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Abstract
Medical image segmentation is one of the most
critical tasks in medical image analysis. How-
ever, the performance of typical methods is lim-
ited by the lack of high-quality labeled data due
to the expensive spending of annotation data. To
alleviate this limitation, we propose a novel multi-
modal learning method for medical image segmen-
tation. In our method, medical text annotation is
adopted to compensate for the quality deficiency
in image data. Moreover, previous multi-modal
fusion methods ignore the redundant information
between different modalities. In this paper, we
propose a novel multi-modal feature distribution
learning method to reduce redundancy by captur-
ing the discriminate information between text and
image. Additionally, medical image segmentation
needs to predict detailed segmentation boundaries.
Thus, a prompt encoder is designed to achieve
fine-grained segmentation. Experimental results on
three datasets show that our method has superior
performance. Source codes will be available at
https://github.com/GPIOX/Multimodal.git.

1 Introduction
Medical image segmentation, as a pivotal component of aux-
iliary disease diagnosis, holds a crucial role in medical im-
age applications. Enormous advances in medical image seg-
mentation benefit from the more and more annotated datasets.
However, it is still commonly impression that medical imag-
ing datasets are too small to develop robust deep learning
models [Liu et al., 2023]. One reason for this is the expen-
sive spending of high-quality pixel-level annotations. Expert
annotators typically spend several hours to annotate a med-
ical image. In addition, traditional methods only adopt vi-
sion modality to train the model, which limits the ability of
encoded knowledge [Zhao et al., 2023; Wang et al., 2021c;
Wang et al., 2021b]. In contrast, medical text annotation is
naturally rich in semantics. These annotations are much eas-
ier to obtain. Hence, it is intuitive to integrate text annotation
into medical image segmentation.
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Figure 1: Comparison of different multi-modal fusion methods and
the proposed method.

Previous multi-modal methods adopt element addition to
fuse text and vision features. As shown in Fig. 1 (a), the el-
ement addition method can be seen to fuse two distributions
into one in joint feature space H. The fused distribution con-
tains all the information of text and vision features. How-
ever, both task-related and irrelevant information is included
in the fused distribution, which results in information redun-
dancy in the fused features [Hosseini et al., 2024]. Thus, the
performance improvement is limited. Recently, contrastive
learning has been commonly used to align text and image
features [Li et al., 2023a]. Specifically, it considers text cap-
tion as a linguistic view of the image under consideration
as shown in Fig. 1 (b). It then pulls the pair of image and
text feature distribution (p and q, respectively) close in se-
mantic space. Nevertheless, contrastive learning only mod-
els the common information between text and image. It ig-
nores the modality-specific information. For example, the
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edge information in the vision modal. Thus, the value of dis-
tinctive perspectives is neglected due to the suppression of
modality-specific information [Zhang et al., 2024]. In addi-
tion, a large number of image-text pairs data are necessary to
train a contrastive learning model. Thus, contrastive learn-
ing is possibly unsuitable for medical image segmentation
due to high-quality image-text pairs lacking in many med-
ical domains [Thawkar et al., 2023; Huang et al., 2022a;
Huang et al., 2022b].

Furthermore, recent studies [Li et al., 2023a; Wang et al.,
2023] show that text-image models perform poorly in spa-
tial understanding tasks but excel in semantic understand-
ing tasks. We also observe this phenomenon in experiments.
Remarkable spatial perception is essential for accurate seg-
mentation of object boundaries, which is important in medi-
cal image segmentation. The delineation of boundaries can
signify the transitions between different human tissues or
anatomical structures, thus providing essential information
for accurately separating these instances [Wei et al., 2023;
Huang et al., 2021b; Huang et al., 2021a].

To address these issues, we proposed a novel multi-modal
feature distribution method for medical image segmenta-
tion. Firstly, medical text annotation is incorporated into
our method to compensate for the lack of quality in image
data. It also enhances the ability of the model to encode
knowledge. Secondly, we propose a novel multi-modal fea-
ture fusion method, aiming to reduce redundant information.
Modality-specific information is also retained in the proposed
method. Specifically, as shown in Fig 1 (c), a set of learn-
able features is adopted to extract the modality-specific in-
formation of two modalities by maximizing the similarity of
corresponding distributions. Then a distribution is adopted
to model these learnable features. It can maximize discrim-
inative information about tasks. Finally, the boundary re-
gions in images demonstrate a strong correlation with fea-
tures in the frequency domain. Consequently, we propose
a frequency prompt encoder to improve the spatial percep-
tion of the model. It can fully leverage high-frequency infor-
mation. These features serve as spatial information prompts,
which along with the multi-modal features are decoded into
segmentation results.

