
Practical Hybrid Gradient Compression for Federated Learning Systems

Sixu Hu , Linshan Jiang , Bingsheng He
National University of Singapore

sixuhu@comp.nus.edu.sg, linshan@nus.edu.sg, hebs@comp.nus.edu.sg

Abstract

The high communication cost is a major chal-
lenge in the federated learning (FL) training pro-
cess. Several methods have been proposed to re-
duce communication costs on the uplink chan-
nel, primarily sparsification-based methods, which
have overlooked the impact of downlink chan-
nels. However, model accuracy and communica-
tion cost issues arise when applying them in practi-
cal FL applications, especially when the bandwidth
is limited both on the uplink and downlink chan-
nels. In this paper, we propose a novel secure-
FL-compatible hybrid gradient compression frame-
work (HGC) that handles both uplink and downlink
communication. Specifically, HGC identifies and
exploits three types of redundancies in the FL train-
ing process. With proposed optimization methods
based on compression ratio correction and dynamic
momentum correction, HGC improves the trade-
off between communication cost and model per-
formance. The extensive theoretical and empiri-
cal analysis demonstrates the effectiveness of our
framework in achieving a high compression ratio
for both uplink and downlink communications with
negligible loss of model accuracy, surpassing the
state-of-the-art compression methods.

1 Introduction
Federated learning (FL) [McMahan et al., 2017] enables col-
laborative learning of a global model from multiple clients
without directly communicating each client’s private data, by
passing model parameters, gradients, or other information
about the models. The high communication cost is one of the
key bottlenecks in FL training processes, especially for ge-
ographically distributed settings required by federated learn-
ing. In practice, their bandwidth is often limited to less than
100Mbps [Yang et al., 2019; Philippenko and Dieuleveut,
2022], or it is simultaneously charged, such as 4G/5G net-
works. Since the communication of uncompressed FL often
take gigabytes or even terabytes through iterations, it can eas-
ily cost over 80% of the total training time [Xu et al., 2021;
Chen et al., 2020] and waste bandwidth resources. Thus, re-

ducing the communication cost in the FL training process is
essential for practical deployment of FL systems.

Methods that utilize sparsification [Aji and Heafield, 2017;
Lin et al., 2018; Stich et al., 2018; Chen et al., 2020], quan-
tization [Wen et al., 2017; Alistarh et al., 2017; Bernstein et
al., 2018; Wu et al., 2022], and their combinations [Basu et
al., 2020; Sattler et al., 2020] are shown to be the most ef-
fective methods for reducing the communication costs in FL
training processes. However, they only focus on compress-
ing the messages in the uplink channel (i.e., model/gradients
sent from clients to the server). Although the downlink
channel is generally considered to be less bandwidth-limited
when compared to the uplink channel [Yue et al., 2022;
Philippenko and Dieuleveut, 2022], their bandwidth differ-
ence is still within the same order of magnitude. Even within
the same cluster, regular Ethernet switch usually provides
1Gbps bandwidth at maximal [Wen et al., 2017], while mo-
bile devices are more limited, averaging at 33.88/9.75 Mbps
downlink/uplink in the U.S. in 2019 [Zhang et al., 2020]. In
this paper, we show that under a 1Gbps network, with a model
having tens of megabytes, the downlink communication can
still dominate the training process by taking more than 50%
of the training time, even when the uplink communication is
sufficiently compressed, as shown in the experiments in Sec-
tion 5. Therefore, compression algorithms that apply to both
uplink and downlink channels are essential to effectively re-
duce the communication costs in FL training.

To achieve bi-directional compression, a naive idea is to
simply apply the same compression method on the down-
link channel that is originally used for uplink compres-
sion, as employed by existing works [Tang et al., 2019;
Zheng et al., 2019; Sattler et al., 2020]. However, these al-
gorithms do not efficiently utilize gradient information. First,
they tend to over-compress the gradients. Since each gra-
dient is compressed twice in a communication round, only
partial information gathered from the clients is used for up-
dating the global model, consequently degrading the quality
of the global model. Second, they only focus on compress-
ing individual clients’ gradients but overlook the potential for
further reducing the communication cost by utilizing redun-
dancies between clients and across the temporal dimension.
Thus, the quality of their global models is not satisfactory.
As an example of these two inefficiencies, STC [Sattler et
al., 2020] only achieves 83.82% accuracy in the CIFAR-10

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4147

task when the sparsification ratio is 0.1% in our reproduction,
while the accuracy for the baseline FedAvg algorithm in the
same setting is 90.52%.

