Trans-
former positional encoding.

• EFEVD(sl-): Remove the syntax similarity during divid-
ing the smart contracts communities.

• EFEVD(cf-): Remove the community feature enhance-
ment. Only use the contract graph feature for vulnera-
bility classification.

• EFEVD(sf-): Remove the shared feature enhancement.
That is, remove the multi-task framework. Only con-
sider the vulnerability classification task.

Ablation studies confirm the effectiveness of the proposed
enhanced feature method. As shown in Table 1, replacing cer-
tain feature embedding components in the model with simpler
methods, or removing either community features or shared
features, leads to a decrease in performance across all four
evaluation metrics. Specifically, The removal of TextCNN
models in EFEVD(tt-) led to a decrease in all the metrics,
emphasizing the importance of multi-scale semantic process-
ing for vulnerability detection. Omitting syntax similarity in
EFEVD(sl-) also led to a moderately reduced performance,
highlighting syntax’s role in accurately dividing smart con-
tract communities. The exclusion of community feature in

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4251

Model Vulnerability Classification
Accuracy Recall Precision F1-score

EFEVD(tt-) 85.22 90.74 80.33 85.22
EFEVD(sl-) 86.96 89.51 83.82 86.57
EFEVD(cf-) 87.25 88.8 84.71 86.75
EFEVD(sf-) 88.41 89.08 84.27 88.24

EFEVD 89.53 92.82 87.72 91.18

Table 1: Ablation experiment results

EFEVD(cf-) and shared feature in EFEVD(sf-) negatively af-
fected all performance metrics, thereby confirming the effec-
tiveness of the two types of enhanced features we proposed
for detecting vulnerabilities. Overall, the complete EFEVD
model outperformed all other variants, further validating the
effectiveness of the enhanced features and their combination.

5.4 Hyper-Parameters Sensitivity(RQ3)
The hyperparameters, such as the learning rate and number
of epochs, have a direct impact on the speed and performance
of the model. The number of epochs refers to the number
of times the model is trained on the data, and an appropriate
number of epochs can ensure that the model stops training af-
ter having sufficient fitting ability, thus reducing the training
cost. In this section, we set four initial values of the learn-
ing rate, namely 0.1, 0.01, 0.001, and 0.0001, and record the
convergence performance of the model under different con-
ditions. To comprehensively evaluate the precision and recall
performance, we still use the F1-score as the evaluation met-
ric, and the results of the parameter experiment are shown in
Fig.6. Both of the vulnerability detection tasks improve when
the learning rate is set between 0.01 and 0.001. However,
when the learning rate is set to 0.0001, the evaluation metric
tends to decrease. Considering all aspects, we choose 0.01
as the initial learning rate and adjust the learning rate during
model training by 0.01

numiter
, where numiter represents the

number of training groups in which 10 epochs are grouped.
This helps the model to quickly find the global optimum. For
the training epochs used for model training, we set the num-
ber of epochs to range from 1 to 100, and gradually increase
it to observe the convergence of the loss and accuracy dur-
ing model training. The parameter experimental results are
shown in Fig.7. Based on the loss curve, the model’s learn-
ing effect is very obvious in the first 30 training epochs, and
the loss value shows a significant downward trend. When the
epoch is set to 30-50, the model tends to converge, and when
the epoch is set to 50-100, the model converges. Therefore,
the epoch hyperparameter in this paper is set to 30.

6 Conclusion
In conclusion, the proposed EFEVD method introduces novel
feature enhancement for smart contract vulnerability detec-
tion. This approach diverges from the existing domain-
expertise-reliant methods by incorporating community fea-
tures, which reflect common patterns that are beneficial for
identifying vulnerabilities. Moreover, EFEVD leverages a
multi-task learning framework that utilizes shared features

Figure 6: Experimental results of learning rate parameters

Figure 7: Experimental results of epoch selection

across two related tasks, enhancing the model’s performance.
The experimental results indicate that EFEVD achieves supe-
rior performances over the current state-of-the-art methods,
demonstrating its potential as an effective tool for improving
smart contract security.

