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Abstract
We propose a meta-learning method for model-
ing Hamiltonian dynamics from a limited number
of data. Although Hamiltonian neural networks
have been successfully used for modeling dynam-
ics that obey the energy conservation law, they re-
quire many data to achieve high performance. The
proposed method meta-learns our neural network-
based model using datasets in various dynamical
systems, such that our model can predict vector
fields of unseen systems. In our model, a system
representation is inferred from given small data us-
ing an encoder network. Then, the system-specific
vector field is predicted by modeling the Hamil-
tonian using a Gaussian process (GP) with neural
network-based mean and kernel functions that de-
pend on the inferred system representation. This
GP-based Hamiltonian allows us to analytically ob-
tain predictions that are adapted to small data while
imposing the constraint of the conservation law.
The neural networks are shared across systems,
which enables us to learn knowledge from mul-
tiple systems, and use it for unseen systems. In
our experiments, we demonstrate that the proposed
method outperforms existing methods for predict-
ing dynamics from a small number of observations
in target systems.

1 Introduction
Modeling the dynamics of physical systems given time-series
data is important in various fields, such as physics [Braun and
Kivshar, 1998], biology [Daniels and Nemenman, 2015], and
engineering [Leonessa et al., 2001]. Neural networks have
been widely used for modeling the dynamics due to its high
representation learning capability [Chen et al., 2018; Che et
al., 2018]. By incorporating inductive biases, we can learn
underlying behaviors beyond the given data [Haussler, 1988;
Baxter, 2000; Chang and Zeng, 2023; Chang et al., 2023].
Hamiltonian neural networks (HNNs) [Greydanus et al.,
2019; Mattheakis et al., 2022; Chen et al., 2022b] incorporate
an inductive bias of physics, where the total energy of the sys-
tem is conserved. HNNs have been shown to be effective in
learning Hamiltonian dynamics from data [Finzi et al., 2020;

Zhong et al., 2020; Chen et al., 2020; Chen et al., 2021;
Tong et al., 2021; Tanaka et al., 2022]. However, they re-
quire a large amount of data for training. In real-world ap-
plications, preparing sufficient data incurs a high cost and is
time-consuming.

In this paper, we propose a meta-learning method for mod-
eling Hamiltonian dynamics from a limited number of data.
The proposed method meta-learns our neural network-based
model using meta-training datasets in various dynamical sys-
tems, such that it can model unseen systems given small data.
Figure 1 illustrates our problem setting.

The meta-learning framework is formulated as a bilevel op-
timization, where the inner optimization corresponds to the
adaptation of the system-specific components in our model,
and the outer optimization corresponds to the estimation of
the system-shared components. We model a system-specific
Hamiltonian using a Gaussian process (GP), by which we can
incorporate the inductive bias of the energy conservation law.
By this GP framework, we can analytically obtain a vector
field that is adapted to given small data in the inner optimiza-
tion. This enables effective backpropagation through the in-
ner optimization, which is required for each outer optimiza-
tion iteration.

In system-specific GPs for Hamiltonian, we use neural
network-based mean and kernel functions that depend on a
system representation. The system representation is obtained
using an encoder network from given small data. Using the
system representation yields a system-specific vector field.
With the neural networks, we can flexibly model various vec-
tor fields. The neural networks are shared across all sys-
tems, by which we can learn common knowledge in mul-
tiple systems, and use the knowledge for newly given sys-
tems. We call our model the symplectic neural Gaussian
process (SNGP) since our neural network-based GP incor-
porates the symplectic structure for the energy conservation
law. The neural network parameters are trained by minimiz-
ing the expected test error of vector fields when a few data are
given, which is calculated using meta-training datasets by an
episodic training framework [Finn et al., 2017].

