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Abstract
Since Deep Convolutional Neural Networks (DC-
NNs) and Vision Transformer perform well in
learning generalizable image priors from large-
scale data, these models have been widely used
in image denoising tasks. However, vanilla DC-
NNs and Transformer suffer from two problems.
First, the vanilla DCNNs and Transformer only ac-
cumulate the output along the channel axis, ignor-
ing the internal relationship among channels. This
results in the severely inadequate color structure
representation retrieved from color images. Sec-
ondly, the DCNNs or Transformer-based image de-
noising models usually have a large number of pa-
rameters, high computational complexity, and slow
inference speed. To resolve these issues, this pa-
per proposes a highly-efficient Quaternion Trans-
former (QFormer) for image denoising. Specifi-
cally, the proposed Quaternion Transformer Block
(QTB) simplifies the typical Transformer from a
multi-branch structure to an elaborately sequential
structure mainly with quaternion transformations,
to alternately capture both long-range dependen-
cies and local contextual features with color struc-
ture information. Furthermore, the proposed QTB
can also avoid considerable element-wise multipli-
cations of computing the self-attention matrices.
Thus, our QTB can significantly reduce the com-
putational complexity and its sequential structure
can further improve the practical inference speed.
Comprehensive experiments demonstrate that the
proposed QFormer produces state-of-the-art results
in both denoising performance and efficiency. We
hope that our work will encourage further research
to explore the Quaternion Transformer architecture
for image denoising tasks.

1 Introduction
Image denoising aims to remove noise from the noisy images
to recover high-quality images. At the same time, the image
denoising task is an ill-posed problem, thus it is extremely
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challenging. Although the image denoising performance of
Deep Convolutional Neural Networks (DCNNs)-based meth-
ods have been significantly improved compared to traditional
model-based methods [Joshi et al., 2005], they usually suffer
from a critical problem in that vanilla convolution retrieves
local spatial information but severely lacks the long-range de-
pendencies. Transformer [Kolesnikov et al., 2021], an alter-
native to DCNNs, can capture long-range pixel dependencies.
This drives the development of Transformer-based methods
[Liang et al., 2021] for image denoising, achieving state-of-
the-art performances.

Although both DCNNs and Transformer can bring power-
ful generalization capability to image denoising models, they
severely suffer from two main problems. (a) The convolu-
tion operator and Transformer only simply add the outputs
along the channel axis, resulting in ignoring the compli-
cated interrelationship among channels. The vanilla convo-
lutional layer in DCNNs and the input/output projection layer
in Transformer both independently process each color chan-
nel, which is also known as a monochromatic model. A sig-
nificant limitation of the monochrome model is that the corre-
lation among the three color channels is completely retrieved.
This probably leads to color distortion within denoised color
images. Concatenation models are proposed to simply weigh
the three color channels to exploit channel correlation [Xu
et al., 2017]. This approach may not adequately explore the
complex inter-relationships among channels. Hence, existing
denoising methods are not effective to model such important
color structural information i.e., the correlation information
among the three color channels. (b) Additionally, DCNNs-
based or Transformer-based image denoising models are
usually inefficient with considerable parameters, high com-
putational complexity, and slow inference speed. Although
DCNNs can significantly improve image denoising perfor-
mances with increasing depth and width (number of chan-
nels), it can cause a corresponding increase in parameters and
computational cost. Furthermore, the main computational
overhead of Transformer-based methods comes from the self-
attention mechanism, and its complexity grows quadratically
with the spatial resolution, leading to a serious inefficiency
in processing high-resolution images. Therefore, it is urgent
to study an efficient image denoising method considering the
complex mutual information along the channel axis.

Quaternion algebra provides an elegant way of working
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with vector signals [Moxey et al., 2003]. Since the quaternion
unit contains one real part and three imaginary parts, color
images can be represented as quaternion matrices, enabling
multi-channel information to be processed in a parallel man-
ner. Hence, the quaternion transformation is exactly suitable
for color image denoising tasks. Considering the powerful
representation of color images by quaternions and the pow-
erful ability of modeling long-range pixel dependencies by
Transformer, the key difficulties and challenges in designing
an efficient image denoising network based on quaternions
and Transformer are mainly from two aspects.