In short, existing gradient compression algorithms for FL
have deficiencies in balancing communication and model ac-
curacy. It involves two aspects: 1) Optimizing communica-
tion cost in both the uplink and downlink directions to pre-
vent loss of model quality or convergence rate due to over-
compression in the downlink channel. 2) Reduce repetitive or
similar information within the gradient of one client, across
different clients, and among consecutive gradients updates, to
achieve superior compression ratios. We name these repeti-
tion intrinsic, cross-client, and temporal redundancy.

To address these issues, we propose a Hybrid Gradient
Compression (HGC) algorithm in this paper that utilizes
combined compression techniques, including sparsification,
quantization, and encoding, to optimize the trade-off between
model quality and communication cost. More specifically,
we first apply sparsification on the gradients with a shared
sparsification mask. Then, the sparsified gradients are quan-
tized and entropy-coded to maximize the compression ratio.
These techniques maximizes the compression ratio in both
uplink and downlink channels by exploiting the redundancies
we have identified, reducing the total size of gradients and
metadata such as sparsification masks transmitted.

Our contributions can be summarized as follows.

• We design a FL gradient compression algorithm that
operates efficiently on uplink and downlink channels
simultaneously and supports existing secure FL tech-
niques. To the best of our knowledge, we are the first
to identify and utilize the three types of redundancies
for FL gradient compression to achieve a state-of-the-art
compression ratio.

• We propose novel optimization methods, namely com-
pression ratio correction and dynamic momentum cor-
rection. They effectively improve our compression al-
gorithm to enable efficient trade-off between communi-
cation cost and model performance.

• With theoretical analysis of our algorithm, we provide
both the convergence guarantees of a generalized gradi-
ent compression system. We also provide guidelines for
selecting its components and parameters.

• With empirical analysis of our algorithm, we show that
our algorithm can achieve a compression ratio much
higher than state-of-the-art methods without loss of
model accuracy. We also show that our algorithm per-
forms well in various FL scenarios, including skewed
data distribution, large-scale training, and secure FL.

In the following part of this paper, we first formalize the prob-
lem and elaborate on the backgrounds of gradient compres-
sion in Section 2. In Section 3, we present the details of our
compression algorithm. Section 4 and Section 5 present the
theoretical and empirical analysis, respectively. Finally, we
summarize and conclude our work in Section 6.

2 Backgrounds
The FL problem with N clients collaboratively training on a
global model w can be formalized as, where wi are the model
weight of client i (i ∈ [N]). The weight update rules of its
uplink (from client to server) and downlink (from server to
client) channels are should be:

wt = w(t−1) − η
1

N

N∑
i=1

∇f(w(t−1)
i),wt

i = wt, ∀i (1)

To compress the gradient, we apply compressors to the com-
munication process:

wt = w(t−1) − η
1

N

N∑
i=1

compup

(
∇f(w(t−1)

i)
)
,

wt
i = compdown

(
wt

)
, ∀i

(2)

The main target of this paper is to find good compressors
compup and compdown that balance well between the model
quality, communication cost, and computation cost. Note that
the non-compressed algorithm can be viewed as a special case
of Equation 2, where compup = compdown = f : x 7→ x (the
identity function).

Related works can be categorized based the on compres-
sion techniques they use. While gradient compression has a
broad range of techniques, we specifically focus on those that
are particularly relevant to our work and align with our focus
on compression in FL settings.

Sparsification. Sparsification algorithms utilize the spar-
sity of gradients and only transmit part of them using spar-
sification masks. The top-k mask selection method [Aji and
Heafield, 2017; Alistarh et al., 2018] is widely used due to its
implementation simplicity and high convergence efficiency.
Top-k selects and transmits k elements in the gradient sorted
by their absolute values. Other index selection methods such
as random-k [Stich et al., 2018] and sketch-based [Ivkin et
al., 2019] methods have also been widely studied, but they do
not show efficiency superior to top-k-based methods.

A typical example of top-k-based compression algorithms
is Deep Gradient Compression (DGC) [Lin et al., 2018]. It is
a widely tested and compared sparsification algorithm. It up-
dates each client’s top-k mask in every communication round
and uses the mask to compress the uplink channel communi-
cation. Additionally, it performs error feedback to amortize
the error inducted by top-k, where the error is stored locally
and added to the momentum in subsequent communication
rounds. Another noteworthy application of top-k sparsifica-
tion is ScaleCom [Chen et al., 2020]. It proposes the cyclic
top-k (CLT-k) method that explores and utilizes the similar-
ity between the gradients on each client, which shows scala-
bility advantage compared to other algorithms [Strom, 2015;
Chen et al., 2018; Lin et al., 2018] that simply apply of top-k
on all the clients.