The main contributions of this paper are as follows: 1)
We propose a neural network-based GP model for modeling
Hamiltonian dynamics that obeys the conservation law, where
the adaptation to given data can be performed in a closed
form. 2) We develop a meta-learning procedure for our model
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Figure 1: Problem setting. In the meta-training phase, we are given
meta-training datasets, which contain time-series data in various dy-
namical systems. The Hamiltonians are different across systems.
Our model is meta-trained with the meta-training datasets. In the
meta-test phase, we are given a support set, which contains a small
number of time-series data in an unseen system with an unknown
Hamiltonian. Our meta-trained model is adapted by the support set,
and predicts the vector field, which can be used for forecasting dy-
namics. The systems in the meta-training and meta-test phases are
different but related, e.g., pendulums with different lengths.

to improve the expected test predictive performance on vec-
tor fields. 3) We empirically demonstrate that the proposed
method performs well in modeling Hamiltonian dynamics
with a limited number of data.

2 Related Work
Meta-learning has been successfully used for improving the
prediction performance on unseen tasks with few data by
learning to learn from various tasks [Finn et al., 2017;
Vinyals et al., 2016; Snell et al., 2017; Rothfuss et al., 2021;
Psaros et al., 2022; Chen et al., 2022a]. However, these
existing methods are not for Hamiltonian dynamics except
for [Lee et al., 2021]. [Lee et al., 2021] proposed to meta-
learn HNNs using gradient-based methods [Finn et al., 2017;
Raghu et al., 2020], which require iterative optimization pro-
cedures for adaptation. The backpropagation through such
procedures is costly in terms of memory, and the total num-
ber of iterations must be kept small [Finn et al., 2017].
On the other hand, the proposed method can perform adap-
tation in a closed form with GPs. The effectiveness of
closed-form adaptation has been shown in meta-learning for
classification and regression tasks [Bertinetto et al., 2018;
Fortuin et al., 2019; Patacchiola et al., 2020; Iwata and
Tanaka, 2022]. Although GPs have been used for model-
ing Hamiltonian [Rath et al., 2021; Tanaka et al., 2022],
these methods cannot perform meta-learning. The proposed
method enables meta-learning by effectively integrating the
GP-based Hamiltonian in neural networks. Our model is re-
lated to neural processes (NPs) [Garnelo et al., 2018] as both
use neural networks for task (system) representation infer-
ence and for prediction with inferred task representations.
However, since NP prediction is based on fully parametric
models, they are less flexible in adapting to given data than
GPs. In contrast, our GP-based model enables swift adapta-
tion by explicitly solving an optimization problem for adap-
tation.

3 Preliminaries: Hamiltonian Mechanics
In the Hamiltonian system, the continuous-time evolution is
described in phase space, which is the product space of gener-
alized coordinates xq = (xq1, . . . , x

q
M ) and generalized mo-

menta xp = (xp1 , . . . , x
p
M ), where M is the degree of free-

dom. Let x = (xq,xp) ∈ RJ , be a state of the system, where
J = 2M . The system’s evolution is determined by Hamil-
tonian H(x) : RJ → R, which denotes the system’s total
energy. In particular, the dynamics of a Hamiltonian system
with additive dissipative terms is given by
dx

dt
= (A−R)∇H(x) ≡ f(x), where A =

(
O I
−I O

)
,

(1)
where ∇H(x) is the gradient of the Hamiltonian with re-
spect to state x, A ∈ RJ×J is a skew-symmetric matrix,
R ∈ RJ×J is a positive semi-definite dissipation matrix,
I is the identity matrix, and O is the zero matrix. The
dynamics of this system conserves the total energy when
R = O. An example of the dissipation matrix is R =
diag(0, . . . , 0, r1, . . . , rM ), representing a dissipative system
with friction coefficient rm ≥ 0. Eq. (1) defines the time
derivatives of the state by function f(x) : RJ → RJ , which
is a special kind of vector field that has a symplectic geomet-
ric structure (called Hamiltonian vector field or symplectic
gradient).