Acknowledgements
This work was supported by the China National Science
Foundation under grants 62172079 and U23A20310.

References
[Chen et al., 2021] Jiachi Chen, Xin Xia, David Lo, John

Grundy, Xiapu Luo, and Ting Chen. Defectchecker: Au-
tomated smart contract defect detection by analyzing evm
bytecode. IEEE Transactions on Software Engineering,
48(7):2189–2207, 2021.

[Chen et al., 2023] Da Chen, Lin Feng, Yuqi Fan, Siyuan
Shang, and Zhenchun Wei. Smart contract vulnerability
detection based on semantic graph and residual graph con-
volutional networks with edge attention. Journal of Sys-
tems and Software, 202:111705, 2023.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4252

[Feist et al., 2019] Josselin Feist, Gustavo Grieco, and Alex
Groce. Slither: a static analysis framework for smart con-
tracts. In 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain
(WETSEB), pages 8–15. IEEE, 2019.

[Hu et al., 2023] Qifu Hu, Ruyang Li, Qi Deng, Yaqian
Zhao, and Rengang Li. Enhancing network by reinforce-
ment learning and neural confined local search. In Pro-
ceedings of the Thirty-Second International Joint Confer-
ence on Artificial Intelligence, pages 2122–2132, 2023.

[Jiang et al., 2018] Bo Jiang, Ye Liu, and Wing Kwong
Chan. Contractfuzzer: Fuzzing smart contracts for vulner-
ability detection. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engi-
neering, pages 259–269, 2018.

[Jie et al., 2023] Wanqing Jie, Qi Chen, Jiaqi Wang, Arthur
Sandor Voundi Koe, Jin Li, Pengfei Huang, Yaqi Wu, and
Yin Wang. A novel extended multimodal ai framework
towards vulnerability detection in smart contracts. Infor-
mation Sciences, 636:118907, 2023.

[Li et al., 2022] Bixin Li, Zhenyu Pan, and Tianyuan Hu.
Redefender: detecting reentrancy vulnerabilities in smart
contracts automatically. IEEE Transactions on Reliability,
71(2):984–999, 2022.

[Li et al., 2023] Zhaoxuan Li, Siqi Lu, Rui Zhang, Ziming
Zhao, Rujin Liang, Rui Xue, Wenhao Li, Fan Zhang, and
Sheng Gao. Vulhunter: Hunting vulnerable smart con-
tracts at evm bytecode-level via multiple instance learning.
IEEE Transactions on Software Engineering, 2023.

[Liu et al., 2018] Chao Liu, Han Liu, Zhao Cao, Zhong
Chen, Bangdao Chen, and Bill Roscoe. Reguard: finding
reentrancy bugs in smart contracts. In Proceedings of the
40th International Conference on Software Engineering:
Companion Proceeedings, pages 65–68, 2018.

[Liu et al., 2021a] Zhenguang Liu, Peng Qian, Xiang Wang,
Lei Zhu, Qinming He, and Shouling Ji. Smart contract
vulnerability detection: from pure neural network to in-
terpretable graph feature and expert pattern fusion. arXiv
preprint arXiv:2106.09282, 2021.

[Liu et al., 2021b] Zhenguang Liu, Peng Qian, Xiaoyang
Wang, Yuan Zhuang, Lin Qiu, and Xun Wang. Com-
bining graph neural networks with expert knowledge for
smart contract vulnerability detection. IEEE Transactions
on Knowledge and Data Engineering, 2021.

[Liu et al., 2023] Haiyang Liu, Yuqi Fan, Lin Feng, and
Zhenchun Wei. Vulnerable smart contract function locat-
ing based on multi-relational nested graph convolutional
network. Journal of Systems and Software, page 111775,
2023.

[Luu et al., 2016] Loi Luu, Duc-Hiep Chu, Hrishi Olickel,
Prateek Saxena, and Aquinas Hobor. Making smart con-
tracts smarter. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security,
pages 254–269, 2016.