Quantization. Quantization is another way of compress-
ing the gradient by reducing the number of bits of each el-
ement in the transmitted gradients. Existing studies such as
signSGD [Bernstein et al., 2018] and 1-bit SGD [Seide et

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4148

al., 2014] show that 1-bit quantization is practical and some-
times sufficient in the model training process. More quanti-
zation bits are often allowed to better approach the uncom-
pressed gradients by optimizing the selection of quantization
levels [Alistarh et al., 2017; Yu et al., 2019]. Other auxil-
iary methods such as error-feedback mentioned in the sparsi-
fication methods can also be applied in the quantization pro-
cess [Karimireddy et al., 2019; Wu et al., 2018] to further
improve the convergence of the training process.

Encoding. Quantization provides a fixed maximum com-
pression ratio. That is, if we compress all 32-bit floats to
1-bit, the overall compression ratio will be 32×. If combined
with proper lossless encoding, the overall communication
cost can be further reduced. Traditional Huffman-coding-
based encoding algorithms such as DEFLATE [Deutsch,
1996] and entropy encoding methods like arithmetic encod-
ing [Witten et al., 1987] have shown their efficiency for
quantized gradients [Abdi and Fekri, 2019]. Golomb cod-
ing [Golomb, 1966] can also reduce the size of indices after
sparsification [Sattler et al., 2020; Wu et al., 2022]. Recently,
predictive coding techniques [Yue et al., 2022] inspired by
video processing have also been proposed, which utilize his-
torical gradient data to further improve the compression ratio
of the encoding process.

Hybrid Algorithms. Hybrid approaches utilizing multiple
compression methods, especially sparsification and quanti-
zation, have been studied to further improve the compres-
sion ratio and also achieve other goals such as improving
the communication-computation trade-off. Both Qsparse-
local-SGD [Basu et al., 2020] and STC [Sattler et al.,
2020] combine top-k sparsification and quantization, while
SketchML [Jiang et al., 2018] combines sketching and quan-
tization to improve the compression ratio.

However, as we compare the performance of the above
methods in Table 1, we find that none of them achieve
an optimal state in terms of utilizing data redundancies to
achieve a sufficient compression ratio, while also handling
bi-directional compression. Most of them only target reduc-
ing the intrinsic redundancies of the gradients on individual
clients. Meanwhile, they do not ensure compatibility to se-
cure FL, since the gradient size increases when exchanging
data between clients. As of today, these algorithms still re-
main the most performant ones in their respective settings
to the best of our knowledge. Other related works such as
GossipFL [Tang et al., 2023] either add a different objective
other than maximizing the compression ratio or do not pro-
vide comparable performance. This leaves us with the possi-
bility to further optimize the entire compression framework.

3 Hybrid Gradient Compression
We design our framework to exploit intrinsic redundancies
within a gradient, cross-client redundancies among differ-
ent clients, and temporal redundancies between consecu-
tive gradients updates to achieve superior compression ra-
tios. The training loop of our algorithm resembles that of
FedAvg [McMahan et al., 2017]. The clients train models
and compress gradients, which are then sent to the server.

Aggregator DequantizerDesparsifier

Predictor

xor

antizerSparsifier

③

④

Buffer

Se
rv
er

Downlink channel

Decoder

Encoded sparsification mask
Encoded aggregated gradient

Indices Decoder

Encoder

antizerModel trainer

Predictor

xorSparsifier

① Sparsifier antizer

②

BufferA
 C

lie
nt

Encoded sparsification mask

Encoder

Indices Encoder

Uplink channel
Encoded gradient residue

Decoder

Figure 1: Overview of the HGC Algorithm.

The server decompresses and aggregates the gradients, then
broadcasts the gradients to all clients.

Figure 1 illustrates the detailed compression steps on the
server and clients, respectively. Note that the communication
rounds begin with the model trainer in Figure 1. For each
client i, the model trainer computes the gradient gi. The gra-
dient gi is then passed through the sparsifier and quantizer,
along with the predicted gradient p. The compressed gradi-
ent g̃i and prediction p̃ are combined using the XOR operator
to compute the gradient residue ẽi in order to reduce the en-
tropy of the message. The residue ẽi is then sent to the server
through the uplink channel 2 together with the encoded spar-
sification mask, where both ẽi and the mask is encoded with
lossless entropy-encoding methods.

