
An Efficient Prototype-Based Clustering Approach for Edge Pruning in Graph
Neural Networks to Battle Over-Smoothing

Yuyang Huang1 , Wenjing Lu1 and Yang Yang1,2,∗

1Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
2Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive

Engineering, Shanghai, China
{yuyanghuang1999, luluerji}@sjtu.edu.cn, yangyang@cs.sjtu.edu.cn

Abstract
Topology augmentation is a popular strategy to ad-
dress the issue of over-smoothing in graph neu-
ral networks (GNNs). To prevent potential dis-
tortion of node representations, an essential prin-
ciple is to enhance the separability between em-
beddings of nodes from different classes while pre-
serving smoothness among nodes of the same class.
However, differentiating between inter-class and
intra-class edges becomes arduous when class la-
bels are unavailable or the graph is partially labeled.
While clustering offers an alternative for identify-
ing closely connected groups of nodes, traditional
clustering methods face challenges when applied to
GNNs in terms of accuracy, efficiency, adaptability,
and scalability to diverse graphs. To address these
limitations, we introduce ClusterDrop, which uses
learnable prototypes for efficient clustering and in-
corporates supervised signals to enhance accuracy
and adaptability across different graphs. Experi-
ments on six datasets with varying graph structures
demonstrate its effectiveness in alleviating over-
smoothing and enhancing GNN performance.

1 Introduction
Graph neural networks (GNNs) have emerged as a power-
ful approach for learning from graph-structured data, and
have demonstrated remarkable efficacy across diverse appli-
cations [Kipf et al., 2018; Ding et al., 2019; Zheng et al.,
2020]. Nevertheless, in contrast to other deep neural net-
work architectures, GNNs tend to be shallow due to the preva-
lent challenge of over-smoothing. Over-smoothing is a phe-
nomenon where node embeddings collapse into a subspace
that loses too much information, causing the embeddings to
become too similar to be distinguished in downstream tasks
such as node classification.

The issue of over-smoothing was initially introduced by
[Li et al., 2018] and has since received wide attention within
the machine learning community. Previous works on al-
leviating the over-smoothing issue can be roughly divided
into three types, namely mechanism modification, embedding

∗Corresponding author

regularization, and topology augmentation. Some works at-
tempt to alleviate over-smoothing by designing new message-
passing mechanisms based on graph theory [Xu et al., 2018;
Gasteiger et al., 2019; Chen et al., 2020b; Wu et al., 2023a;
Jiang et al., 2022], while most of the designs are at the
whole-model level, thus limiting their scalability for differ-
ent types of GNNs. The studies of embedding regulariza-
tion try to relieve the excessive similarity of node embed-
dings by performing feature-level regularization [Zhao and
Akoglu, 2020; Guo et al., 2023]. A drawback of these meth-
ods is the risk of undermining the inherent smoothness of
GNNs, which has been shown to be crucial to the perfor-
mance of GNNs [Chen et al., 2020a; Wang et al., 2022;
Keriven, 2022]. In recent years, topology augmentation
through edge addition and removal has gained popularity
in addressing the over-smoothing issue [Rong et al., 2020;
Chen et al., 2020a; Zhao et al., 2021; Wang et al., 2022;
Liu et al., 2023]. The primary concept behind edge modifi-
cation is to retain intra-class edges while dropping inter-class
edges, where a key insight involving two aspects can be sum-
marized: avoiding smoothness between node groups of dif-
ferent classes while preserving smoothness within groups of
same-class nodes. However, accurately discerning inter-class
edges poses a significant challenge in cases where class labels
are unavailable or the graph is partially labeled. Previous at-
tempts set criteria for edge addition or removal based on prior
assumptions, while they do not adapt to different graphs. An-
other viable approach involves training an edge predictor to
guide edge modification, but sampling weights for all edges
to perform end-to-end training is memory inefficient. There-
fore, there is a need to explore more effective methods for
augmenting graph topology.

The topological structures of many graphs exhibit modu-
larity naturally [Newman, 2006]. Modularity provides potent
prior knowledge, offering valuable cues regarding node prop-
erties, including their respective classes. This effect is illus-
trated using Zachary’s Karate Club graph [Zachary, 1977] as
shown in Fig. 1. To extract node features, a one-layer un-
trained GCN is employed on the graph. Then we perform
k-means clustering to group the nodes into 4 clusters based
on the extracted features. We find that the clustering results
capture the modularity (Fig. 1(a)), and substantially reflect
the classes of the nodes (Fig. 1(b) and (c)). Furthermore, the
node clusters naturally partition the graph into distinct groups

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4201

and offer guidance for edge dropping between different class
nodes, which aligns well with the insight mentioned before.
This inspiration prompts us to employ clustering to address
the over-smoothing issue.

Figure 1: An illustration for capturing modularity by k-means. The
predicted labels in (b) are obtained by assigning each cluster to a
class through majority voting.

However, applying traditional clustering algorithms to
GNNs may prove ineffective, as it can lead to inaccurate
clustering results, heavy computational burden, and limited
adaptability across diverse graph structures. Here we estab-
lish three fundamental designing principles of the clustering
scheme for topology augmentation in GNNs.

• Enhancing the efficiency of clustering.

• Effectively incorporating label information from the cur-
rent graph to guide clustering.

• Allowing for adaptive adjustment to diverse graph struc-
tures without relying on predefined assumptions.

Taking these principles into account, we propose a novel
and efficient method, ClusterDrop, which aims to alleviate
the issue of over-smoothing from a cluster-level perspective.
It employs learnable prototypes to group nodes into multiple
clusters, where a one-pass computation of the similarity be-
tween prototypes and node embeddings is achieved. The re-
sulting clustering information is then leveraged to selectively
remove edges. Moreover, we introduce a novel loss function
in clustering to enhance the inherent smoothness of nodes
belonging to the same class within each cluster. The learn-
ability of prototypes sets our method apart from traditional
clustering approaches, enabling the incorporation of super-
vised signals through additional loss terms. Consequently,
our approach addresses both over-smoothing and adapts bet-
ter to diverse graph structures. Empirical evaluation of six
benchmark datasets demonstrates the superiority of Cluster-
Drop over existing techniques. Our contributions are summa-
rized as follows.