(1) Primitive quaternion operator is non-strict identity
mapping for the image denoising task. Strict identity map-
ping can not only preserve overall texture and color infor-
mation but also generate high-frequency detail information
in image processing methods [Song et al., 2021]. From a
mathematical point of view, we have demonstrated that prim-
itive quaternion operators embedded in deep neural networks
for image denoising tasks are non-strict identity mappings.
Therefore, this becomes a challenge to the application of the
primitive quaternion operator in the image denoising tasks.
To overcome this limitation, we modify the primitive quater-
nion operator by using short skip connections in the quater-
nion operator to alleviate this problem.

(2) How to redesign the Transformer framework with a
simple structure, low computational complexity, few param-
eters, and fast inference speed. We propose the core Quater-
nion Transformer Block (QTB) integrating the improved
quaternion operator with strict identity mapping to modu-
larly formulate our framework of highly-efficient Quater-
nion Transformer (QFormer) Network to capture both long-
range dependencies and local context features with abundant
color structure information. The proposed QTB reduces the
computational complexity through avoiding the element-wise
multiplications in computing self-attention matrices. Fur-
thermore, our QTB is further simplified from a multi-branch
structure to an elaborately sequential structure. Due to these
mechanisms, the proposed QTB can significantly reduce the
computational complexity and especially improve the practi-
cal inference speed.

We believe that our theoretical statements and empirical
results lay the foundation for new Transformers in the super-
complex domain. These Transformers can grasp the internal
input relationship and reduce the computational cost. As far
as we know, this is a promising exploration that a Transformer
framework has been defined in a super-complex domain. The
contributions of this paper can be summarized as follows:

• We propose a highly-efficient Quaternion Transformer
(QFormer) Network using Quaternion Transformer
Block (QTB) for the image denoising task. The pro-
posed QTB alternately captures both the long-range de-
pendencies and local contextual features by sufficiently
retrieving the color structure information.

• We analyze that quaternion operators are not strictly
identically mapped in embedding deep neural networks
for image denoising tasks from the mathematical per-
spective, and thus propose utilizing short skip connec-
tions to alleviate this obstacle.

• In terms of model efficiency, the proposed sequential-
structured QTB is concise and can avoid consider-
able element-wise multiplications of computing self-
attention matrices, significantly reducing the computa-
tion complexity and improving the practical inference
speed.

• The proposed QFormer has produced state-of-the-art re-
sults from extensive and comprehensive experiments on
image denoising tasks, demonstrating satisfactory su-
periorities in both the denoising performance and effi-
ciency.

2 Related Work
2.1 Quaternion-Based Methods
Since quaternion-based methods can well characterize the
cross-channel correlation of color images, they have attracted
increasing attention in various vision tasks, such as vector
projection [Ell and Sangwine, 2007], and face recognition
[Zou et al., 2016], image denoising [Xu et al., 2015]. A
model for sparse representation of the quaternion vector was
proposed in [Xu et al., 2015] for color image denoising. Sev-
eral quaternion wavelet methods [Yin et al., 2012] were pro-
posed to achieve a more efficient spatial-spectral image anal-
ysis.

The Quaternion Convolutional Neural Network (QCNN)
[Zhu et al., 2018] was proposed to extend the real-valued
convolutional networks to the complex-valued convolutional
networks. Zeng et al. [Zeng et al., 2016] proposed a color
image classification network based on quaternary principal
component analysis. Parcollet et al. [Parcollet et al., 2019]
proposed studying the influence of the Hamilton product on
the task of color image reconstruction based on QCNN only
from grayscale images. In general, the main advantage of
quaternions for color image representations over vanilla con-
volutional methods is generalization ability and low compu-
tational cost [Xu et al., 2015; Parcollet et al., 2019].