The server reverses the client’s compression process and
mirrors the client’s prediction process for restoring the com-
pressed gradient residue ẽi to the original compressed gradi-
ent g̃i. After aggregating gradient g̃i with the aggregator to
obtain g̃, the server uses g̃ to update the global model. Si-
multaneously, g̃ is sent to both the server’s prediction buffer
and the clients’ prediction buffers to keep all buffers synchro-
nized 4 . The local model updates are also performed in this
process, completing a communication round.

Compared to existing hybrid gradient compression al-
gorithms, our proposed algorithm has two major differ-
ences. First, all clients’ sparsifiers and the server’s sparsi-
fier share the same user-selectable mask, effectively reduc-
ing the indices transmission cost. On the uplink channel,
only one client transmits the hard-to-compress mask, while
other clients only transmit highly-compressible gradient. On
the downlink channel, our approach maintains sparsity of g̃
when aggregating g̃i while preventing over-compression in
the downlink channel. Second, unlike other studies utilizing
gradient residues [Chen et al., 2018; Yue et al., 2022], our
algorithm computes the gradient residue ẽi after the sparsi-
fication and quantization processes. This decouples the pre-
diction process from sparsification and quantization, making
it optional and providing us with more control over the lossy
compression aspect of the entire algorithm. A more detailed
pseudo code implementation is provided in Appendix A.3.

3.1 Hybrid Compression
As shown in Figure 1, our hybrid compression method mainly
involves three components: sparsification, quantization, and

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4149

Compression algorithm
Methods Redundancies Characteristics

Sp. Qt. Ec. Intr. C.C. T. Dl. SFL CRup

DGC [Lin et al., 2018] ✓ ✓ Medium
ScaleCom [Chen et al., 2020] ✓ ✓ ✓ ✓ Medium
QSGD [Alistarh et al., 2017], signSGD [Bernstein et al., 2018] ✓ ✓ Low
Predictive Coding [Yue et al., 2022] ✓ ✓ ✓ ✓ High
Qsparse [Basu et al., 2020], STC [Sattler et al., 2020] ✓ ✓ ✓ ✓ ✓a High
HGC (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ High

∗ Abbreviations in the table: Sp.: Sparsification, Qt.: Quantization, Ec.: Encoding, Intr.: Intrinsic redundancy, C.C.: Cross-
Client redundancy, T.: Temporal redundancy, Dl.: Downlink compression, SFL: Secure FL compatibility, CRup: Uplink com-
pression ratio. a Only applies to STC.

Table 1: Comparison of compression algorithms.

encoding. The gradient of each client gi is fed through the
sparsifier and quantizer, then through the encoder. The spar-
sifier and quantizer exploit the intrinsic redundancies of the
gradient. The mask generation process of the sparsifier uti-
lizes the cross-client redundancy, and then the predictor com-
bined with the encoder utilizes the temporal redundancy. We
now elaborate on these three phases separately. The detailed
analysis of the redundancies can be found in Appendix A.1.

Sparsification. Both the low efficiency of current compres-
sion methods in downlink and secure-aggregation scenarios
are caused by sparsification mask mismatch. We illustrate
it with a toy example shown in Figure 2a. When perform-
ing sparsification independently on different clients, there is a
high chance that the sparsification masks differ. Adding these
sparse vectors together reduces the result’s sparsity, which af-
fects communication efficiency in FL training. However, if
the sparsification masks are matched, as shown in Figure 2b,
the result shows no sparsity drop. Therefore, well-matched
masks can greatly improve the effectiveness of sparsification.

Maintaining a high sparsity level during training is crucial,
since the cost of transmitting sparse mask indices is generally
higher than the cost of transmitting the sparsified gradient el-
ements. While the sparsified gradient elements can be further
compressed through quantization and encoding, the sparse
indices themselves are typically incompressible. Therefore,
reducing the communication cost of indices is crucial. One
effective method to achieve this is by allowing all clients to
share indices. By doing so, the communication cost associ-
ated with transmitting indices can be significantly reduced.