The Hamiltonian neural network (HNN) is a representa-
tive method for modeling the dynamics that obeys Hamilto-
nian mechanics without manually designed Hamiltonians. In
HNNs, a Hamiltonian is modeled by a neural network, and
the dynamics is derived using Eq. (1) as follows,

f̂HNN(x) = (A−R)∇NN(x), (2)
where NN is a neural network. The gradient of the neural
network is calculated with automatic differentiation [Paszke
et al., 2019]. The parameters of the HNN are estimated by
minimizing the error between observed and predicted vector
fields, ‖ f − f̂HNN(x) ‖2.

4 Proposed Method
4.1 Problem Formulation
In the meta-training phase, we are given time-series
datasets of D dynamical systems, {Dd}Dd=1, where Dd =

{{(xdbn, fdbn)}Ndb
n=1}

Bd

b=1 is Bd sequences in the dth system,
xdbn ∈ RJ is the nth state of the rth sequence, fdbn ∈ RJ
is its time derivative, and Nrd is the number of observations.
In the meta-test phase, we are given a small number of time-
series data S = {{(xS

bn, f
S
bn)}N

S

n=1}B
S

b=1, which are called a
support set, in an unseen system, which is different from the
meta-training systems. Our aim is to predict the vector fields,
which are the time derivatives of the system’s states, and to
forecast the time-series in such meta-test systems, as shown
in Figure 1. We assume that all systems obey Hamiltonian
dynamics with additive dissipation, although the Hamiltoni-
ans are unknown, and the Hamiltonians are different across
systems. When analytic time derivatives are unavailable, we
obtain them by calculating their finite difference approxima-
tion from the sequences of the states.
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Figure 2: Our symplectic neural Gaussian process model. 1) Se-
quences in support set S is transformed to system representation
zS by encoder network based on RNN and neural network NNz in
Eq. (3). 2) Mean function of GP for Hamiltonian is modeled by
neural network NNm that takes system representation zS as input
in Eq. (4). 3) Kernel function of GP for Hamiltonian is modeled by
RBF kernel γ, where input is transformed by neural network NNk

with system representation zS in Eq. (5). 4) When the system is dis-
sipative, dissipation matrix R is obtained using neural network NNr

using system representation zS in Eq. (6); when it is conservative,
R = O. 5) Mean function of GP for vector field is obtained from
that for Hamiltonian using skew-symmetric and dissipation matri-
ces, A and R, and gradient operator ∇, in Eq. (8). 6) Kernel func-
tion of GP for vector field is obtained from that for Hamiltonian
using skew-symmetric and dissipation matrices, A and R, and Hes-
sian operator ∇2, in Eq. (9). 7) Vector field f̂S adapted to support
set S is obtained by posterior mean of GP for vector field in Eq. (10).
Blue boxes are given data or operators. Green boxes are neural net-
works shared across all systems. Yellow boxes are system-specific
variables or functions obtained by our model.

4.2 Symplectic Neural Gaussian Process Model
Our symplectic neural Gaussian process (SNGP) model gives
system-specific vector field f̂S(x) that obey Hamiltonian dy-
namics given support set S . We use superscript S when the
function or variable depends on support set S . Figure 2 illus-
trates our model.

First, we obtain system representation zS ∈ RKz from sup-
port set S using the following encoder network,

zS = NNz

 1

RS

BS∑
b=1

RNN
(
([xS

bn, f
S
bn])

NS

n=1

) , (3)

where RNN is a recurrent neural network (RNN), NNz is a
feed-forward neural network, and [·, ·] represents the vector
concatenation. With the RNN, we can extract information on
the dynamics in each sequence with arbitrary lengths. The en-
coder network is a permutation invariant neural network [Che
et al., 2018], which can handle an arbitrary number of se-
quences, and which can obtain a system representation that
does not depend on the order of sequences. Here, we as-
sume the time-series are regularly sampled. In the case of
irregularly-sampled time series, we can additionally input the
timestamp to the RNN as in [Che et al., 2018], [xS

bn, f
S
bn, t

S
bn],

instead of [xS
bn, f

S
bn], where tSbn is the nth timestamp of the

rth sequence.