Our main contributions are summarized as follows:

• We propose a novel multi-modal method that leverages
the text and image features for medical image segmen-
tation. The medical text annotation serves as additional
information, which can enhance the ability of model to
encode knowledge.

• We propose a novel multi-modal fusion paradigm, aim-
ing to reduce redundancy while retaining the modality-
specific information.

• A novel frequency prompt encoder is proposed to lever-
age high-frequency information for accurately segment-
ing boundaries.

2 Related Work
2.1 Medical Image Segmentation
Medical image segmentation refers to the identification of
organ or lesion pixels from medical images [Yao et al.,
2023]. U-Net [Ronneberger et al., 2015] is commonly con-
sidered as a typical segmentation model for medical im-
ages. TransUNet [Chen et al., 2021] and Swin-UNet [Cao
et al., 2022] combine Transformer and UNet for achieving
better performance. However, the performance of traditional
segmentation methods depend on the high-quality annotated
data. Additionally, these methods only are trained with vi-
sual modality data, which potentially constrains model to en-
coded knowledge. Several approaches [Cherti et al., 2023;
Sun et al., 2023] explore leveraging medical text annotation
to reduce reliance on high-quality annotations while main-
taining performance. Inspired by these methods, we pro-
pose a novel method that adopts medical text annotation to
strengthen the ability of model to encoded knowledge. In this
way, it can achieve solid performance on the dataset with lim-
ited high-quality annotations.

2.2 Multi-Modal Learning
Recent studies have shown that text information is useful for
medical image analysis. Thus, it is essential to design an ef-
fective multimodal fusion paradigm to fuse text and vision
features. LAVT [Yang et al., 2022] and VLT [Ding et al.,
2022] integrate text feature into vision feature by a language
encoder. LViT [Li et al., 2023b] directly adopts element-wise
addition to fuse text and vision features. The problem with
these methods is that containing redundant information in the
fused features. Several methods such as MedCLIP [Wang
et al., 2022b], TPRO [Zhang et al., 2023], and others [Wu
et al., 2023; Cao et al., 2023] base CLIP [Radford et al.,
2021] adopt contrastive learning to align text and image fea-
tures. However, these methods only model the commonal-
ities between different modalities. It ignores the wealth of
model-specific information. In addition, the contrastive learn-
ing model requires a large amount of image-text pair data
for training. This paper proposes a novel multi-modal fusion
method. It can effectively reduce redundancy while retaining
modality-specific information.

2.3 Spectral Representation
Deep neural networks are biased towards learning low-
frequency representations [Mildenhall et al., 2021]. To better
leverage high-frequency information, several methods [Mao
et al., 2023] investigate the Fast Fourier Transform (FFT)-
based frequency representation. FFT is a powerful tool, and
it can leverage the strengths of both spectral and spatial rep-
resentations [Tang et al., 2021]. Recent research [Zhu et al.,
2023] has focused on the parallel extraction of spatial and
frequency information within the encoder block. However,
the spatial and computational complexity is increased due to
this parallel extraction for the high-dimension tensor. In this
paper, we propose a novel frequency prompt encoder to fully
aggregate high-frequency information from the frequency do-
main. The proposed method avoids parallel processing in the
vision encoder, which requires fewer parameters and lower
computational cost.
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Figure 2: Overview of the proposed method. First, given the medical image and corresponding medical text annotation, Text encoder and
vision encoder to generate text and vision features. Then a set of learnable features is adopted to reduce redundancy. A distribution is adopted
to model these learnable features. The Fused feature is sampled from this distribution and a cross-modality processer is adopted to further
process it. Finally, the segmentation output is obtained by decoding the post-processed features and the frequency prompt. Additionally,
’snow’ means freezing the parameters of the text encoder.