Apart from making the mask shared, there are no extra re-
strictions on how the mask should be selected. Either top-k,
random-k or even a combination of them can be used. In prac-
tice, we find that it is most efficient to make all clients share

0 0.19 0 0.10 0 0.63 0.02 0

0.75 0 0.89 0.56 0 0.72 0 0

1.35 0.020

+

0.75 0.19 0.89 0.66 0

Client 1

Client 2

=

Server

(a) Mismatched masks

0 0.19 0 0.10 0 0.63 0.02 0

0 0.02 0 0.56 0 0.72 0.05 0

1.35 0.070

+

0 0.21 0 0.66 0

=

(b) Matched masks

Figure 2: Sparsification with mismatched/matched masks.

one client’s top-k mask, minimizing the communication cost
of uploading and downloading indices while still maintaining
a high global model quality.
Quantization. We choose the quantizer Q with L quanti-
zation levels where the l-th level has lower and upper bounds
of xmin

l and xmax
l . We define the index set of l-th level as

Il = {i|xmin
l ≤ xi < xmax

l } and quantize every element in
the original tensor x such that:

Q(xi) =
1

|Il|
∑
i∈Il

xi
∆
= ql, if xi ∈ Il, ∀i (3)

We select the quantization levels by evenly dividing the pos-
itive and negative elements in x separately, so that all levels
of the same sign have roughly the same number of elements.
This quantizer can be viewed as a generalized version of the
quantizer used in STC [Sattler et al., 2020], which has been
proven effective when combined with the top-k sparsifier.
Encoding. We use the Golomb encoding [Golomb, 1966]
to compress the sparsified indices, which can achieve a com-
pression ratio of 2–3× for 32-bit indices [Sattler et al., 2019;
Sattler et al., 2020]. We then use arithmetic encoding com-
bined with gzip to compress the quantized and sparsified gra-
dients. Since encoding of the gradient is closely related to
the entropy of the data being encoded, we introduce a pre-
dictive coding module to reduce such entropy, inspired by a
prior predictive encoding work [Yue et al., 2022]. Instead
of predicting model weights, the predictor in our approach is
expected to generate predictions p that are either positively
or negatively correlated with gradient gi, so that their sparsi-
fied and quantized difference ẽi can be more biased than g̃i
to reduce the entropy of the data being encoded. Specifically,
in each communication round, we store the aggregated gradi-
ent g̃t and generate the prediction pt as shown in Equation 4,
similar to the update rule of the Adam optimizer [Kingma
and Ba, 2017]. ut and vt are initialized as zeros, and β is the
running average coefficient.

ut = βut−1 + (1− β)g̃t, vt = βvt−1 + (1− β)g̃2t ,

pt =
ut√
vt + ε

(4)

The buffers only need to store ut, vt and g̃t, all having the
same size of the sparsified gradient. The buffers are syn-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4150

chronized among the server and all clients to make sure that
the server and clients get the same predictions. As such, the
residue can be correctly restored.

3.2 Optimization Techniques
We consider optimization techniques when implementing
HGC, namely sparsification ratio and momentum adjustment,
and error feedback. Both of them are essential for improving
the model quality in FL when compression is applied.
Dynamic sparsification ratio and momentum adjustment.
Through preliminary experiments, we find that sparsification
of gradients can lead to the training process to be trapped
by saddle point or local minima, since it essentially lim-
its the dimension of optimization direction. We also find
that dynamic adjustment of the sparsification ratio helps al-
leviate this issue and improves the convergence accuracy
when used together with error feedback. Further demon-
strations of this issue can be found in Appendix A.2. Re-
garding momentum, multiple studies have addressed its abil-
ity to accelerate convergence [Phansalkar and Sastry, 1994;
Qian, 1999] and to enable the model to jump out of saddle
points [Wang et al., 2020]. Therefore, the adjustment of mo-
mentum is also given special consideration in our design.

Although the time and duration for adjusting these two pa-
rameters are decided empirically, we find that adjusting these
parameters after the optimization process reaches a plateau
can minimize the adjustment duration required, and thus incur
trivial communication overhead. When using stepped learn-
ing rate schedulers, we temporarily lower the compression
ratio before and after the learning rate is changed, followed
by the momentum change.
Error Feedback. Since the sparsification and quantization
used in our algorithm are biased, error feedback is necessary.
We adopt the same error feedback algorithm used in exist-
ing algorithms [Lin et al., 2018; Karimireddy et al., 2019].
Specifically, we maintain error buffers mi that have the same
size as the model on each client i and initialize them as 0.
At the end of each local training, we accumulate the errors
locally by updating mi as follows: mi ← mi + ∇̂fi(w) −
Decompress(Compress(∇̂fi(w))), where ∇̂fi(w) is the gra-
dient on client i. Then, we add them back to the gradients in
the next communication round by ∇̂fi(w)← ∇̂fi(w)+mi.

4 Analysis
We theoretically analyze the HGC from two perspectives: the
convergence rate and the system utilization (i.e., the commu-
nication and computation cost). The precondition for the con-
vergence analysis also provides us with some insights for the
selection of the compressor. The detailed proofs of the con-
vergence can be found in Appendix B.