Next, we model system-specific Hamiltonian HS by the
following GP with deep kernels [Wilson et al., 2016],

HS(x) ∼ GP
(
NNm([x, z

S ]), γ(x,x′, zS)
)
, (4)

where NNm : RJ+Kz → R is a mean function based on
a feed-forward neural network, γ is a deep kernel function
based on the RBF kernel,

γ(x,x′, zS)

= α exp
(
−η
2
‖ NNk([x, z

S ])−NNk([x
′, zS ]) ‖2

)
+ βδ(x,x′), (5)

α, β, η ∈ R+ are the kernel parameters, NNk : RJ+Kz →
RKg is a feed-forward neural network, and δ(x,x′) = 1
if x and x′ are identical, and zero otherwise. With sys-
tem representation zS for the input of neural networks, NNm

and NNk, we can make their outputs depend on support set
S . With deep kernels, we can flexibly transform states such
that the GP can model the Hamiltonian appropriately. When
the system is dissipative, elements in the dissipation matrix
r = (r1, . . . , rM ) is obtained from system representation zS

as follows,

r = NNr(z
S), (6)

where NNr : RKz → RM is a feed-forward neural network.
Neural networks, RNN, NNz, NNm, and NNk, are shared
across different systems, which enables us to learn knowledge
that is useful across systems, and use it for unseen systems.

Since (A − R)∇ is a linear operator, and a GP with lin-
ear transformation is again a GP [Rath et al., 2021], system-
specific vector field fS(x) = (A − R)∇HS(x) is repre-
sented by the following a multi-output GP using Eqs. (1,4),

fS(x) ∼ GP
(
µ(x, zS), k(x,x′, zS)

)
, (7)

where

µ(x, zS) = (A−R)∇NNm([x, z
S ]) ∈ RJ , (8)

k(x,x′, zS) = (A−R)∇2(A−R)γ(x,x′, zS) ∈ RJ×J ,
(9)

and∇2 is the Hessian operator. The gradient and Hessian op-
erators are calculated with automatic differentiation [Paszke
et al., 2019; He and Zou, 2021]. By using the GP with deep
kernels, we can model a system-specific vector field that obey
Hamiltonian dynamics.

Since the prior distribution of the vector field is a GP in
Eq. (7), the predictive value of the vector field adapted to sup-
port set S , which is the posterior mean of the GP, is given by

f̂S(x) = µ(x, zS) + k>K−1(fS −m), (10)

where K ∈ RBSNSJ×BSNSJ is the kernel matrix evalu-
ated between states in the support set, KbNS+n,b′NS+n′ =

k(xS
bn,x

S
b′n′ , zS), k = ((k(x,xbn, z

S))N
S

n=1)
BS

b=1 ∈
RBSNSJ×J is the kernels evaluated between state x and
states in the support set, fS = ((fSbn))

NS

n=1)
BS

b=1 ∈ RBSNSJ
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is the observed vector fields of the support set, and m =

(µ(xS
bn))

NS

n=1)
BS

b=1 ∈ RBSNSJ is the predicted vector fields
of the support set by mean function µ.

Eq. (10) minimizes the mean squared error on the sup-
port set with a regularizer [Vovk, 2013]. An advantage of
our model is that the predictive value given the support set
is analytically calculated without iterative optimization, by
which we can minimize the expected test error effectively
based on a stochastic gradient descent method in our meta-
learning framework.