3 Methodology
3.1 Overview
As shown in Fig. 2, the proposed method consists of four
components. The first part integrates a vision encoder EncI
and a text encoder EncT to extract the vision and text fea-
tures. EncT is a pre-trained CLIP text encoder. The sec-
ond part is a multi-modal feature fusion module. It leverages
a distribution to reduce redundant information while retain-
ing the modality-specific information. The third part is a fre-
quency prompt encoder EncP . Specifically, considering the
frequency information is significant for boundary segmenta-
tion, we designed EncP to fully aggregate high-frequency in-
formation from the frequency domain. Detailed explanations
of these two parts are provided in the following sections. The
last part is a segmentation decoder Dec. It leverages the fused
features from a cross-modality processor PCM and frequency
prompt from EncP to generate segmentation results.

3.2 Multi-Modal Feature Fusion
Previous multi-modal fusion methods usually ignore the re-
dundancy in the fused features. Consequently, it is hard to
capture the discriminative information. To address these is-
sues, we propose a novel multi-modal feature fusion method
with a learnable distribution. Specifically, given the medical
text annotation T and medical image I , EncT and Enc are
adopted to extract the text and vision features FT and FV :

F
′

T = EncT (T ),F
′

V = EncI(I). (1)

Moreover, a convolution block ConvB is used to map visual
and text features to the joint feature space:

FV = Embedding(F
′

V ),FT = ConvB(F
′

T ), (2)

where ConvB consists of a convolution layer and a batch
normalization layer. ReLU is activation function.

A set of learnable features FL is defined in the joint
feature space H. It is adopted to capture the discrimina-
tive information about task-related in FT and FV . Specifi-
cally, texts with similar semantics have high cosine similarity,
which means they are close to each other in the feature space
[Nlong Zhao et al., 2023]. Previous research [Lu et al., 2022;
Huang et al., 2020] further demonstrates that text describing
identical categories cluster together in the feature space. In-
spired by this phenomenon, a prompt TP that is similar in se-
mantics to T is defined. TP is encoded by EncT and ConvB,
which generates a prompt feature FP in H, defined as:

FP = ConvB(EncT (TP )). (3)

FP is close to TP in H. Then FP is repeated K times to
obtain FP = {F1

P ,F
2
P , · · · ,FK

P }. However, these features
are identical, directly initializing them as learnable features
would cause them to converge to the same vector. To avoid
this trouble, Gaussian noise N (0, I) is added to Fi

P ,

Fi
L = Fi

P + 0.1×N (0, I). (4)

This operation can introduce variation to the N features while
ensuring that every Fi

L is still close to FT in H. Conse-
quently, FL = {F1

L,F
2
L, · · · ,FK

L } is initialized as learnable
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features. To model the text and vision feature distributions
(p, q, respectively) in H, we assume that p, q follow Gaussian
distributions p ∼ N (µp,σ

2
p) and p ∼ N (µq,σ

2
q ). With N

learnable features FL, we can estimate the µp and σp of p as:

µp =
1

K + 1
(FT +

K∑
i=1

Fi
L), (5)

σp =
1

K + 1
(FT +

K∑
i=1

Fi
L − µp)

T (FT +
K∑
i=1

Fi
L − µp).

(6)

Similarity, µq and σq of q can be estimated as:

µq =
1

K + 1
(FV +

K∑
i=1

Fi
L), (7)

σq =
1

K + 1
(FV +

K∑
i=1

Fi
L − µq)

T (FV +
K∑
i=1

Fi
L − µq).

(8)

As a result, FL can extract the modality-specific information
in FT and FV .

Then p and q are adopted to reduce the redundant informa-
tion by modeling the discriminative information Specifically,
we leverage Kullback-Leibler divergence LKL to measure the
similarity between p and q. FL can extract modality-common
information by minimizing LKL. LKL is defined as :

LKL =

∫ ∞

−∞
p(x) ln(

p(x)

q(x)
)dx (9)

In the proposed method, LKL can be represented as:

LKL = log
σq

σp
+

1

2σ2
p

(σ2
p + (µp − µq)

2)− 1

2
(10)

To further maximize discriminative information and re-
duce redundant information, we use a Gaussian distribution
N (µr,σr), where µr = µ(FL) and σr = σ(FL) are the
mean and covariance of r, respectively. The fused feature
F is sampled from r. F effectively fuses modality-common
and modality-specific information. Nevertheless, sampling
F from r is not differentiable for optimization. Thus, the
reparameterization trick is adopted, which is similar to VAE
[Kingma and Welling, 2013]. Formally, the process of sam-
pling F is rewrite as:

F = µr + ωσr, (11)

where ω ∼ N (0, I) has same dimension as µr and σr.