2.2 Vision Transformer
Transformer was originally proposed by [Vaswani et al.,
2017] for Natural Language Processing (NLP) tasks, and
it achieved amazing performances in language pre-training
tasks [Devlin et al., 2018]. Inspired by the application of
Transformer in NLP tasks, it has been applied to numer-
ous vision tasks such as image recognition [Kolesnikov et
al., 2021], segmentation [Wang et al., 2021a], and object
detection [Carion et al., 2020]. Vision Transformer (ViT)
[Kolesnikov et al., 2021] embedded hard patches (16 × 16)
to compute correlation and achieved excellent results in im-
age classification. However, the computational complexity
of self-attention in Transformer is positively correlated with
the square of the number of image patches, resulting in high
computational complexity on high-resolution image recon-
struction tasks [Liang et al., 2021]. For example, super-
resolution [Liang et al., 2021], image colorization [Kumar
et al., 2021], denoising [Wang et al., 2021b], and deraining
[Wang et al., 2021b]. Much work has focused on improving
the transformer’s self-attention methods by means of shift-
ing windows [Liang et al., 2021], relative position encod-
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Figure 1: Overall structure of the proposed QFormer Network. The QTB denotes Quaternion Transformer Block. D-S is a downsampling
layer with a downsampling factor fsd = 2, and U-S is an upsampling layer with an upsampling factor fsu = 2. © represents the operation of
tensor concatenation along the channel dimension.

ing [Wu et al., 2021b], combining convolutions [Wu et al.,
2021a], etc. However, just utilizing pooling as an alternative
to the basic self-attention in MetaFormer [Yu et al., 2021] can
still achieve competitive or even state-of-the-art performance.
This implies that the most effective part in Transformer may
be the Transformer-unique framework rather than the self-
attention part.

3 Some Preliminaries
In this section, to easily understand the analysis, we
mainly define the mathematical notations and preliminaries
of quaternion algebra. Following [Chen et al., 2020], scalars,
vectors, matrices, and tensors are denoted as lowercase let-
ters, boldface lowercase letters, boldface capital letters, and
boldface italic script letters, e.g., x, x, X, and X, respectively.

3.1 Quaternion Representation of Color Images
Quaternion was first proposed by Hamilton in 1843 [Hamil-
ton, 2022] as an extension of real space R and complex space
C to describe the position information of points in three-
dimensional space. The definition [Hamilton, 2022] of a
quaternion ṗ (ṗ ∈ H) has one real part and three imaginary
parts as follows:

ṗ = q0 + q1i+ q2j + q3k, (1)

where q0, q1, q2, q3 (q0, q1, q2, q3 ∈ R) are the coefficients of
the real and imaginary parts, respectively. i, j,k are three
imaginary units obeying the quaternion rules that i2 = j2 =
k2 = ijk = −1. In addition, if the real part q0 = 0, ṗ is
called pure quaternion.

Let İq be an RGB image matrice with the quaternion rep-
resentation. RGB channel matrices can be represented as a
pure quaternion:

İq = Ri+Gj +Bk, (2)

where R,G and B indicate the red, green and blue channel
of the color image, respectively.

To directly establish the relationship among the R,G and
B channels, as shown in Fig. 1, we use a quaternion rota-
tion matrix to closely connect the three channels of the color
image represented by pure quaternions. Using the Rodrigues

formula [Murray et al., 1994], the quaternion rotation matrix
Q can be obtained from Eqn. 2:

Q =

1− 2G2 − 2B2 2RG 2RB
2RG 1− 2R2 − 2B2 2GB
2RB 2GB 1− 2R2 − 2G2

. (3)

Furthermore, in order to compute the R,G and B channels
of the reconstructed color image from the quaternion rotation
matrix, we used Eqn. 4 to compute the information for the
three channels:

R =

√
1+Q1,1−Q2,2−Q3,3

2

G =

√
1−Q1,1+Q2,2−Q3,3

2

B =

√
1−Q1,1−Q2,2+Q3,3

2

, (4)

where Qi,j represents the element at the ith row and the jth

column in quaternion rotation matrix Q.

3.2 Identity Mapping of QNNs
The essence of image denoising methods based on traditional
end-to-end DCNNs is to learn the mapping relationship from
noisy images to clean images. Since the difference between
the input and output feature maps of each convolutional layer
is very small, this phenomenon is called strict identity map-
ping, which is greatly important for deep learning-based im-
age processing methods [Song et al., 2021]. Strict identity
mapping not only preserves overall texture and color informa-
tion but also produces high-frequency detail information. Al-
though the mutual information among the color channels can
be sufficiently preserved by the quaternion neural networks,
it cannot always produce high-frequency detail information,
such as the relation described in Theorem 1 below.
Theorem 1. For the arbitrary noisy image İn, and an quater-
nion filter with its weight parameters Ẇ. When ∆ζ = 0, there
exists a Ẇ that satisfies Eqn. 5, which means that the quater-
nion neural network cannot produce high-frequency detail in-
formation.