4.3 Meta-learning
The system-shared parameters θ in the SNGP are parameters
in neural networks, RNN, NNz, NNm, NNk, NNr, and ker-
nel parameters, α, β, η. We train them by minimizing the
expected test mean squared error using an episodic training
framework [Ravi and Larochelle, 2017],

Θ̂ = argmin
θ

EdES,Q∼Dt

 1

NQ

∑
(x,f)∈Q

‖ f − f̂S(x) ‖2
 ,
(11)

where Ed represents the expectation over systems, and
ES,Q∼Dd

represents the expectation over support and query
sets that are generated from meta-training dataset Dd in the
dth system. Query set Q = {{(xQ

bn, f
Q
bn)}N

Q

n=1}B
Q

b=1 is a time-
series data set that is different from the support set used for
adapting GP, by which we can evaluate the test error. Min-
imizing our meta-learning loss in Eq. (11) is a bilevel op-
timization problem. In the inner optimization, a system-
specific prediction model is adapted to the support set based
on the GP framework as described in Section 4.2. In the
outer optimization, system-shared parameters are estimated
by minimizing the error on the query set when the system-
specific prediction model obtained in the inner optimization
is used.

Algorithm 1 shows the meta-training procedure of the pro-
posed model. The expectation in Eq. (11) is approximated
by the Monte Carlo method in Lines 3–5, where a system,
support and query instances are randomly sampled from the
meta-training datasets. In Line 7, the inner optimization
is performed, which corresponds to obtaining the posterior
mean of the GP in Eq. (10). When the distributions of systems
are the same between meta-training and meta-test phases, and
a sufficient number of meta-training datasets are given, the
expected error in the meta-test phase is improved by the min-
imization in Eq. (11).

The computational complexity of calculating the test error
for a query set is O((BSNSJ)3) since we need the inverse
of the kernel matrix whose size is BSNSJ × BSNSJ . In
few-shot settings, which is our focus, the number of support
instancesBSNS is small, and the proposed method can meta-
learn our model efficiently.

5 Expriments
5.1 Data
We used six types of dynamical systems: mass-spring, pen-
dulum, and Duffing systems without friction, and those with

Algorithm 1 Meta-learning procedure of our SNGP model.

Input: Meta-training data D, number of support sequences
BS, number of support observations NS, number of
query sequences BQ, number of query observations NQ

Output: Trained model parameters θ
1: Initialize model parameters θ.
2: while End condition is satisfied do
3: Randomly select system index d from {1, · · · , D}.
4: Randomly sample BS sequences with NS observa-

tions for support set S from Dd.
5: Randomly sample BQ sequences with NQ observa-

tions for query set Q from Dd such that there is no
overlap between the support and query sequences.

6: Calculate system representation zS using Eq. (3).
7: Calculate predictive vector field values f̂S(x) adapted

to support set S using Eq. (10).
8: Calculate test error 1

NQ

∑
(x,f)∈Q ‖ f − f̂S(x) ‖2.

9: Update system-shared parameters θ using the gradient
of the test error by a stochastic gradient method.

10: end while

friction. In each type, physical parameters were different
across systems as in [Lee et al., 2021].

The Hamiltonian of the one-dimensional mass-spring sys-
tem without friction is given by H(x) = 1

2kx
q2+ xp2

2m , where
k is the spring constant, and m is the mass constant. For each
system, k ∈ [5, 6] and m ∈ [0.5, 1.5] were determined uni-
formly randomly within their given range. The initial coordi-
nates for each sequence were determined uniformly randomly
from [1, 2].

The Hamiltonian of the pendulum system without fric-
tion with a single degree of freedom is H(x) = mg`(1 −
cos(xq)) + xp2

2m`2 , where g is the gravitational constant, m
is the mass constant, and ` is the length of the pendulum.
Length ` ∈ [0.5, 1.5] was determined uniformly randomly for
each system. and g = 9.8 and m = 1 were fixed for all
systems. The initial coordinates were determined uniformly
randomly from [1, π].

The Hamiltonian of the Duffing system without friction is
H(x) = 1

2x
p2 + α

4 x
q4 + β

2x
q2, where β = [−10, 0] was de-

termined uniformly randomly for each system, and α = 10
was fixed. The initial coordinates were randomly determined
from [0.5, 1.5]. In systems with friction, the friction coeffi-
cient was uniformly randomly determined in [0, 1].