1) We develop a scalable prototype-based clustering
method to address the over-smoothing issue from a cluster-
level view.

2) We propose a weighted random edge dropping strategy
guided by clusters to prevent the smoothness of different class
nodes.

3) We design a novel loss function to enhance the inherent
smoothness of nodes within the same class in each cluster,
leveraging supervised signals.

4) The proposed ClusterDrop is time-efficient and outper-
forms state-of-the-art methods for alleviating over-smoothing
on six benchmark datasets.

2 Related Works
Existing methods for addressing over-smoothing fall into the
following three categories, focusing on the model level, em-
bedding level, and graph topology level, respectively.
Mechanism modification. JKNet [Xu et al., 2018] proves
the equivalence of graph convolution and random walks and
identifies the over-smoothing problem as a missing initial in-
formation issue. JKNet adds jumping connections from shal-
low layers to the last layer to enhance the initial information.
APPNP [Gasteiger et al., 2019] also takes a view from ran-
dom walks. It adopts personalized PageRank to preserve the
initial node’s local neighborhood and derives a message pass-
ing method based on the steady-state distribution of the per-
sonalized PageRank. Since the GCN layer is based on the
first-order approximation of Chebyshev polynomials [Kipf
and Welling, 2017], which equals a low pass filter on the
spectral domain of graphs, multiple stacking of GCN layers
filters out too many high-frequency input signals, leading to
over-smoothing. Thus, GCNII [Chen et al., 2020b] was pro-
posed, which adds initial residual and identity mapping to ap-
proximate higher-order Chebyshev polynomials.
Embedding regularization. PairNorm [Zhao and Akoglu,
2020] is the first normalization method applied between in-
termediate layers to alleviate over-smoothing. The key idea
is to keep pairwise distances unchanged, thus avoiding all
node embeddings becoming too similar. ContraNorm [Guo
et al., 2023] recognizes the similarities between the over-
smoothing issue in GNNs and the feature collapse issue in
contrastive learning. ContraNorm proposes to alleviate over-
smoothing from a contrastive view by tearing the InfoNCE
loss into alignment loss and uniform loss. ContraNorm then
transforms the process of optimizing the uniform loss with
gradient descent into a model architecture to keep node em-
beddings distributed more uniformly.
Topology augmentation. This category of methods rec-
ognizes the crucial role of graph topology in the over-
smoothing problem. DropEdge [Rong et al., 2020] ap-
plies random edge dropping at training and theoretically
proves that edge dropping helps alleviate the over-smoothing
issue. AdaEdge [Chen et al., 2020a] believes that the
low information-to-noise ratio of nodes contributes to over-
smoothing and proposes to identify intra/inter-class edges
by iteratively training GNNs. In contrast to AdaEdge,
GAUG [Zhao et al., 2021] trains a graph auto-encoder as an
edge prediction module and samples a new augmented adja-
cency matrix based on the module output. The training is then
performed on the sampled adjacency matrix. GUIDE [Wang
et al., 2022] empirically finds that the frequency of each
edge’s occurrence as part of the shortest paths of all node
pairs correlates with the edge types. GUIDE then proposes to
precompute the occurrence frequency of each edge and use it
as the weight to perform a weighted random edge dropping.

Our work also addresses over-smoothing through topology
augmentation, but differs from previous methods by model-
ing the task from a cluster-level view, which better adapts to
different graphs and is scalable to large graphs. Out of the
scope of over-smoothing, our method shares a mathematical
resemblance with [Hui et al., 2021].

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4202

Figure 2: Overview of ClusterDrop. (A) Node clustering based on prototypes and optimal transportation. (B) Cluster-guided edge dropping.
(C) Further enhancement of intra-class node smoothness.

3 Preliminary
This study focuses on the node classification problem. Let
G(V, E) be the input graph with node set V and edge set E .
Each node i has an input features xi ∈ RF . Most of the
current message passing GNN layers can be formulated as
Eq. (1).

h
(l)
i = f (l)

(
h
(l−1)
i , aggrj∈N (i)

(
h
(l−1)
i ,h

(l−1)
j

))
, (1)

where aggr is an aggregation function that aggregates neigh-
bor messages, N (i) are the neighbors of node i, and f (l) is
the function updating the l-layer node embedding h

(l)
i . The

initial node embedding h
(0)
i is equal to the input node fea-

ture xi. The final prediction label ŷi is output by a decision
function. Node classification tasks typically involve semi-
supervised learning, where only a subset of nodes have la-
beled data available for training. The GNN layers are trained
by the Cross-Entropy loss of ŷi and the supervised labels.

4 The Framework of ClusterDrop
ClusterDrop functions as an intermediary module between
GNN layers (Fig. 2). It consists of three major components.
First, it takes node embeddings as input, computes their co-
sine similarity with prototypes, and derives a soft assignment
matrix Q. Optimal transportation is employed to enforce non-
trivial Q. Then, edge weights are derived from Q, enabling
weighted edge dropping. Additionally, we compute super-
vised class anchors and expected cluster centers, utilizing La
to enhance the intra-class smoothness of nodes.

4.1 Node Clustering with Learnable Prototypes
Here we propose a prototype-based clustering method. For
simplicity, we omit the superscript indicating the number of
layers. Considering the l-th layers node embeddings H ∈
RN×F , where the i-th row is the embedding hi of node i,
N = |V| is the number of nodes, and F is the dimensionality
of embeddings. To cluster all nodes into K clusters, we set K
prototypes C ∈ RK×F . We use cosine similarity to measure
the preference of nodes to prototypes, then a soft assignment
of nodes to the prototypes Q ∈ RN×K can be computed by
Eqs. (2-3).