İn ≈ İn ⊛ Ẇ = İn +∆ζ, (5)
where ∆ζ denotes the high-frequency detail information and
⊛ represents the quaternion convolution operation defined in
[Zhu et al., 2018]. Eqn. 5 can be rewritten as Eqn. 6 accord-
ing to the above constraints:

İn = İn ⊛ Ẇ, (6)
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Proof. Here we consider a quaternion fully-connected layer
for simplicity. Furthermore, the following proof can be easily
extended to quaternion convolution layers. Then, let İn be
the identity quaternion matrix, we have:

İn = 1̇, (7)

where 1̇ is an identity matrix whose elements are all 1. Then,

İn ⊛ Ẇ =
1

N

N∑
i=1

1

si
ŵiâiŵ

∗
i , (8)

where âi = 1 denotes an element of the identity quaternion
matrix İn, si > 0 (si ∈ R) is the magnitude of ŵi, and N
is the number of elements in the quaternion matrix. Accord-
ing to literature [Zhu et al., 2018], ŵi follows the quaternion
convolution weight:

ŵi = si

(
cos

θi
2
+ sin

θi
2
ϵ

)
, (9)

where θi ∈ [−π, π] is the rotation angle parameter of the
quaternion convolution operation. ϵ is the unit basis vector,
i.e., ϵ =

√
3
3 (i+ j + k).

Then we have:

İn ⊛ Ẇ =
1

N

N∑
i=1

1

si
ŵiŵ

∗
i

=
1

N

N∑
i=1

1

si

(
cos

θi
2
+ sin

θi
2
ϵ

)(
cos

θi
2
− sin

θi
2
ϵ

)

=
1

N

N∑
i=1

1

si

[(
cos

θi
2

)2

−
(
sin

θi
2
ϵ

)2
]

=
1

N

N∑
i=1

1

si

[
1− 2

(
sin

θi
2

)2

ϵ2

]
.

(10)
Since the value range of

[
1− 2

(
sin θi

2

)2
ϵ2
]

is [−1, 1],

combining Eqns. 7 and 10, we have 1
N

∑N
i=1

1
si
ŵiŵ

∗
i = 1̇,

which is obviously possible.

According to the above theorem and analysis, although the
quaternion neural networks can fully retain the mutual infor-
mation of the color channels, they cannot always produce
high-frequency detail information. This indicates the prim-
itive quaternion operator lacks a strict identity mapping rela-
tionship. While stacking more quaternion layers may allevi-
ate this problem, it can significantly increase the model size
and computational cost. To address this issue, in practice,
we provide a short skip connection operation for quaternion
convolutional units or fully connected units, i.e.:

İmy ≈ İmx + Ẇm ⊛ İmx︸ ︷︷ ︸
∆ζ

, (11)

where Ẇm is the weights of quaternion filters in the mth

layer, İmx and İmy are the input and output data, respectively.

Figure 2: Quaternion Transformer Block (QTB). ⊗ denotes matrix
multiplication, ⊕ and ⊙ are element-wise multiplication and addi-
tion, respectively. MSA is multi-head self-attention layer.

Considering Ẇm ⊛ İmx as ∆ζ, that is, high-frequency de-
tail information, according to the analysis of Theorem 1, the
short skip connection operation can effectively alleviate the
shortage of strict identity mapping of quaternion operators.

4 QFormer Networks
4.1 Quaternion Transformer Block (QTB)
As shown in Fig.1, the overall structure of the proposed
QFormer is a symmetric network mainly composed of en-
coder and decoder, with the Quaternion Transformer Block
(QTB) as its core component. As shown in Fig.2, QTB is
an elaborately sequential structure mainly with quaternion
transformations. Our QTB and the multi-head self-attention
within the traditional Transformer are different in the follow-
ing two aspects.