In all systems, a state is a two-dimensional vector, x =
(xq, xp) ∈ R2, or M = 2. and the initial momentum was
set to zero. For each system, 30 sequences of the states were
sampled at a frequency of five Hz for four seconds with ad-
ditive Gaussian noise with standard deviation 10−2. For each
type, five systems were used for meta-training, three for meta-
validation, and six for meta-test. The number of support se-
quences was {1, 3, 5}, and the number of query sequences
was 10. The time derivatives were obtained by the cen-
tral finite difference approximation. The experiments were
conducted ten times by resampling the meta-training, meta-
validation, and meta-test systems.

For the evaluation measurement, we used the test mean
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squared errors of the predicted trajectories of the query sets
in the meta-test systems given the initial states. To obtain tra-
jectories, we integrated models with the fourth-order Runge-
Kutta integrator in scipy.integrate.solve ivp with
error tolerance to 10−12 [Dormand and Prince, 1980].

5.2 Compared Methods
We compared the proposed method (Ours) with the following
methods: Hamiltonian neural process (HNP), meta-learning
Hamiltonian neural network (MHNN) [Lee et al., 2021],
meta-learning Gaussian process (MGP) [Iwata and Tanaka,
2022], neural process (NP) [Garnelo et al., 2018], meta-
learning neural network (MNN), Symplectic Gaussian pro-
cess (SGP) [Rath et al., 2021], Hamiltonian neural network
(HNN) [Greydanus et al., 2019], neural network (NN), and
Gaussian process (GP). Ours, HNP, HHNN, MGP, NP, and
MNN are meta-learning methods that give system-adapted
models by training with multiple meta-training systems.
Ours, HNP, MHNN, HGP, and HNN use the inductive bias
of the conservation law with Hamiltonian.

With neural process-based methods (HNP and NP), system
representations were obtained by Eq. (3) as the same with the
proposed method. HNP used a neural network for model-
ing Hamiltonian H(x), and NP used it for modeling vector
field f(x), where the system representation and the state were
taken as the input. HNP corresponds to the proposed method
without adaptation with GPs. MHNN and MNN used model-
agnostic meta-learning (MAML) [Finn et al., 2017] for meta-
learning, where MHNN used a Hamiltonian neural network,
and MNN used a feed-forward neural network for their mod-
els. MGP used a GP with deep kernel for modeling the vector
field, where the GP was adapted for each system, and the
deep kernel was shared across systems. SGP used a GP with
the Gaussian kernel for modeling the Hamiltonian. In HNN
and NN, a neural network was shared across all systems, and
trained using the meta-training datasets. In GP, a GP with the
Gaussian kernel was adapted for each system.

5.3 Settings
For obtaining system representation in Eq. (3), we used the
bidirectional LSTM [Graves and Graves, 2012] for RNN with
32 hidden units, where the sequence of the states was used
for input. For NNz and NNk, we used three-layered feed-
forward neural networks with 32 hidden and output units.
For NNm, we used four-layered feed-forward neural net-
works with 32 hidden units. For the activation function, we
used the hyperbolic tangent. We optimized our models using
Adam [Kingma and Ba, 2015] with learning rate 10−3, and
batch dataset size four. The meta-validation datasets were
used for early stopping, for which the maximum number of
meta-training epochs was 5,000.

In the compared methods, we used the same neural net-
work architectures and training procedures as the proposed
method. In MAML-based methods (MHNN and MNN), we
used learning rate 10−2 and five epochs for inner optimiza-
tion. For neural networks in HNP, MHNN, NP, HNN, and
NN, we used four-layered feed-forward neural networks. In
MGP, HGP, and GP, kernel parameters of RBF kernels were
optimized using the meta-training datasets.

We implemented all methods with PyTorch [Paszke et al.,
2019]. For gradient and Hessian operators in Eqs. (8,9), we
used functorch [He and Zou, 2021].