S = cosine−similarity(H,C), (2)
Q = softmax (S) . (3)

The similarity matrix S ∈ RN×K is computed between each
node embedding and each prototype, and the softmax per-
forms on the row vectors of S. The hard assignment can be
generated from the soft assignment by selecting the prototype
with the highest similarity.

Since only similarity is considered in Eq. (3), one potential
issue of the clustering is that the final assignment might be
trivial, i.e., all nodes are assigned to the same prototype. The
smooth nature of GNNs also exacerbates such collapse. To
avoid this, we propose the uniform assignment of nodes to
each prototype like [Caron et al., 2020] did. This approach
serves to restrict the similarity between node embeddings and
alleviate the problem of over-smoothing. The assignment of
nodes to prototypes under this constraint can be determined
by solving an optimal transportation problem [Asano et al.,
2020; Villani, 2021].

Assuming that each node in the graph is of equal impor-
tance, the distribution of nodes can be represented by a uni-
form distribution. To avoid obtaining trivial solutions, the
nodes should be uniformly distributed to each prototype, such
that the resulting clusters can also be described by a uniform
distribution. In this context, obtaining the constrained as-
signment is equivalent to identifying a transportation matrix
T ∈ RN×K that transports the uniform distribution of nodes
to the uniform distribution of clusters with the cosine similar-
ity S as the affinity matrix. Formally, the goal is to maximize
the following optimal problem (Eq. (4)).

max
T

Tr(T⊤S) + ϵH(T)

s.t. T1 = N−11,

T⊤1 = K−11,

(4)

where 1 is an all one vector, ϵ is a constant, and H(T) com-
putes the entropy of T. We add this entropy term, thus the
solution T∗ of this problem can be found by Sinkhorn-Knopp
algorithm [Sinkhorn and Knopp, 1967] efficiently.

To avoid the collapse and relieve the over-smoothing, the
actual assignment Q should be close to the constrained as-
signment. Thus, the prototypes are trained by the loss below,

Lc =
〈
T̃∗, logQ

〉
, (5)

where T̃∗ is the one-hot version of T∗ by setting the max row
value to 1, and ⟨·, ·⟩ means dot product of matrices.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4203

4.2 Cluster-Guided Edge Dropping
To avoid the smoothness between groups of different classes
(the first aspect mentioned in Section 1), we prioritize the
removal of edges linking nodes with different labels. The
clusters obtained through the use of prototypes can guide this
process by indicating which edges should be removed first.
Specifically, if two nodes are more likely to be assigned to
different clusters, they are more likely to belong to different
classes. The dissimilarity can be measured by a cluster-level
distance as described below. With the soft assignment Q,
each node can be coded by the row of Q as a distribution to
the prototypes. Then the cluster-level distance of two nodes
can be measured by Janson-Shannon divergence as shown in
Eq. (6).

dist(i, j) =
1

2

(
KL(qi||qj) + KL(qj ||qi)

)
, (6)

where qi and qj are the memebership distribution of node i
and node j respectively, i.e., the i-th row and j-th row of Q.
Then each edge (i, j) is associated with a weight wij ,

wij =
dist(i, j)∑

(k,l)∈E dist(k, l)
. (7)

To relieve the over-smoothing issue, a weighted random sam-
pling based on wij is performed to drop some edges from the
original graph in the training phase. Notably, the self-loop
is naturally excluded from the random drop because wij is
always equal to zero when i = j.

4.3 Smoothing Embeddings with Supervised
Signals

In addition to preventing the blurring of clusters, we enhance
the smoothness of nodes within the same class to achieve bet-
ter performance (the second aspect mentioned in Section 1).
In the semi-supervised setting, the nodes used for training are
provided with supervised information. The average embed-
ding of these supervised nodes can serve as anchors for the
corresponding classes. Through clustering, these nodes are
assigned to several clusters and act as bridges between the
cluster space and the target label space. To enhance smooth-
ness within the same class, we can pull the embeddings from
a given cluster closer to the most similar supervised anchor.

Let Vtr ⊂ V be the node set with known labels. The anchor
of class k can be computed by Eq. (8).

āk =
1

|{i|i ∈ Vtr, yi = k}|
∑

i∈Vtr,yi=k

hi, (8)

where yi is the label of node i.
Then we compute the expected centers of a cluster. Consid-

ering a cluster C ⊂ V with some nodes in Vtr, i.e., C∩Vtr ̸= ∅.
The labeled nodes in C are the category references for the
other nodes in C. We assume that the probability of a node be-
ing assigned to a class k follows a Gaussian distribution based
on the distance between the node and the center of the label
nodes (of class k) within that cluster. Thus, the expected cen-
ter of class k, ak

C , can be computed by the following Eqs. (9-

11), where τ is a coefficient representing the variance.

ak
C =

∑
i∈C,i̸∈Vtr

wk
i hi, (9)

wk
i =

exp(−∥hi–h
k
tr∥22/τ)∑

j∈C,j ̸∈Vtr
exp(−∥hj–h

k
tr∥22/τ)

, (10)

hk
tr =

1

|{i|i ∈ C ∩ Vtr, yi = k}|
∑

i∈C∩Vtr,yi=k

hi. (11)

To enhance the smoothness of node embeddings within the
same class, we pull the expected centers of each cluster closer
to the corresponding class anchors. Given that nodes within
a cluster are more likely to belong to the class which has the
most supervised nodes within that cluster, the loss function
should reflect this preference. The loss function is formu-
lated as a weighted sum, as shown in Eqs. (12-13), where skC
denotes the weight of class k for cluster C.