4.1 Selection of the Compressor
Lemma 1 (Contraction property of the compressor). For
any sparsifier S and quantizer Q satisfying min(0, 2µl) <
Q(xi) < max(0, 2µl) for all its quantization level l, com-
pressor Q ◦ S satisfies the following contraction property:

E∥x− comp(x)∥2 = γ∥x∥2 ≤ ∥x∥2 (5)

where 0 ≤ γ ≤ 1 is the contraction coefficient.

Remark. The contraction property of the compressor has
been shown to be fundamental to various convergence anal-
yses that involve gradient compression [Alistarh et al., 2018;
Stich et al., 2018]. This lemma states that the convergence
bound shown in the following Theorem 1 is applicable to a
wide range of compressors, quantizers, and their combina-
tions that meet the stated criteria.

4.2 Convergence Analysis
With the contraction property in Lemma 1, the proof in con-
vex optimizations immediately follows the proof of Stich et
al. [Stich et al., 2018]. The convergence bound in the non-
convex case is shown as follows.
Assumption 1 (L-Lipschitz Continuity). We assume that the
target function is L-Lipschitz continuous, i.e., ∥∇f(x) −
∇f(y)∥ ≤ L∥x− y∥, ∀x,y ∈ Rd.

Assumption 2 (Stochastic Gradient Bound). We assume that
the stochastic gradients are unbiased and bounded in ev-
ery client: E∇̂fi(x) = ∇fi(x), ∥∇̂fi(x)∥ ≤ G, ∀i. It
immediately follows that the sum of them is also bounded:
E∥ 1n

∑n
i=1 ∇̂fi(x)∥2 ≤ G2.

Theorem 1 (Convergence bound). Under Assumption 1
and 2, with a learning rate ηt = η0 = c/

√
T , ∀t where

0 < c <
√
T · min{1, 1/(

√
2γ)} being a constant, the al-

gorithm converges to a local optimum. Specifically, after T
communication rounds, we have

1

T

T∑
t=0

E∥∇f(xt)∥2

≤ 1√
T

(
4

c

(
f(x0)− f(x∗)

)
+

16cγ4L2G2

1− 2η20γ
2

+ 2cLG2

) (6)

Indicating that the algorithm implemented by our algorithm
has O(1/

√
T) convergence rate.

Remark. Assumptions 1 and 2 are the assumptions widely
used in convergence analysis of machine learning studies [Al-
istarh et al., 2018; Stich et al., 2018]. Theorem 1 shows
that the convergence rate is at least the same as FedAvg (i.e.
O(1/

√
T)), which can be further verified in the experiments

in Section 5.

4.3 Communication and Computation Cost
In the worst-case scenario, assuming all data after sparsifi-
cation and quantization are incompressible, the uplink com-
pression ratio of one communication round, with N clients,
a top-k sparsifier and quantization bits of q (assuming 32-bit
indices and gradients) applied to a model with M parameters,
the uplink compression ratio of one communication round
will be 32MN/((Nq + 32)k) and the downlink compres-
sion ratio M/2k. However, the actual situation can deviate
significantly from this worst-case due to multiple factors in-
fluencing the compression ratio, including the effectiveness
of the predictor and the entropy encoder. When considering
end-to-end compression ratios, additional factors come into
play, such as the sparsification ratio warm-up method and the

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4151

Task Algorithm
Max CR* Total CR*

Speedup
Accuracy /
PerplexityUp Down Total Up Down Total

ResNet-18
CIFAR-10

FedAvg 1.00 1.00 1.00 1.00 1.00 1.00 1.00 90.52%
DGC 895.57 1.00 2.00 588.83 1.00 2.00 2.11 89.86%

signSGD 32.07 1.00 1.94 31.96 1.00 1.94 1.80 90.34%
STC 793.81 1078.11 914.37 687.31 925.35 788.76 4.78 83.82%
HGC 15286.02 2911.81 4891.79 1429.39 265.78 448.22 6.27 90.26%

LSTM
PTB

FedAvg 1.00 1.00 1.00 1.00 1.00 1.00 1.00 83.84
DGC 778.35 1.00 2.00 263.44 1.00 1.99 2.06 84.15

signSGD 32.05 1.00 1.94 31.92 1.00 1.94 1.71 85.94
STC 1227.00 1721.66 1432.61 519.85 811.02 632.94 9.43 118.92
HGC 29313.71 5262.80 8922.38 792.49 388.55 520.84 11.77 80.84

∗ “Up”, “Down”, and “Total” denote uplink, downlink, and total compression ratio respectively.