3.3 Frequency Prompt Encoder
To improve the spatial perception ability of the text-image
model, we design a frequency prompt encoder EncP . It is
designed to fully utilize high-frequency information, which
aims to prompt the boundaries information for the segmen-
tation decoder. In contrast to previous methods, the pro-
posed EncP is not integrated into basic blocks. Thus it can

avoid parallel processing in the vision encoder, which re-
quires fewer parameters and lower computational cost.

The Discrete Fourier Transform (DFT) is a powerful tool
for converting images to the frequency domain. In practice,
the FFT is used to compute the DFT efficiently, defined as:

Fu,v =
H∑

h=1

W∑
w=1

fh,w · e−j2π( h
H u+ w

W v), (12)

where fh,w dnotes the spectrum represention of I .
Furthermore, the amplitude and phase spectrum of Fu,v

can be computed as |Fu,v| and arg(Fu,v). The phase spec-
trum contains information about the edges and overall struc-
ture [Ghiglia and Pritt, 1998]. Consequently, the phase spec-
trum outperforms the amplitude spectrum in terms of repre-
sentation ability in ablation studies. Therefore, we adopt the
phase spectrum Fpha as the default in the proposed method.
As shown in Fig. 2, EncP consists of two components. The
first component EncP1 is consists of sequences of convolu-
tion layers, layer normalization, and activations. It can be
represented as:

Zi
P = GeLU i(LN i(Convi(Zi−1

P ))), (13)

where Zi
P is the output of layer i and i = {1, 2, · · · , n}.

Convi, LN i, and GeLU i are the i-th convolution layer,
GeLU activation function, and layer normalization, respec-
tively. Similarity, the second component EncP2 can be de-
fined as:

Fi
pha = GeLU i(LN i(ConvT i(Zi−1

P ))), (14)

Fpha = Fn
pha, (15)

where Fpha is the frequency prompt of the I , ConvT i is
the i-th transposed convolution layer. In experiments, we set
N = 2.

3.4 Segmentation Decoder
Like LViT [Li et al., 2023b], the EncI and Dec are U-shape
architecture. Moreover, the cross-modality processor PCM

is also a U-shape architecture. More details about the net-
work architectures of EncI , Dec, and PCM are provided in
the supplementary materials. Last decoder bolck outputs the
segmentation result O, formulated as:

O = Dec(FM
V ,Fpha + PCM (F)), (16)

where FM
V is the output of the last layer of EncI .

3.5 Loss Function
The loss function used in this work are Dice loss LDice, cross-
entropy loss LCE , and LKL, formulated as:

LDice = 1−
S∑

i=1

C∑
j=1

1

SC
· 2|dij ∩ oij |
(|dij |+ |oij |)

, (17)

LCE = −
S∑

i=1

C∑
j=1

1

S
· oij log (dij), (18)
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Method Venue Text MoNuSeg GlaS MosMedData+ Param (M) FLOPs (G)
Dice MIoU Dice MIoU Dice MIoU

UNet MICCAI’2015 % 76.45 62.86 85.45 74.78 64.60 50.73 19.1 412.7
DCA EAAI’2023 % 79.50 65.97 89.90 81.68 72.05 59.78 30.58 87.28

AttUNet MICCAI’2021 % 76.67 63.47 88.80 80.69 66.34 52.82 34.9 101.9
Swin-UNet ECCV’2022 % 77.69 63.77 89.58 82.06 63.29 50.19 82.3 67.3
TransuNet arXiv‘2021 % 78.53 65.05 88.40 80.40 71.24 58.44 105 56.7

UCTransNet AAAI’2022 % 79.09 66.68 89.76 81.91 65.90 52.69 65.6 63.2
MedSAM Nat. Commun’2024 % — 21.40 — 54.79 — — 91.0 371.9

SAM ICCV’2023 % — 32.95 — 67.91 — — 91.0 371.9

Our % 80.24 67.15 89.16 81.22 74.26 61.18 27.5 57.4

ViLT PMLR’2021 ! — — — — 72.36 60.15 87.4 55.9
CLIP PMLR’2021 ! — — — — 71.97 59.64 87.0 105.3

TGANet MICCAI’2022 ! 70.09 61.63 87.96 82.74 71.81 59.28 19.8 41.9
LAVT CVPR’2022 ! 65.36 52.12 76.28 67.52 73.29 60.41 118.6 83.8
LViT-T TMI’2023 ! 80.15 67.00 90.02 82.68 74.57 61.33 29.7 54.1

Our ! 80.96 68.12 91.08 84.00 76.02 63.03 29.2 57.5

Table 1: Quantitative comparison of the proposed method and other SOTA methods on MoNuSeg, GlaS, and MosMedData+ datasets.

where S is the number of pixels in the image, C is the num-
ber of classes, oij and dij are the ground truth and predicted
segmentation output, respectively.