(1) QTB captures long-range dependencies also contain-
ing local features with abundant color structure informa-
tion. Capturing long-range dependencies aims to improve
the receptive field of deep neural networks to improve model
performance. The self-attention mechanism brute forcibly
captures long-range dependencies by computing the interac-
tion between any two patches using element-wise multipli-
cation. Diametrically, our QTB first refines global features
through several fully connected layers based on the quater-
nion operator and GELU activation function for the purpose
of global information extraction. Then the quaternion opera-
tor is used to further extract local features with color structure
information from the refined global features to obtain local
information. Finally, the produced global information is sup-
plemented with the local information by element-wise aggre-
gating them together using skip connections. Such captured
long-term dependencies contain abundant local features with
color structure information.

(2) The proposed QTB is more efficient in both com-
putational complexity and practical inference speed than
that of the self-attention mechanism. Because the self-
attention mechanism adopts element-wise multiplication to
capture long-range dependencies, its computational complex-
ity increases quadratically with the size of the input feature.
This greatly increases the training and inference costs of the
model. Compared with the self-attention mechanism, the pro-
posed QTB uses element-wise addition to aggregate global
features with local features to capture long-range dependen-
cies to avoid excessive computational complexity. Therefore,
our QTB can significantly reduce the computational complex-
ity. Furthermore, the sequential structure of the proposed
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QTB can further promote the practical inference speed, eval-
uated in Section 5.4.

Specifically, the QTB input Ḟin ∈ HH×W×C is first re-
shaped to tokens, which are fed into a quaternion fully con-
nected layer to extract global features, as shown in Eqn. 12:

Ḟc = fqfc

(
Ḟin ∈ HH×W×C → Ḟin ∈ HHW×C

)
, (12)

where fqfc denotes quaternion fully connected layer, and
Ḟc ∈ HHW×C is the global features. Then, after normalizing
Ḟc, we use the quaternion linear layer and the GELU non-
linearity activation layer to further capture the global feature.
The computation of the above process is represented as:

Ḟmid = ϕ
(
f2
ql

(
ϕ
(
f1
ql

(
LN

(
Ḟc

)))))
+ Ḟc, (13)

where LN represents the layer normalization [Ba et al., 2016],
f1
ql and f2

ql both are quaternion convolutional layers, and ϕ

denotes GELU non-linearity activation layer [Hendrycks and
Gimpel, 2016].

To enhance the ability of QTB to capture local contextual
feature, several quaternion convolutional layers are attached
to process Ḟmid ∈ HH×W×C . As shown in Fig. 2, we
first apply a normalization layer to each token. Next, the to-
kens are reshaped into 2D feature maps, and then three sets
of quaternion convolutions with the kernel size of 3 × 3 and
GELU activation layers are employed to capture local infor-
mation. Then, the local features are flattened into tokens and
the number of local feature channels is reduced to the same
number as the global feature channels using a quaternion lin-
ear layer. Finally, element-wise addition of global and local
features is conducted to capture long-range dependencies.

4.2 Loss Function
The Charbonnier loss is applied as the ultimate loss function
for the proposed QFormer, formulated as follows:

L =
1

Nt

∑√
∥Id − Itraget∥2 + ϵ2. (14)

where Nt denotes the number of training samples, Itraget
represents the groundtruth corresponding to the input noise
image, ϵ2 is a constant that is empirically set to 1× 10−6.

5 Experiments
5.1 Architecture Scales
In order to illustrate the high efficiency of the proposed
QFormer in image denoising, three different scales of param-
eters for QFormer are constructed in our experiments, i.e.,
QFormer-T (Tiny, C = 16), QFormer-S (Small, C = 32)
and QFormer-B (Base, C = 44). The difference between the
above settings is only the number of feature channels C, and
other settings remain unchanged, such as the depth N of QTB
is set to 2.