L′ =
∑

{C|C∩Vtr ̸=∅}

∑
k

skC∥ak
C − āk∥22, (12)

skC = |{i|i ∈ C ∩ Vtr|yi = k}| / |{i|i ∈ C ∩ Vtr}| (13)

As we aim to form clusters that are as pure as possible, with
each cluster containing the majority of nodes from a single
class. Thus, a regularized term Lr is added to push away the
expected centers of different classes, i.e.,

Lr =
∑

{C|C∩Vtr ̸=∅}

∑
ki ̸=kj

aki

C
⊤
a
kj

C . (14)

Then the total loss is expressed in Eq. (15). We call it assign-
ment loss because the smoothness of nodes from the same
class is achieved by assigning the expected centers of clusters
to the corresponding supervised anchors.

La = L′ + βLr. (15)

With the GNN classification loss LCE, the overall loss to
trained ClusterDrop and GNNs simultaneously is formulated
in Eq. (16). The β, α1 and α2 are coefficients.

L = LCE + α1Lc + α2La (16)

5 Theoretical Support of ClusterDrop
Previous works of topology augmentation empirically find
out that removing inter-class edges is crucial in alleviating
the over-smoothing problem [Chen et al., 2020a; Zhao et
al., 2021; Wang et al., 2022]. Here we show that drop-
ping the inter-class edges theoretically helps relieve the over-
smoothing. Specifically, we prove that after passing through
a sufficient number of GCN layers, nodes remain distinguish-
able even after all inter-class edges are removed.
Theorem 1. Given a graph G(V, E) with K-class nodes, as-
sume that for every pair of nodes within a class k, there ex-
ists a path connecting the pair with nodes only from class
k. Then, after applying a sufficient number of GCN layers,
the input node embedding X(0) ∈ RN×F will converge to K
directions represented by vectors w1, w2, . . . , wK with re-
spect to their respective classes, in the circumstance that all
inter-class edges are removed from the original graph.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4204

Backbone Method Cora Citeseer Pubmed Chameleon USA-Airport

GCN

k-means 83.7±0.5 72.2±0.4 79.6±0.4 60.6±0.4 60.9±0.7
Vanilla 81.2±0.5 70.8±0.8 78.9±0.4 58.7±1.5 56.1±0.8
DropEdge 82.3±0.3 71.7±0.5 78.9±0.4 58.7±0.8 56.6±0.8
AdaEdge 81.9±0.7 72.8±0.7 79.6±0.3 59.7±1.3 57.7±0.8
GUIDE 82.1±0.6 72.2±0.3 OOT 58.8±1.0 57.5±0.6
GAUG 83.6±0.5 73.3±1.0 77.3±0.5 59.9±0.6 61.4±0.9
ClusterDrop 84.3±0.6 72.7±0.6 79.8±0.4 65.9±0.6 62.3±0.6

GraphSAGE

Vanilla 81.1±0.8 70.5±1.5 78.2±0.8 62.9±1.2 59.5±1.1
DropEdge 80.2±0.5 70.4±1.0 78.4±0.9 60.2±0.5 59.3±0.9
AdaEdge 81.5±0.6 71.3±0.8 78.4±0.2 59.9±1.0 57.4±0.5
GUIDE 81.2±1.0 70.5±0.6 OOT 61.9±1.6 58.2±0.8
GAUG 82.0±0.5 72.7±0.7 78.8±0.5 60.7±0.6 57.1±0.7
ClusterDrop 82.9±0.6 72.7±0.6 79.7±1.0 66.7±1.3 60.6±0.6

JKNet

Vanilla 77.0±1.6 69.3±0.4 78.3±0.7 63.7±1.4 59.5±0.6
DropEdge 79.8±1.4 69.5±1.0 78.4±0.5 65.0±1.0 60.0±1.0
Adadge 80.4±1.4 68.9±1.2 78.5±1.1 64.9±0.9 59.5±0.5
GUIDE 80.8±1.4 69.3±0.8 OOT 62.0±1.2 59.4±1.1
GAUG 80.5±0.9 69.7±1.4 77.6±0.6 64.9±1.0 60.4±1.0
ClusterDrop 82.0±0.5 71.3±0.6 79.5±0.7 67.0±0.9 62.3±0.8

GAT

Vanilla 81.0±0.7 70.4±0.7 77.8±0.5 55.2±2.1 54.7±1.4
DropEdge 82.0±0.9 71.3±0.6 78.2±0.4 54.7±1.5 54.8±1.4
AdaEdge 82.0±0.6 71.1±0.8 78.6±0.5 58.2±1.8 56.7±1.0
GUIDE 82.3±0.6 71.3±1.2 OOT 56.3±1.7 53.3±0.7
GAUG 82.2±0.8 71.6±1.1 OOM 64.9±1.1 54.6±1.1
ClusterDrop 82.7±0.7 72.6±0.6 79.5±0.5 67.2±1.7 57.0±1.6

Table 1: Comparison results with different GNN backbones. The compared SOTA models include DropEdge (ICLR-20’), AdaEdge (AAAI-
20’), GAUG (AAAI-21’), and GUIDE (TNNLS-22’).

The detailed proof of Theorem 1 is provided in Appendix.
From Theorem 1, it is easy to see that the nodes can be clas-
sified into K classes without performance degradation. This
shows that dropping the inter-class edges can cut off the mix-
ture of messages from different classes, thereby alleviating
the over-smoothing issue. The cluster-guided edge dropping
technique employed in ClusterDrop incorporates this finding.
Specifically, since nodes with higher similarity are clustered
into the same group, edges dropped between clusters are more
likely to result in the removal of inter-class edges. Our exper-
iments demonstrate the effectiveness of this approach, and the
results are consistent with [Wu et al., 2023b]. Moreover, the
number of prototypes in cluster-guided edge dropping also
serves as regularization to restrict the lower bound of K, thus
making features more diverse to relieve the over-smoothing.