The final loss function L is defined as:

L = λ1LDice + λ2LCE + λ3LKL. (19)

Base on experiments, we set λ1 = 0.5, λ2 = 0.5, and λ3 = 1.

4 Experiments
4.1 Datasets
The proposed method is evaluated on three medical im-
age segmentation datasets: MoNuSeg [Kumar et al., 2017],
MosMedData+ [Li et al., 2023b], and GlaS [Sirinukunwat-
tana et al., 2017]. The first two datasets are the same bench-
mark datasets used in [Li et al., 2023b]. MoNuSeg contains
30 digital microscopic tissue images of several patients, while
MosMedData+ [Morozov et al., 2020; Hofmanninger et al.,
2020] contains 2729 CT scan slices of lung infections. The
ratio of training, validation, and test sets are the same as in
[Li et al., 2023b]. GlaS has 85 images for training and 80 for
testing.

4.2 Evaluation Metrics
Dice score and IoU [Li et al., 2023b] are used to evaluate the
performance of the proposed method and other SOTA meth-
ods. Moreover, we have reported the time complexity and
space complexity of the proposed method. Specifically, the
time complexity is evaluated in Floating Point Operations per
second (FLOPs), and the space complexity is measured by
the number of parameters.

4.3 Implementation Details
The proposed method is optimized by AdamW [Loshchilov
and Hutter, 2017] and cosine annealing learning rate sched-

uler is adopted. The initial learning rate is set to 1e-3 for
all datasets. Image input sizes are 224 × 224 both for
MoNuSeg, GlaS, and MosMedData+. An early stop mech-
anism is adopted until the performance of the model does not
increase for 50 epochs. The batch size is 2 for MoNuSeg and
GlaS and 24 for MosMedData+. The default number of learn-
able features K is set to 32. All experiments are conducted
on a single NVIDIA RTX 3090 GPU with 24GB memory.

4.4 Baseline
Baselines are divided into two sets: single-modal approaches
and multi-modal approaches. Single-modal approaches in-
clude U-Net [Ronneberger et al., 2015], DoubleUnet [Ates et
al., 2023], AttUNet [Wang et al., 2021a], Swin-UNet [Cao
et al., 2022], TransUNet [Chen et al., 2021], UCTransNet
[Wang et al., 2022a] MedSAM [Han et al., ] and SAM [Han
et al., ]. Multi-modal approaches include ViLT [Kim et al.,
2021], CLIP [Radford et al., 2021], TGANet [Tomar et al.,
2022], LAVT [Yang et al., 2022], and LViT [Li et al., 2023b].

4.5 Comparison with State-of-the-Art Methods
The quantitative comparison results are shown in Tab. 1.
From this table, we can clearly observe that the proposed
method achieves the best performance on all datasets. In par-
ticular, the proposed method achieves an 80.24% Dice score
and 67.15% IoU on MoNuSeg, which is outperformance in
the single modal set. The proposed method maintains a sim-
ilar performance to DCA on the GlaS dataset with a smaller
number of parameters and lower computational complexity.

The proposed method achieves an 80.96% Dice score
and 68.12% IoU on MoNuSeg, which respectively increases
by 0.81% and 0.65% compared to the suboptimal method
LViT-T. Similarly, the proposed method obtains 91.08% Dice
score and 84.00% MIoU on GlaS. It outperforms the sec-
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Backbone Text Frequency
Prompt

MoNuSeg GlaS

Dice MIoU Dice MIoU

! 79.16 65.84 88.91 80.77
! ! 80.62 67.63 89.43 81.49
! ! 80.24 67.15 89.16 81.22
! ! ! 80.96 68.12 91.08 84.00

Table 2: Ablation study on the effectiveness of supervised compo-
nents on MoNuSeg and GlaS datasets.