5.2 Evaluation on Real-world Noisy Images
The QFormer’s performance on real-world noisy images,
containing complex and unknown noise, is evaluated, high-
lighting its practical value in real-world denoising applica-
tions. Table 1 presents the results obtained from denoising

Dataset Nam PolyU SIDD
Method PSNR SSIM PSNR SSIM PSNR SSIM

DnCNN-B [Zhang et al., 2017] 36.08 0.903 35.74 0.878 38.56 0.910
FFDNet+ [Zhang et al., 2018] 37.85 0.938 37.19 0.939 38.60 0.909

TWSC [Xu et al., 2018] 38.37 0.952 37.63 0.954 35.89 0.838
CBDNet [Guo et al., 2019] 38.51 0.957 37.85 0.956 38.68 0.909

RIDNet [Anwar and Barnes, 2019] 38.72 0.960 38.07 0.957 38.71 0.913
VDN [Yue et al., 2019] 39.16 0.965 38.43 0.960 39.29 0.911

PAN-Net [Ma et al., 2021] 40.18 0.978 39.91 0.971 39.33 0.912
AINDNet [Kim et al., 2020] 39.21 0.966 38.78 0.963 39.45 0.915
MIRNet [Zamir et al., 2020] 39.88 0.973 39.25 0.971 39.71 0.959

HPDNet [Ma et al., 2022] 40.26 0.979 39.89 0.970 39.72 0.958
APD-Nets [Jiang et al., 2022] 40.36 0.989 N/A N/A 39.75 0.959
Uformer [Wang et al., 2021b] N/A N/A N/A N/A 39.77 0.959

Restormer [Zamir et al., 2021] N/A N/A N/A N/A 40.02 0.960

QFormer-T 40.03 0.975 39.90 0.971 39.72 0.959
QFormer-S 40.19 0.980 40.15 0.973 40.06 0.961
QFormer-B 40.37 0.982 40.31 0.974 40.18 0.963

Table 1: Average PSNR and SSIM of the denoised real images from
Nam, PolyU and SIDD datasets. PSNR and SSIM are positively
correlated with visual quality.
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Figure 3: Visual comparisons between QFormer and its competitors
in the evaluation of real-noisy image denoising.

real noisy image datasets. The proposed QFormer is subject
to a comparative analysis against fourteen state-of-the-art de-
noising methods. It is evident that the proposed QFormer sig-
nificantly enhances the PSNR/SSIM results when compared
to the other fourteen state-of-the-art methods across the three
real noisy image datasets. In the case of the SIDD dataset,
QFormer-T demonstrates similar gains in PSNR and SSIM as
Uformer and Restormer. Furthermore, it achieves competitive
performance alongside HPDNet on the PolyU datasets and
with APD-Nets on the Nam datasets. Additionally, QFormer-
S surpasses HPDNet and Restormer with an average PSNR
improvement of 0.26 dB on PolyU and 0.04 dB on SIDD,
respectively. Moreover, QFormer-B outperforms APD-Nets
by an average PSNR gain of 0.01 dB on Nam. These find-
ings underscore the effectiveness of the proposed QFormer
network structure in denoising real noisy images. QFormer
leverages the sequential structure of QTB to refine global fea-
tures, retrieve channel-related local features, and aggregate
global-local features for capturing long-term dependencies.
This further implies that QFormer adeptly utilizes these long-
range (non-local) feature to enhance denoising performance.
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Dataset Nam PolyU SIDD
Method PSNR SSIM PSNR SSIM PSNR SSIM

Case.I: QFormer (convolution operator) 39.28 0.967 38.80 0.963 39.53 0.925
Case.II: QFormer (short skip x) 39.15 0.962 38.73 0.959 39.51 0.921
Case.III:QFormer (short skip ✓) 40.37 0.982 40.31 0.974 40.18 0.963

Table 2: Performance effect of identity mapping.
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Figure 4: Effect of identity mapping on the output feature map of
QTB in QFormer network.

To visually demonstrate the superiority of our method, Fig.
3 shows a visual comparison of different methods on differ-
ent datasets for denoising real noisy images. We can observe
that our QFormer achieves the best visual results in terms of
noise removal and detail preservation. For example, neither
Uformer nor Restormer can preserve the boundary contours
of the fine pink regions, while the proposed QFormer can
reconstruct and preserve the underlying edges. This further
demonstrates that the correlation of color channel and long-
range dependencies can improve denoising performance.

5.3 Ablation Study
To visually illustrate the impact of quaternion operation and
identity mapping on image denoising, we use the following
case to conduct experiments. Case.I means that only the con-
volution operator is used in the QFormer structure. Case.II
means that only the primitive quaternion operator (i.e., with-
out short skip connections) is used in the QFormer structure.
Case.III means that only the proposed quaternion operator
(i.e., using short skip connections) is used in the QFormer
structure. It is worth noting that the convolution operator is
an identity map of [Song et al., 2021].