6 Time Complexity Analysis
In this section, we provide a time complexity analysis of the
proposed ClusterDrop. ClusterDrop is a training-time aug-
mentation module thus bringing no cost at inference time.
During training, the additional cost of ClusterDrop arises
from three parts, computing Lc, computing La, and perform-
ing weighted random drop. Computing Lc includes the com-
putation of node assignment Q and solving the optimal trans-
portation problem, where the former takes O(K|V|) and the
latter takes O(mK|V|), where m is the number of iterations
to perform the Sinkhorn-Knopp algorithm and empirically it
is smaller than 10. As Eqs. (8-15) show, the computation of

La is linear with the number of nodes with time complexity
O(|V|). The weighted random drop is performed on exist-
ing edges, and the sampling algorithm has an implementation
with O(p|E| log |E|) [Wong and Easton, 1980], where p is the
dropping rate. Therefore, in summary, ClusterDrop brings
additional O(mK|V|+ p|E| log |E|) time complexity in train-
ing time, which brings little burden compared to common
GNNs with O(|V| + |E|) time complexity, and no additional
cost in the inference time.

7 Experiments
We evaluate the performance of ClusterDrop on 6 benchmark
datasets covering 3 real-world scenarios [Kipf and Welling,
2017; Pei et al., 2020; Wu et al., 2019; Hu et al., 2020]
and compare with 4 state-of-the-art methods, namely DropE-
dge [Rong et al., 2020], AdaEdge [Chen et al., 2020a],
GUIDE [Wang et al., 2022], and GAUG [Zhao et al., 2021],
on 4 widely used GNN backbones. More details of datasets
and implementation are provided in Appendix. Codes are
available on https://github.com/YYHemich/ClusterDrop.

7.1 ClusterDrop Improves GNNs’ Performance
The results of the accuracy comparison are shown in Table 1.
The results of GUIDE on Pubmed are not available due to the
prohibitively high time cost of precomputing required for this
dataset. This is denoted as OOT (Out-Of-Time). A detailed
analysis of the time complexity of GUIDE is provided in Ap-
pendix. The missing result of GAUG with GAT on Pubmed is

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4205

due to out-of-memory (OOM). As shown in Table 1, Cluster-
Drop significantly enhances vanilla GNNs across five bench-
mark datasets and outperforms recent topological augmenta-
tion methods with most of GNN backbones, suggesting the
robustness of ClusterDrop in different application scenarios.
Comparison to uniformly random dropping. DropEdge is
a wide-used edge-dropping method for GNNs, which ran-
domly drops edges from graphs with a certain probability.
ClusterDrop outperforms DropEdge with all 4 GNN back-
bones. This indicates that the weighted dropping strategy
guided by prototype clustering prunes noise edges more ac-
curately. While DropEdge generally performs better than the
original GNNs, we notice a decrease in performance in some
cases, such as the results of GraphSAGE on Citeseer and
Chameleon datasets. This may be due to several bad random
drops during training without guidance. By contrast, Cluster-
Drop employs a guided dropping approach to enhance topol-
ogy augmentations, resulting in more stable improvements.
Comparison to unsupervised guidance. Here we compare
ClusterDrop with GUIDE [Wang et al., 2022], an unsuper-
vised assumption-based approach that employs a weighted
edge dropping strategy. GUIDE assumes the intra/inter-class
edges are correlated with the numbers of their occurrence
in all pairwise shortest paths of a graph, and it drop edges
weighted by these numbers. As shown in Table 1, Cluster-
Drop achieves higher accuracy than GUIDE in all compar-
isons. Particularly, ClusterDrop exhibits an average improve-
ment of 6.9% on Chameleon, indicating that the assumption
of GUIDE may not suit all cases. We also compare the pro-
totype clustering with the traditional clustering method. We
replace the prototype clustering of ClusterDrop by k-means
(results in Table 1) and observe that it outperforms DropE-
dge and GUIDE while performing on par with edge predictor
methods GAUG and AdaEdge. This finding further validates
the effectiveness of cluster guidance. However, k-means clus-
tering does not perform as well as ClusterDrop because Clus-
terDrop is more flexible in adapting to graphs by learning
from them directly. Besides, ClusterDrop is more compu-
tationally efficient, since k-means takes a lot of iterations to
converge, particularly on large graph datasets (with more than
100 iterations).
Comparision to learning edge predictor. Another popular
series is graph augmentation through learning an edge pre-
dictor, which models the distribution of the adjacent matrix
and samples new graph topology from the distribution to train
GNNs. We first compare ClusterDrop with GAUG. Cluster-
Drop performs better on 4 of the 5 datasets. While Cluster-
Drop does not always yield the optimal performance across
different backbones on the Citeseer dataset, it still manages to
achieve the highest result on JKNet and GAT, which possess a
greater number of parameters compared to GCN and Graph-
SAGE. This indicates that, besides relieving over-smoothing,
the cluster-guided edge dropping of ClusterDrop also pro-
vides stronger regularization to avoid over-fitting. Further-
more, ClusterDrop is more memory-efficient than GAUG, en-
hancing its suitability for large graph training, while GAUG
faces out-of-memory (OOM) issues when using GAT as the
backbone on Pubmed in our experiments. AdaEdge can be
seen as a special case to train edge predictors, which itera-

tively trains GNNs to remove/add edges. ClusterDrop out-
performs AdaEdge and exhibits greater training efficiency, as
it does not require iterative training.

7.2 Relieving Over-smoothing for Deep GNNs
Over-smoothing often leads to performance degradation
when stacking multiple GNN layers. In this experiment, we
demonstrate how ClusterDrop can alleviate this issue. We
compare the accuracy of GCNs with 2, 4, 6, and 8 layers,
each equipped with different methods. Here ClusterDrop is
applied once at the first GCN layer.