Table 2: Communication and computation costs.

adjustment of the sparsification ratio. Therefore, it is neces-
sary to measure these ratios empirically.

The additional computational overhead required for com-
pression is negligible compared to the training time, as it
only involves a few basic operations such as sorting, addition,
and bitwise operations on the gradients. On the contrary, the
reduction in gradient size significantly reduces the server’s
workload, as fewer data from each client needs to be pro-
cessed. A formalized definition and analysis of the commu-
nication and computation costs can be found in Appendix 4.3.

5 Experiments
We use FedAvg [McMahan et al., 2017] as the baseline
algorithm and evaluate our method using ResNet-18 [He
et al., 2016] on CIFAR-10 [Krizhevsky et al., 2009] and
two-layer LSTM [Press and Wolf, 2017] on Penn-TreeBank
(PTB) [Marcus et al., 1993]. Unless otherwise specified, we
deploy the FL system with four clients with a learning rate of
0.1 for CIFAR-10, and a learning rate of 20 for PTB. We re-
duce the learning rate by a factor of 0.1 at 50% and 75% of the
training process. For algorithms involving sparsification, we
use the same sparsification ratio warm-up technique to speed
up the training process. Specifically, we exponentially step
down the sparsification ratio from 0.25 to the target in 300
iterations. We conduct experiments on a server with two Intel
Xeon Gold 6248 CPUs @ 2.50GHz, 192GB of memory @
3200MHz, and four Nvidia Tesla V100 GPUs.

5.1 Comparison with Other Methods
In addition to the FedAvg baseline, we compare our algorithm
with DGC [Lin et al., 2018], EF-signSGD [Karimireddy et
al., 2019], and STC [Sattler et al., 2020], which represent
the current state-of-the-art algorithms of sparsification, quan-
tization, and hybrid algorithms, respectively. To ensure fair
comparisons, we set the sparsification ratio to 0.1% for all
algorithms and use 1-bit quantization for all quantizers. We
apply the same encoders for indices and data to all algorithms
where possible.

In the baseline FedAvg experiments, the amount of data
transmitted is identical for both uplink and downlink chan-

nels. For the CIFAR-10 task, the size per client per communi-
cation round is 44.70MB, resulting in a total data transmitted
of 8760.48GB. For the PTB task, the size per client per com-
munication round is 104.50MB, and the total data transmitted
is 4915.84GB. We can see that the huge communication vol-
ume can be problematic, when the bandwidth is limited on
the uplink and downlink channels.

Table 2 presents the communication costs of the tested al-
gorithms, measured by the maximum compression ratio per
client per communication round (i.e., Max CR) and the end-
to-end compression ratio (i.e., Total CR), separately for the
uplink and downlink channels. We also report the speedup
achieved by our algorithm compared to FedAvg, assuming a
1000Mbps uplink and downlink bandwidth for the server.

From Table 2 we observe that: 1) The downlink channel is
essential for total compression ratio, but over-compression on
this channel impairs model quality. 2) Our algorithm achieves
the best in maximum compression ratios and total uplink
compression ratios without losing accuracy. The total down-
link compression ratio is lower than the STC algorithm since
it also quantizes the downlink channel while our algorithm
doesn’t. However, STC does not achieve a convergence accu-
racy comparable to the baseline due to its over-compression,
and the total speedup is not mitigated by the extra downlink
compression. Detailed breakdown analysis of accuracy and
compression ratio can be found in Appendix C.1.

5.2 Adaptiveness to Federated Learning
To evaluate the compatibility of our algorithm and other FL
features, we perform experiments with changes to FL aspects
as shown in prior surveys and studies [Li et al., 2022; Yue et
al., 2022], namely non-i.i.d (non-identical and independently
distributed) datasets, large number of clients, and secure FL.

Figure 3 shows each algorithm’s performance under het-
erogeneously distributed datasets. Although the model qual-
ity degrades in this scenario, our algorithm still converges to a
higher accuracy compared to other algorithms under non-i.i.d
settings, indicating that our algorithm is more robust against
heterogeneously distributed data. The HGC + FedProx result
also demonstrate our algorithm’s compatibility with other op-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4152

0 100 200 300 400
Epochs

20

40

60
A

cc
ur

ac
y

(%
)

FedAvg
DGC
signSGD
STC

HGC
FedProx
HGC + FedProx

Figure 3: Model accuracy in
non-i.i.d settings

(ResNet-18 on CIFAR-10).