Effect of Quaternion Operation As shown in Fig. 4,
compared to QFormer (Case.I) consisting of pure convolu-
tion operators, QFormer (Case.III) with short skip connec-
tions retains and enhances more detailed information (e.g.,
boundary, edges). The experimental environment, experi-
mental settings, and network structure of Case.I and Case.III
are consistent. Therefore, the reason why the feature maps in
Case.I and Case.III have large differences are that the quater-
nion operator and the vanilla convolution operator only model
the correlation between the input noise image channels dif-
ferently. This fully demonstrates that, compared with the
vanilla convolution operator, the quaternion convolution op-
erator can effectively and adequately model the color struc-
ture information of the input image to improve the feature

Method Case Quaternion Nam PolyU SIDD

PSNR

a %(UNet) 38.87 38.09 39.14
b %(QFormer-B) 39.28 38.80 39.53
c "(UNet) 38.92 38.56 38.84
d "(QFormer-B) 40.37 40.31 40.18

SSIM

e %(UNet) 0.959 0.952 0.906
f %(QFormer-B) 0.967 0.963 0.925
g "(UNet) 0.961 0.957 0.911
h "(QFormer-B) 0.982 0.974 0.963

Speed (s)

i %(UNet) 0.063 0.060 0.061
j %(QFormer-B) 0.057 0.049 0.056
k "(UNet) 0.060 0.058 0.058
l "(QFormer-B) 0.018 0.016 0.018

FLOPs (G)

m %(UNet) 18.28 18.28 18.28
n %(QFormer-B) 15.53 15.53 15.53
o "(UNet) 8.24 8.24 8.24
p "(QFormer-B) 6.30 6.30 6.30

#Params (MB)

q %(UNet) 15.24 15.24 15.24
r %(QFormer-B) 13.01 13.01 13.01
s "(UNet) 9.62 9.62 9.62
t "(QFormer-B) 8.35 8.35 8.35

Table 3: Ablation study of quaternion operators in terms of FLOPs,
inference time, the number of parameters, PSNR (dB) and SSIM
on Nam, PolyU and SIDD test datasets. %indicates that the model
consists only of vanilla convolution operators, "denotes that the
model consists only of quaternion operators.

representation ability. To quantify the impact of quaternion
operation on image denoising performance, the PSNR/SSIM
of Case.I, Case.II, and Case.III on real datasets are reported
in Table 2. Compared with QFormer based on pure vanilla
convolution operator (Case.I), QFormer with short skip con-
nections (Case.III) improves PSNR by 1.09 dB, 1.51 dB and
0.65 dB on Nam, PolyU and SSID datasets. This illustrates
that the quaternion operator can improve the image denoising
performance by modeling the color structure information of
the input image.

Effect of Identity Mapping In this section, as shown in
Fig. 4, we perform a more intuitive visualization of feature
maps within the proposed QFormer interiors on different set-
tings to observe the differences. It can be seen from the fig-
ure that, compared with the QFormer without short skip con-
nections (Case.II), high-frequency information (e.g., lines,
points) is clearly emphasized in the feature maps generated
by QFormer with short skip connections (Case.III). This illus-
trates that the lack of strict identity mapping of the primitive
quaternion operator may be a major obstacle to the improve-
ment of image denoising performance. At the same time, it
also demonstrates that the short skip connection operation can
overcome the defect of the non-strict identity mapping of the
original quaternion operator by superimposing the input fea-
tures on the output features. To quantify the impact of identity
mapping on image denoising performance, the PSNR/SSIM
of Case.I, Case.II, and Case.III on real datasets are reported
in Table 2. From the table, it can be found that compared with
QFormer without short skip connections (Case.II), QFormer

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4242



Figure 5: PSNR and parameters on the real noisy image testing sets. (a) On SSID dataset. (b) On PolyU dataset. (c) On Nam dataset.

with short skip connections(Case.III) improves PSNR by 1.22
dB, 1.58 dB and 0.67 dB on Nam, PolyU, and SSID datasets,
respectively. By comparing the specific quantitative measure-
ments, it can be observed that short skip connections can rise
above the non-strict identity mapping of the primitive quater-
nion operator and greatly improve denoising performance.