Fusion Method MoNuSeg GlaS

Dice MIoU Dice MIoU

Addition 80.49 67.47 90.21 83.03
Distribution 80.96 68.12 91.08 84.00

Table 3: Ablation study of the different multi-modal fusion methods
on MoNuSeg and GlaS datasets.

ond best method by 1.06% and 1.32%, respectively. Sur-
prisingly, we observe notable improvements in the MosMed-
Data+ dataset. In particular, the performance respectively in-
creases by 1.45% and 1.70% in Dice score and MIoU. This
performance improvement benefits from reducing redundant
information and maximizing the discriminative information.

It is worth noting that the proposed method with text anno-
tation achieves better performance than the proposed method
without text annotation. In detail, the proposed method with
text annotation respectively increased by 0.72% and 0.97%
in Dice score and MIoU on MoNuSeg. Similarly, the per-
formance improvements are 0.92% and 1.36% on GlaS, and
0.45% and 0.70% on MosMedData+. It demonstrates that
medical text annotation can enhance the robustness of en-
coded semantics. Moreover, as shown in Fig. 3, the proposed
method achieves more higher-quality segmentation results.

4.6 Ablation Study
Effectiveness of Supervised Components
Tab. 2 reports the ablation experimental results of the effec-
tiveness of supervised components. These results indicate
that all of these components are effective for the proposed
method. It is worth noting that incorporating text annotation
significantly improves segmentation performance.

Specifically, the Dice score and MIoU are increased by
1.46% and 1.29% on MoNuSeg, respectively. The perfor-
mance improvements are 0.52% in Dice score and 0.72% in
MIoU on GlaS. The frequency prompt encoder is also effec-
tive for the proposed method. It respectively increases by
1.08% and 1.13% in Dice score and MIoU on MoNuSeg.
Similarly, performance improvements are 0.25% and 0.97%
on GlaS in Dice score and MIoU, respectively. The proposed
method with both text annotation and frequency prompt en-
coder achieves the best performance.

Impact of Different Multi-modal Fusion Methods
Tab. 3 reports the ablation experimental results of the differ-
ent multi-modal fusion methods. These results indicate that

FPamp FPpha
MoNuSeg GlaS

Dice MIoU Dice MIoU

! 80.40 67.36 90.37 83.14
! 80.96 68.12 91.08 84.00

! ! 80.71 67.78 89.20 81.22

Table 4: Ablation study on frequency prompt encoder. FPpha

and FPamp denote the phase and amplitude spectrum of frequency
prompt, respectively.

Value Setting MoNuSeg GlaS

Dice MIoU Dice MIoU

0.1 80.96 68.12 90.37 83.14
0.5 80.89 68.03 90.77 83.73
1.0 80.84 67.94 91.08 84.00
1.5 80.74 67.83 89.98 82.36

Table 5: Ablation study of different λ3 value.

the distribution fusion method is more effective than the ad-
dition fusion method. In details, the Dice score and MIoU
are increased by 0.47% and 0.65% on MoNuSeg, respec-
tively. The similar trends are observed on GlaS dataset, which
respectively increased by 0.87% and 0.97% in Dice score
and MIoU. This significant improvement benefits from min-
imizing redundant information while retaining the modality-
specific information. Consequently, multi-modal features can
be effectively fused and more valuable in improving segmen-
tation results.

Impact of Amplitude and Phase Spectrum
Tab. 4 indicates the effectiveness of the frequency adapter,
and it can be observed that phase spectrum information is
more helpful for spectrum representation compared to phase
information. In other words, the proposed frequency adapter
can extract more valuable edge and overall information from
the phase spectrum. Thus our proposed frequency adapters
fully take advantage of amplitude information, which is more
related to segmentation boundaries.

Impact of Different Balance Factors
We conduct the ablation study of different λ3 values. In par-
ticular, λ3 is respectively set as 0.1, 0.5, 1.0, and 1.5. The
experimental results are shown in Tab. 5. It can be observed
that the proposed method achieves the best performance when
λ3 is set to 1.0 on MoNuSeg. And the best performance is
achieved on GlaS when λ3 is 0.1. This is because of the size
of the dataset.