The experiment is performed on the Cora dataset and the
results are shown in Fig. 3(a). We observe that as the GNN

2-layer 4-layer 6-layer 8-layer
50
55
60
65
70
75
80
85

A
cc

ur
ac

y
(%

)

(a)

Vanilla
DropEdge
GUIDE
GAUG
ClusterDrop

2-layer 4-layer 6-layer 8-layer−0.2
−0.1

0.0
0.1
0.2
0.3
0.4

Si
lh

ou
et

te
 sc

or
e

(b)

ClusterDrop
GUIDE
DropEdge
Vanilla

Figure 3: Performance variation across different depths of GCNs on
Cora. The silhouette score is computed based on cosine distance.

becomes deeper, the overall accuracy decreases due to the
gradually severe over-smoothing issue. As shown in Fig. 3(a),
ClusterDrop maintains a substantial advantage in different
depths of the GCN compared to other methods, indicating its
superior performance in relieving over-smoothing. Further-
more, the degradation of ClusterDrop is slower, illustrating
its capability to delay over-smoothing.

As we mentioned earlier, relieving over-smoothing in-
volves two aspects: avoiding smoothness between the node
groups of different classes and preserving smoothness within
groups of nodes of the same class. Here we demonstrate
how ClusterDrop addresses both of these aspects by comput-
ing the silhouette score [Rousseeuw, 1987], which measures
the tightness of each cluster and the difference between clus-
ters. We compute the silhouette score of the last hidden em-
beddings, the higher silhouette score indicates a tighter clus-
ter and a greater difference between clusters. As shown in
Fig. 3(b), ClusterDrop achieves a higher silhouette score than
other methods, and the performance gap becomes more ob-
vious with increasing depth. This demonstrates that Clus-
terDrop learns better embeddings that represent label clus-
ters and its clustering scheme is effective in alleviating over-
smoothing in deep GNNs.

7.3 Efficacy in Dropping Inter-Class Edges
As Theorem 1 and previous studies [Chen et al., 2020a;
Zhao et al., 2021; Wang et al., 2022] asserted, the removal of
inter-class edges plays a crucial role in influencing the predic-
tion performance of GNNs and the extent of over-smoothing
that may occur. Here we provide insight into the effectiveness
of ClusterDrop by examining the ratio of inter-class edges
among the dropped edges during GCN training on Cora and
compare the average number of dropped inter-class edges
across different methods at varying drop rates.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4206

1 50 100 150 200 250 300
Epoch

0.18

0.20

0.22

0.24

0.26

0.28
In

te
r-c

la
ss

 e
dg

e
ra

tio
in

 d
ro

pp
ed

 e
dg

es

(a)
Graph inter-class edge ratio
Training inter-class edge ratio

0.1 0.2 0.3 0.4
Drop rate

0
50

100
150
200
250
300
350
400

N
um

be
r o

f
dr

op
pe

d
in

te
r-c

la
ss

 e
dg

es (b)

DropEdge
GUIDE
ClusterDrop
ClusterDrop_de

MVGRL
ABGML

SFANCE

GraphMAE2
S2GAE GCN

DropEdge

ClusterDrop
67
68
69
70
71
72

A
cc

ur
ac

y
(%

)

(c)

Figure 4: (a) and (b) are ratios and numbers of dropped inter-class edges under different training epochs and drop rate settings. Due to
the randomness in dropping, the inter-class edge dropping ratio fluctuates (the light orange curve in (a)) . The deep orange curve shows
exponentially smoothed values. (c) Results on ogbn-arxiv dataset. The compared GSSL models include MVGRL (ICML-20’), SFANCE
(AAAI-23’), S2GAE (WSDM-23’), ABGML, and GraphMAE2 (both WWW-23’).

Fig. 4(a) shows the ratio of dropped inter-class edges,
which gradually increases as the training epochs progress
and eventually converges around 25%. The blue curve repre-
sents the expected ratio of inter-class edges in a uniform sam-
pling. This suggests that the cluster-level distance effectively
weights inter-class edges with a high dropping probability.

We also compare the number of dropped inter-class edges
of ClusterDrop with DropEdge, GUIDE, and a variant of
ClusterDrop named ClusterDrop de, in which the weighted
random drop is replaced with a deterministic approach that
removes edges in a descending order of their weights, from
highest to lowest. As shown in Fig. 4(b), ClusterDrop drops
more inter-class edges than DropEdge and GUIDE, indicating
that the clusters found by prototypes indeed capture label cor-
related information and provide better guidance than random
drop. ClusterDrop de removes the most inter-class edges,
further suggesting that ClusterDrop assigns more inter-class
edges with higher weights than a totally random approach
thus weighting edges better according to edge types. How-
ever, ClusterDrop with a weighted random drop is still prefer-
able in training because the deterministic drop without ran-
domness is more likely to overfit and largely depends on the
initialization. A poor initialization may lead to a false topol-
ogy augmentation as investigated in [Chen et al., 2020a].

7.4 Performance on Large Graphs
We test ClusterDrop on a large-scale dataset, Ogbn-arxiv, to
show it is also scalable on larger graphs, in which many edge-
predictor-based methods are difficult to apply with significant
memory costs. Due to the non-scalability of other methods,
only DropEdge is compared. Instead, we compare several re-
cent graph self-supervised learning (GSSL) methods, which
achieve outstanding performance on small graphs [Hassani
and Khasahmadi, 2020; Chen et al., 2023; Zhang et al., 2023;
Hou et al., 2023; Tan et al., 2023]. As shown in Fig. 4(c),
generally GSSL methods do not perform superiorly on the
large-scale dataset, and the proposed ClusterDrop performs
the best compared with the best GSSL method S2GAE and
topology augmentation method DropEdge.