5.4 Results
Table 1 shows the test mean squared errors of trajectories.
In all cases, the proposed method achieved the lowest error.
The test error by HNP was high since the system adaptation is
modeled only by neural networks. On the other hand, the pro-
posed method performs the system adaptation by minimizing
the training error, which leads to better performance. Since
MHNN uses an iterative optimization with a small number of
steps for system adaptation, it was difficult to adapt to var-
ious systems. In contrast, the proposed method can obtain
a solution of the inner optimization in a closed form using
GPs. MGP, NP, MNN, NN and GP do not use the induc-
tive bias on the Hamiltonian systems. Therefore, the per-
formance of these methods was low. Since HNN and NN
use the same models for all systems, they cannot handle the
difference among systems, and resulted in their high error.
Since GP modeled the vector field for each system, its per-
formance was low, especially when the number of support
sequences was small. The proposed method achieved better
performance with a small number of support sequences using
knowledge in other systems with different Hamiltonians by
sharing neural networks.

Figure 3 shows the predicted trajectories on the Duffing
without friction system with one support sequence per sys-
tem. The proposed method successfully estimated system-
specific vector fields and trajectories. The methods that
model the Hamiltonian, i.e., the proposed method, HNP,
MNN, HGP, and HNN, estimated the vector field that obeyed
the conservation law. On the other hand, the other methods
estimated diverging or decaying vector fields, even though it
was a conservation system. These results indicate the effec-
tiveness of modeling the Hamiltonian.

Figure 4 shows the test mean squared errors with differ-
ent numbers of meta-training systems. As the number of the
meta-training systems increased, the error decreased. This
result indicates that the proposed method improved the per-
formance by using knowledge in different systems.

Table 2 shows the test mean squared errors in ablation
study. Removing system representations, neural network-
based mean functions, and neural network-based kernel func-
tions decreased the performance. This result indicates that the
system-shared neural networks in our model is important for
meta-learning to share knowledge across different dynamical
systems. Note that all methods in Table 2 are newly proposed
in this paper, and our model can adapt to each system based
on the GP framework even without system representations.

Additional experimental results, such as the errors of pre-
dicted vector fields, the errors of predicted total energies,
computational time for meta-training, and computational
time for predicting vector fields, are shown in the supplemen-
tary material. In most of the cases, the proposed method out-
performed the compared methods for predicting vector fields.
The proposed method achieved low errors in all cases for
predicting total energies. In the other methods, predicted to-
tal energies were sometimes diverged from the ground truth,
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(a) Mass-spring without friction
NS Ours HNP MHNN MGP NP MNN HGP HNN NN GP

1 0.638 1.543 2.783 3.962 1.502 1.067 1.687 5.209 3.390 2.892
3 0.669 1.809 3.969 1.856 1.688 1.145 1.250 5.209 3.390 1.367
5 0.649 1.497 3.265 1.500 1.696 1.304 0.879 5.209 3.390 1.083

(b) Mass-spring with friction
NS Ours HNP MHNN MGP NP MNN HGP HNN NN GP

1 0.217 5.994 0.757 1.834 0.454 0.493 0.834 1.043 1.068 1.341
3 0.183 6.302 0.738 0.606 0.504 0.446 0.511 1.043 1.068 0.527
5 0.192 6.269 0.721 0.418 0.587 0.454 0.451 1.043 1.068 0.370

(c) Pendulum without friction
NS Ours HNP MHNN MGP NP MNN HGP HNN NN GP

1 0.723 1.542 9.312 4.317 2.055 3.844 8.556 7.468 4.469 7.339
3 0.708 1.715 10.864 0.997 2.190 3.778 1.522 7.468 4.469 2.899
5 0.499 1.772 9.805 0.817 2.167 3.931 0.569 7.468 4.469 1.565