[Qian et al., 2020] Peng Qian, Zhenguang Liu, Qinming He,
Roger Zimmermann, and Xun Wang. Towards automated
reentrancy detection for smart contracts based on sequen-
tial models. IEEE Access, 8:19685–19695, 2020.

[Qian et al., 2023] Peng Qian, Zhenguang Liu, Yifang Yin,
and Qinming He. Cross-modality mutual learning for
enhancing smart contract vulnerability detection on byte-
code. In Proceedings of the ACM Web Conference 2023,
pages 2220–2229, 2023.

[Ren et al., 2023] Xiaojun Ren, Yongtang Wu, Jiaqing Li,
Dongmin Hao, and Muhammad Alam. Smart contract vul-
nerability detection based on a semantic code structure and
a self-designed neural network. Computers and Electrical
Engineering, 109:108766, 2023.

[Sendner et al., 2023] Christoph Sendner, Huili Chen, Hos-
sein Fereidooni, Lukas Petzi, Jan König, Jasper Stang,
Alexandra Dmitrienko, Ahmad-Reza Sadeghi, and Farinaz
Koushanfar. Smarter contracts: Detecting vulnerabilities
in smart contracts with deep transfer learning. In NDSS,
2023.

[Takiddin et al., 2023] Abdulrahman Takiddin, Rachad Atat,
Muhammad Ismail, Katherine Davis, and Erchin Ser-
pedin. A graph neural network multi-task learning-based
approach for detection and localization of cyberattacks in
smart grids. In ICASSP 2023-2023 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1–5. IEEE, 2023.

[Tikhomirov et al., 2018] Sergei Tikhomirov, Ekaterina
Voskresenskaya, Ivan Ivanitskiy, Ramil Takhaviev,
Evgeny Marchenko, and Yaroslav Alexandrov.
Smartcheck: Static analysis of ethereum smart contracts.
In Proceedings of the 1st international workshop on
emerging trends in software engineering for blockchain,
pages 9–16, 2018.

[Torres et al., 2018] Christof Ferreira Torres, Julian Schütte,
and Radu State. Osiris: Hunting for integer bugs in
ethereum smart contracts. In Proceedings of the 34th An-
nual Computer Security Applications Conference, pages
664–676, 2018.

[Tsankov et al., 2018] Petar Tsankov, Andrei Dan, Dana
Drachsler-Cohen, Arthur Gervais, Florian Buenzli, and
Martin Vechev. Securify: Practical security analysis of
smart contracts. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security,
pages 67–82, 2018.

[Wang et al., 2023] Wenbo Wang, Tien N Nguyen, Shao-
hua Wang, Yi Li, Jiyuan Zhang, and Aashish Yadavally.
Deepvd: Toward class-separation features for neural net-
work vulnerability detection. In 2023 IEEE/ACM 45th In-
ternational Conference on Software Engineering (ICSE),
pages 2249–2261. IEEE, 2023.

[Xie et al., 2020] Yu Xie, Maoguo Gong, Yuan Gao,
AK Qin, and Xiaolong Fan. A multi-task representa-
tion learning architecture for enhanced graph classifica-
tion. Frontiers in neuroscience, 13:1395, 2020.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4253

[Xie et al., 2023] Xueshuo Xie, Haolong Wang, Zhaolong
Jian, Yaozheng Fang, Zichun Wang, and Tao Li. Block-
gram: Mining knowledgeable features for efficiently smart
contract vulnerability detection. Digital Communications
and Networks, 2023.

[Zhuang et al., 2020] Yuan Zhuang, Zhenguang Liu, Peng
Qian, Qi Liu, Xiang Wang, and Qinming He. Smart con-
tract vulnerability detection using graph neural network.
In IJCAI, pages 3283–3290, 2020.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4254

	Introduction
	Related Work
	Problem Formulation
	Proposed Method
	Community Feature Extraction
	Contract Graph Construction
	Multi-task Downstream Output

	Experiments
	Experimental Settings
	Overall Performance(RQ1)
	Ablation Study(RQ2)
	Hyper-Parameters Sensitivity(RQ3)

	Conclusion