7.5 Ablation Study of the Auxiliary Losses
ClusterDrop is trained with two auxiliary losses Lc and La,
where La includes a regularized term Lr (Eq. (14)). We
perform ablation studies with 2-layer GCNs on the citation

Lc La Lr Cora Citeseer Pubmed
GCN - - - 81.2±0.6 70.8±0.8 78.9±0.4

ours

✗ - - 82.3±0.6 71.5±0.4 78.9±0.4
✓ ✗ - 82.3±0.3 72.3±0.4 78.9±0.4
✓ ✓ ✗ 83.3±0.4 72.6±0.4 79.3±0.4
✓ ✓ ✓ 84.3±0.6 72.7±0.6 79.8±0.4

Table 2: Ablation study results of auxiliary losses.

datasets to explore the effects of different losses. Table 2
shows the ablation results. Since the prototypes are mainly
trained by Lc, ClusterDrop without Lc degenerates to random
drop like DropEdge. ClusterDrop with Lc enhances the per-
formance of the vanilla GCN, showing the effectiveness of
cluster-guided edge dropping in mitigating over-smoothing.
Moreover, it also outperforms the model without Lc, demon-
strating the superiority of cluster-guided edge dropping over
totally random drops again. When comparing ClusterDrop
with and without La, improvements in accuracy are observed
across all three datasets, highlighting the advantage of the
assignment loss in ClusterDrop. These findings emphasize
the importance of preserving the smoothness of nodes in the
same classes in addressing the over-smoothing issue. More-
over, the comparison between ClusterDrop with and without
Lr demonstrates that the regularized term further improves
the accuracy, indicating that the design of Lr to enhance the
purity of clusters by pushing away the embeddings of differ-
ent classes is effective.

8 Conclusion
GNN models commonly suffer from the over-smoothing is-
sue. While a lot of previous works have attempted to alle-
viate this issue through topology augmentation, determining
a suitable augmentation method remains challenging. To ad-
dress this challenge, we propose a novel method called Clus-
terDrop, which aims to alleviate the over-smoothing issue
from an efficient and effective cluster perspective. Specif-
ically, our method clusters nodes based on learnable proto-
types and then performs a cluster-level weighted edge drop-
ping during training. The assignment loss is introduced to
enhance the smoothness of nodes with the same label. Exten-
sive experiments on six benchmark datasets demonstrate that
it outperforms SOTA methods and is particularly effective in
relieving the over-smoothing issue.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4207

Acknowledgements
This work was supported by the National Key R&D Pro-
gram of China (No. 2023YFC2811502) and the National
Natural Science Foundation of China (Nos. 62272300 and
61972251).

References
[Asano et al., 2020] Yuki Markus Asano, Christian Rup-

precht, and Andrea Vedaldi. Self-labelling via simulta-
neous clustering and representation learning. In 8th Inter-
national Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net, 2020.

[Caron et al., 2020] Mathilde Caron, Ishan Misra, Julien
Mairal, Priya Goyal, Piotr Bojanowski, and Armand
Joulin. Unsupervised learning of visual features by
contrasting cluster assignments. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Bal-
can, and Hsuan-Tien Lin, editors, Advances in Neural
Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020.

[Chen et al., 2020a] Deli Chen, Yankai Lin, Wei Li, Peng
Li, Jie Zhou, and Xu Sun. Measuring and relieving the
over-smoothing problem for graph neural networks from
the topological view. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 34, pages 3438–
3445, 2020.

[Chen et al., 2020b] Ming Chen, Zhewei Wei, Zengfeng
Huang, Bolin Ding, and Yaliang Li. Simple and deep
graph convolutional networks. In International conference
on machine learning, pages 1725–1735. PMLR, 2020.

[Chen et al., 2023] Dong Chen, Xiang Zhao, Wei Wang,
Zhen Tan, and Weidong Xiao. Graph self-supervised
learning with augmentation-aware contrastive learning. In
Proceedings of the ACM Web Conference 2023, pages
154–164, 2023.

[Ding et al., 2019] Ming Ding, Chang Zhou, Qibin Chen,
Hongxia Yang, and Jie Tang. Cognitive graph for multi-
hop reading comprehension at scale. In Proceedings of the
57th Annual Meeting of the Association for Computational
Linguistics, pages 2694–2703. Association for Computa-
tional Linguistics, July 2019.

[Gasteiger et al., 2019] Johannes Gasteiger, Aleksandar Bo-
jchevski, and Stephan Günnemann. Combining neural
networks with personalized pagerank for classification on
graphs. In International Conference on Learning Repre-
sentations, 2019.

[Guo et al., 2023] Xiaojun Guo, Yifei Wang, Tianqi Du, and
Yisen Wang. Contranorm: A contrastive learning perspec-
tive on oversmoothing and beyond. In The Eleventh Inter-
national Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023, 2023.

[Hassani and Khasahmadi, 2020] Kaveh Hassani and
Amir Hosein Khasahmadi. Contrastive multi-view repre-

sentation learning on graphs. In International conference
on machine learning, pages 4116–4126. PMLR, 2020.

[Hou et al., 2023] Zhenyu Hou, Yufei He, Yukuo Cen,
Xiao Liu, Yuxiao Dong, Evgeny Kharlamov, and Jie
Tang. Graphmae2: A decoding-enhanced masked self-
supervised graph learner. In Proceedings of the ACM Web
Conference 2023, pages 737–746, 2023.

[Hu et al., 2020] Weihua Hu, Matthias Fey, Marinka Zitnik,
Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets
for machine learning on graphs. In Advances in Neural
Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual, 2020.

[Hui et al., 2021] Bo Hui, Da Yan, and Wei-Shinn Ku. Node-
polysemy aware recommendation by matrix completion
with side information. In 2021 IEEE International Con-
ference on Big Data (Big Data), Orlando, FL, USA, De-
cember 15-18, 2021, pages 636–642. IEEE, 2021.

[Jiang et al., 2022] Xuan Jiang, Zhiyong Yang, Peisong
Wen, Li Su, and Qingming Huang. A sparse-motif ensem-
ble graph convolutional network against over-smoothing.
In Luc De Raedt, editor, Proceedings of the Thirty-First In-
ternational Joint Conference on Artificial Intelligence, IJ-
CAI 2022, Vienna, Austria, 23-29 July 2022, pages 2094–
2100. ijcai.org, 2022.

[Keriven, 2022] Nicolas Keriven. Not too little, not too
much: a theoretical analysis of graph (over)smoothing. In
NeurIPS, 2022.

[Kipf and Welling, 2017] Thomas N. Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings, 2017.