(d) Pendulum with friction
NS Ours HNP MHNN MGP NP MNN HGP HNN NN GP

1 1.053 35.484 3.007 1.708 1.832 1.323 4.664 3.738 3.034 2.753
3 0.660 34.132 2.642 0.634 1.717 1.141 2.127 3.738 3.034 1.190
5 0.561 35.520 2.500 0.540 1.513 1.095 2.050 3.738 3.034 0.769

(e) Duffing without friction
NS Ours HNP MHNN MGP NP MNN HGP HNN NN GP

1 1.384 1.574 2.776 6.663 1.338 2.067 2.968 2.195 2.158 2.402
3 1.306 1.503 2.354 5.421 1.186 1.657 1.819 2.195 2.158 2.140
5 1.251 1.350 2.276 6.826 1.318 1.654 1.526 2.195 2.158 2.013

(f) Duffing with friction
NS Ours HNP MHNN MGP NP MNN HGP HNN NN GP

1 0.333 20.328 0.752 1.093 0.575 0.706 1.277 0.804 1.070 0.951
3 0.347 21.369 0.645 1.130 0.502 0.650 0.523 0.804 1.070 0.708
5 0.327 22.780 0.628 1.117 0.586 0.654 0.438 0.804 1.070 0.656

Table 1: Test mean squared errors of trajectories with different numbers of support sequencesNS. Values in bold typeface are not statistically
significantly different at the 5% level from the best performing method in each row according to a paired t-test.

Ours w/o-zS w/o-NNm w/o-NNk

0.650 0.684 0.826 0.852

Table 2: Ablation studies of our model: test mean squared errors
of trajectories averaged over all cases. ‘w/o-zS ’ is the proposed
method without system representations. ‘w/o-NNm’ is the proposed
method without neural network-based mean functions, where zero
mean functions are used. ‘w/o-NNk’ is the proposed method with-
out neural network-based kernel functions, where state x is directly
inputted into RBF kernels.

which resulted in high variance of their errors. The proposed
method took a longer time than HNP, MGP, and HGP since
it contains them as components. The meta-training time by
the proposed method was shorter than MAML-based methods
(MHNN and MNN) since the MAML-based methods need
iterative optimization for system adaptation. The inference
time by the proposed method was short for predicting vector
fields given meta-trained models.

6 Conclusion
We proposed a neural network-based meta-learning method
that effectively extracts common knowledge from data in
multiple dynamical systems. The proposed method can learn
dynamics that exactly conserves the total energy by modeling
Hamiltonian, where a system-specific Hamiltonian adapted to
given data is obtained in a closed form using GPs. Our exper-
iments demonstrate that the proposed method achieves better
performance than the existing methods with a small number
of training data.

Although our results are encouraging as a data-efficient
method for modeling Hamiltonian systems, there are some
limitations to overcome. First, we plan to apply our method
to systems with a larger number of states by improving
computational efficiency using random Fourier features for
GPs [Tanaka et al., 2022]. Second, we will improve data
efficiency of the proposed method further by using con-
strained HNNs [Finzi et al., 2020] and graph neural net-
works [Thangamuthu et al., 2022]. Third, we would like to
extend our method to find state spaces by combining with
Hamiltonian generative networks [Toth et al., 2020].
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Figure 3: Predicted trajectories in a state space, and estimated vector fields in three meta-test datasets with one support sequence per system.
Systems 1, 2, and 3 are Duffing without friction with different physical parameters. Blue circles are states on true trajectories, orange lines
are the predicted trajectories, and black arrows are the predicted vector field.

5 10 15 20
#meta-training tasks

0.5

1.0

1.5

Er
ro

r

5 10 15 20
#meta-training tasks

0.5

1.0

Er
ro

r

5 10 15 20
#meta-training tasks

1.0

1.2

1.4

1.6

Er
ro

r

(a) Mass-spring (b) Pendulum (c) Duffing

Figure 4: Test mean squared errors of trajectories with different numbers of meta-training systems on (a) Mass-spring, (b) Pendulum, and (c)
Duffing systems without friction. Error bars show the standard errors.
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