On the one hand, the model would remove more informa-
tion that it considers to be redundant if the size of the dataset
is too small in the large lambda. Smaller datasets mean less
information. In other words, excessive information compres-
sion within modalities may discard useful knowledge while
λ3 are further increased in small datasets. On the one hand,
the fused feature would contain more redundant information
while λ3 are small in GlaS. It results in multi-modal features
that could be effective to adopt and have a negative impact
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Figure 3: Qualitative comparison of the proposed method and other SOTA methods on MoNuSeg, GlaS, and MosMedData+ datasets. The
green boxes highlight regions where the proposed method performs better than the other methods.
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Figure 4: The visualization results of text, vision, and learnable features on three datasets. Specifically, red ellipses, yellow ellipses, and blue
ellipses represent the distributions of text features, learnable features, and visual features, respectively. Different colored points represent the
samples drawn from the corresponding distributions.

for decoder. Summarized, this variation could be attributed
to differences in multimodal redundant levels in the disparity
size of datasets, which conversely affects the optimal weight-
ing to minimize redundant information in the training stage.

Interpretability of Proposed Fusion Method
To validate that the distribution of learnable features have
modeled the discriminative information within multimodal
data, we conduct random sampling from each distribution on
three datasets. Subsequently, we reduce the obtained high-
dimensional vectors to a two-dimensional plane using t-SNE.
As illustrated in Fig. 4, the distribution of learnable features
lies between the text and visual feature distribution, indicat-
ing the effectiveness of the proposed approach. Specifically,
the distribution of learnable features can reduce the redun-
dancies (modality-specific task-irrelated infirmation) multi-
modal data by only modeling the most discriminative infor-
mation. Meanwhile, the discriminative information extracted
from text and vision feature contains both modality-common
and modality-specific task-related information.

5 Conclusion

In this paper, a novel multi-modal method that leverages
the text and image features for medical image segmenta-
tion. Specifically, we propose a novel multi-modal fusion
paradigm, aiming to reduce the redundant information while
retaining the modality-specific information. And the discrim-
inative information can be extracted from the fused feature,
which significantly improves the performance. Moreover, a
novel frequency prompt encoder is designed to leverage high-
frequency information for accurately segmenting boundaries.
Experimental results demonstrate the effectiveness of the pro-
posed method.

Acknowledgments

This work was supported by National Natural Science Foun-
dation of China (62301621, 62301323) and Shenzhen Sci-
ence and Technology Program (20231121172359002).

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4162



References
[Ates et al., 2023] Gorkem Can Ates, Prasoon Mohan, and

Emrah Celik. Dual cross-attention for medical image seg-
mentation. EAAI, 126:107139, 2023.

[Cao et al., 2022] Hu Cao, Yueyue Wang, Joy Chen, Dong-
sheng Jiang, Xiaopeng Zhang, Qi Tian, and Manning
Wang. Swin-unet: Unet-like pure transformer for medical
image segmentation. In ECCV, pages 205–218. Springer,
2022.

[Cao et al., 2023] Yunkang Cao, Xiaohao Xu, Chen Sun,
Yuqi Cheng, Zongwei Du, Liang Gao, and Weiming Shen.
Segment any anomaly without training via hybrid prompt
regularization. arXiv preprint arXiv:2305.10724, 2023.

[Chen et al., 2021] Jieneng Chen, Yongyi Lu, Qihang Yu,
Xiangde Luo, Ehsan Adeli, Yan Wang, Le Lu, Alan L
Yuille, and Yuyin Zhou. Transunet: Transformers make
strong encoders for medical image segmentation. arXiv
preprint arXiv:2102.04306, 2021.

[Cherti et al., 2023] Mehdi Cherti, Romain Beaumont, Ross
Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade
Gordon, Christoph Schuhmann, Ludwig Schmidt, and
Jenia Jitsev. Reproducible scaling laws for contrastive
language-image learning. In CVPR, pages 2818–2829,
2023.

[Ding et al., 2022] Henghui Ding, Chang Liu, Suchen Wang,
and Xudong Jiang. Vlt: Vision-language transformer and
query generation for referring segmentation. IEEE TPAMI,
2022.

[Ghiglia and Pritt, 1998] Dennis C Ghiglia and Mark D Pritt.
Two-dimensional phase unwrapping: theory, algorithms,
and software. Wiely-Interscience, first ed.(April 1998),
1998.

[Han et al., ] Xianjun Han, Tiantian Li, and Hongyu Yang.
Integrating prior knowledge into bi-branch pyramid net-
work for medical image segmentation. Available at SSRN
4564024.

[Hofmanninger et al., 2020] Johannes Hofmanninger, Fo-
rian Prayer, Jeanny Pan, Sebastian Röhrich, Helmut
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