[Kipf et al., 2018] Thomas Kipf, Ethan Fetaya, Kuan-Chieh
Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. In International con-
ference on machine learning, pages 2688–2697. PMLR,
2018.

[Li et al., 2018] Qimai Li, Zhichao Han, and Xiao-Ming Wu.
Deeper insights into graph convolutional networks for
semi-supervised learning. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 32, 2018.

[Liu et al., 2023] Yang Liu, Chuan Zhou, Shirui Pan, Jia Wu,
Zhao Li, Hongyang Chen, and Peng Zhang. Curvdrop: A
ricci curvature based approach to prevent graph neural net-
works from over-smoothing and over-squashing. In Pro-
ceedings of the ACM Web Conference 2023, WWW 2023,
Austin, TX, USA, 30 April 2023 - 4 May 2023, pages 221–
230, 2023.

[Newman, 2006] M. E. J. Newman. Modularity and com-
munity structure in networks. Proceedings of the National
Academy of Sciences, 103(23):8577–8582, 2006.

[Pei et al., 2020] Hongbin Pei, Bingzhe Wei, Kevin Chen-
Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geo-
metric graph convolutional networks. In 8th International

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4208

Conference on Learning Representations, ICLR 2020, Ad-
dis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020.

[Rong et al., 2020] Yu Rong, Wenbing Huang, Tingyang Xu,
and Junzhou Huang. Dropedge: Towards deep graph con-
volutional networks on node classification. In 8th Inter-
national Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020, 2020.

[Rousseeuw, 1987] Peter J. Rousseeuw. Silhouettes: A
graphical aid to the interpretation and validation of cluster
analysis. Journal of Computational and Applied Mathe-
matics, 20:53–65, 1987.

[Sinkhorn and Knopp, 1967] Richard Sinkhorn and Paul
Knopp. Concerning nonnegative matrices and doubly
stochastic matrices. Pacific Journal of Mathematics,
21(2):343–348, 1967.

[Tan et al., 2023] Qiaoyu Tan, Ninghao Liu, Xiao Huang,
Soo-Hyun Choi, Li Li, Rui Chen, and Xia Hu. S2gae:
Self-supervised graph autoencoders are generalizable
learners with graph masking. In Proceedings of the Six-
teenth ACM International Conference on Web Search and
Data Mining, pages 787–795, 2023.

[Villani, 2021] Cédric Villani. Topics in optimal transporta-
tion, volume 58. American Mathematical Soc., 2021.

[Wang et al., 2022] Jie Wang, Jianqing Liang, Jiye Liang,
and Kaixuan Yao. Guide: Training deep graph neural net-
works via guided dropout over edges. IEEE Transactions
on Neural Networks and Learning Systems, 2022.

[Wong and Easton, 1980] Chak-Kuen Wong and Malcolm C.
Easton. An efficient method for weighted sampling with-
out replacement. SIAM Journal on Computing, 9(1):111–
113, 1980.

[Wu et al., 2019] Jun Wu, Jingrui He, and Jiejun Xu. Demo-
net: Degree-specific graph neural networks for node and
graph classification. In Ankur Teredesai, Vipin Kumar,
Ying Li, Rómer Rosales, Evimaria Terzi, and George
Karypis, editors, Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, KDD 2019, Anchorage, AK, USA, August
4-8, 2019, pages 406–415. ACM, 2019.

[Wu et al., 2023a] Gongce Wu, Shukuan Lin, Xiaoxue Shao,
Peng Zhang, and Jianzhong Qiao. QPGCN: graph con-
volutional network with a quadratic polynomial filter for
overcoming over-smoothing. Appl. Intell., 53(6):7216–
7231, 2023.

[Wu et al., 2023b] Xinyi Wu, Zhengdao Chen, William Wei
Wang, and Ali Jadbabaie. A non-asymptotic analysis of
oversmoothing in graph neural networks. In The Eleventh
International Conference on Learning Representations,
ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenRe-
view.net, 2023.

[Xu et al., 2018] Keyulu Xu, Chengtao Li, Yonglong Tian,
Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping
knowledge networks. In International conference on ma-
chine learning, pages 5453–5462. PMLR, 2018.

[Zachary, 1977] Wayne W Zachary. An information flow
model for conflict and fission in small groups. Journal
of anthropological research, 33(4):452–473, 1977.

[Zhang et al., 2023] Yifei Zhang, Hao Zhu, Zixing Song, Pi-
otr Koniusz, and Irwin King. Spectral feature augmen-
tation for graph contrastive learning and beyond. pages
11289–11297. AAAI Press, 2023.

[Zhao and Akoglu, 2020] Lingxiao Zhao and Leman
Akoglu. Pairnorm: Tackling oversmoothing in gnns. In
International Conference on Learning Representations,
2020.

[Zhao et al., 2021] Tong Zhao, Yozen Liu, Leonardo Neves,
Oliver Woodford, Meng Jiang, and Neil Shah. Data aug-
mentation for graph neural networks. In Proceedings of
the aaai conference on artificial intelligence, volume 35,
pages 11015–11023, 2021.

[Zheng et al., 2020] Chuanpan Zheng, Xiaoliang Fan,
Cheng Wang, and Jianzhong Qi. GMAN: A graph
multi-attention network for traffic prediction. In The
Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applications of
Artificial Intelligence Conference, IAAI 2020, The Tenth
AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, pages 1234–1241. AAAI Press, 2020.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4209

	Introduction
	Related Works
	Preliminary
	The Framework of ClusterDrop
	Node Clustering with Learnable Prototypes
	Cluster-Guided Edge Dropping
	Smoothing Embeddings with Supervised Signals

	Theoretical Support of ClusterDrop
	Time Complexity Analysis
	Experiments
	ClusterDrop Improves GNNs' Performance
	Relieving Over-smoothing for Deep GNNs
	Efficacy in Dropping Inter-Class Edges
	Performance on Large Graphs
	Ablation Study of the Auxiliary Losses

	Conclusion