5.4 Efficiency of QFormer
The reported results of the model sizes are shown in Fig.
5. It is worth noting that the proposed QFormer-B achieves
the best image denoising performance on the SIDD, Pon-
lyU, and Nam real noisy image datasets. In addition, on the
SIDD dataset, compared with the state-of-the-art Restormer,
the proposed QFormer-T, QFormer-S, and QFormer-B reduce
the number of parameters by about 22.8 times, and 5.7 times
and 3.0 times, respectively. Similarly, on the PonlyU dataset,
compared with the state-of-the-art MIRNet, the parameters
of the proposed QFormer-T, QFormer-S, and QFormer-B are
reduced by about 36.0 times, 9.1 times and 4.8 times, respec-
tively. On the Nam dataset, compared with the state-of-the-
art APD-Nets, the parameters of the proposed QFormer-T,
QFormer-S, and QFormer-B are reduced by about 16.3 times
and 4.1 times, and 2.2 times, respectively.

Additionally, we further investigate the advantages of
quaternion operators, and QTB structure within QFormer.
First, we discuss the effect of quaternions within QFormer,
as shown in Table 3. We can find that once all the quater-
nion convolution and quaternion fully connected layers in
QFormer are replaced by vanilla convolution and fully con-
nected layers, the image denoising performance, and com-
putational efficiency drop. Specifically, while keeping the
overall structure of QFormer unchanged, compared with the
model with quaternion operator (i.e., Case.d and Case.h),
the image denoising performance PSNR/SSIM of the model
without quaternion operator (i.e., Case.b and Case.f) de-
creases significantly on the three real noisy image datasets,
with an average decrease of about 1.08 dB and 0.021, respec-
tively. In comparisons in terms of efficiency, i.e., Case.j vs
Case.l, Case.n vs Case.p and Case.r vs Case.t, the number of
parameters, inference speed, and FLOPs all decline promi-
nently. This fully demonstrates the great potential of the
quaternion operator to achieve a better balance between the
performance and efficiency of image denoising. The overall
UNet structure is also used and unchanged, and the quater-
nion operator is introduced to replace the vanilla convolu-

tions (i.e., Case.c, Case.j, Case.k, Case.o and Case.s). Com-
pared with the UNet model using the convolution operator
(i.e., Case.a, Case.e, Case.i, Case.m and Case.q), the image
denoising performance and computational efficiency of the
UNet with the quaternion operator are significantly improved.
This further indicates that the quaternion operator can also
play an important role in image denoising performance and
efficiency without introducing the QTB structure.

Secondly, we discuss the effect of the QTB structure in
QFormer. We compare UNet, which employs the quaternion
operator (i.e., Case.c, Case.j, Case.k, Case.o and Case.s), with
the proposed QFormer. From Table 3, it can be found that the
PSNR/SSIM of QFormer with QTB structure on the three test
sets of real noisy images is higher than those of Case.c and
Case.j by about 1.51 dB and 0.030, respectively. In addition,
QFormer with QTB structure improves the inference speed
by about 70.46%. This suggests the proposed QTB structure
is better at the ability to model the long-range dependencies
for heavy noise removal with satisfactory efficiency.

6 Conclusion

In this paper, we propose a highly efficient Quaternion Trans-
former (QFormer) Network using Quaternion Transformer
Block (QTB) for the image denoising task. The proposed
QTB alternately captures both the long-range dependencies
and local contextual features with sufficiently retrieving color
structure information. In addition, from the mathematical
perspective, we explained that quaternion operators are not
strictly identically mapped in embedding deep neural net-
works for image denoising tasks, and thus proposed using
short skip connections to ease this limitation. The pro-
posed sequential-structured QTB is concise and can avoid
considerable element-wise multiplications of computing self-
attention matrices, thereby reducing computation complex-
ity and improving practical inference speed. From extensive
and comprehensive experiments on denoising tasks, the pro-
posed QFormer achieves state-of-the-art results, demonstrat-
ing the satisfactory superiority of denoising and efficiency.
We hope this pioneering efficient QFormer structure can en-
courage further exploration of the Quaternion Transformer ar-
chitecture for image denoising tasks.
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