16 32 64 256
Number of clients

0

20

40

60

Si
ze

(G
B

)

FedAvg
DGC
signSGD
STC
HGC

Figure 4: Uplink communication cost w.r.t.
The number of clients
(CNN on FEMNIST).

41632 64 128 256
Number of clients

0.5

1.0

1.5

Si
ze

pe
r

cl
ie

nt
(G

B
)

DGC
STC
HGC

Figure 5: Secure aggregation overhead
(CNN on FEMNIST).

timization algorithms like FedProx [Li et al., 2020].
The experiments in Figure 4 and 5 are performed with a

4-layer CNN on the FEMNIST [Caldas et al., 2018] dataset.
Since the FEMNIST dataset is collected from 3550 differ-
ent users, it more closely simulates real-life scenarios. We
sample users from the dataset equal to the number of clients
and assign each user’s data to a client. The result in Fig-
ure 4 shows that all algorithms, including the baseline, scale
linearly with the number of clients, but our algorithm saves
significantly more communication bandwidth with clients.

When secure aggregation is applied to the FL algorithms,
the total communication cost of other algorithms scales super-
linearly with the number of clients due to additional data
being exchanged between clients. As shown in Figure 5,
since our algorithm utilizes cross-client redundancy that ap-
plies the same mask to all clients, the cost per client remains
constant with the number of clients changed as opposed to
other sparsification-based algorithms communication. All the
above results show that our compression algorithm can be
more efficiently adapted to various FL scenarios compared
to other compression algorithms. Detailed setup and analysis
of these experiments can be found in Appendix C.2.

5.3 Ablation Studies
To explore the effects of various hyperparameters and gain
deeper insights into the internals of our algorithm, we conduct
a detailed analysis of the maximum uplink gradient compres-
sion ratio. This ratio is categorized into three parts, which
makes use of the three types of redundancies discussed in the
backgrounds. These parts are denoted as CRi, CRc, CRt.
By manipulating the algorithm setup, we evaluate these ra-
tios alongside other relevant metrics. A subset of the results
is presented in Table 3 and 4.

(k/M, q)* CRmax
i CRmax

c CRmax
t CRmax

up

0.001, 1 1898.46 3.40 2.37 15286.02
0.01, 1 197.77 3.37 4.47 2982.73

0.001, 2 1641.04 3.06 1.30 6506.96
∗ (k/M, q) stands for (sparsification ratio, quantization
bits). CRmax

i , CRmax
c , CRmax

t are the intrinsic, cross-
client and temporal component of CRmax

up .

Table 3: Compression ratio decomposition.

(k/M, q) CRup
* Speedup Accuracy

0.001, 1 1429.39 6.27 90.26%
0.01, 1 401.00 2.08 90.84%

0.001, 2 1239.48 4.27 89.36%
∗ CRup denotes overall uplink compression ratio
of the entire training process.

Table 4: Compression ratio decomposition.

From Table 3 we observe that in our algorithm, the uti-
lization of the intrinsic redundancy contributes most to the
total compression ratio, while the other two types of redun-
dancies help amplify it. Table 4 shows that both quantiza-
tion and sparsification have a significant impact on the over-
all compression ratio and speedup, but they affect the system
in different ways. Furthermore, we notice that the optimal
hyper-parameters settings for balancing the communication
and model accuracy are different under different scenarios.
Appendix C.3 shows more detailed evaluations of the impact
and effectiveness of each component on resource utilization
and model accuracy.

6 Conclusion
In this paper, we present a novel hybrid gradient compres-
sion algorithm for federated learning, which effectively com-
presses the messages both on the uplink and downlink in the
FL training process by leveraging three types of redundan-
cies. Through theoretical analysis, we show that our approach
achieves convergence at least as fast as the conventional Fe-
dAvg method. Furthermore, our empirical studies show the
high performance of our algorithm in complex scenarios, in-
cluding skewed data distribution, large-scale training, and se-
cure FL. Our algorithm achieves a high compression ratio and
offers valuable insights for future implementations of com-
pression algorithms in FL.

Acknowledgments
This research is supported by the National Research Foun-
dation, Singapore and DSO National Laboratories under the
AI Singapore Programme (AISG Award No: AISG2-RP-
2020-018), and the National Research Foundation, Singapore
and Infocomm Media Development Authority under its Trust

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4153

Tech Funding Initiative. Any opinions, findings and conclu-
sions or recommendations expressed in this material are those
of the author(s) and do not reflect the views of National Re-
search Foundation, Singapore and Infocomm Media Devel-
opment Authority.

References
[Abdi and Fekri, 2019] Afshin Abdi and Faramarz Fekri.

Nested dithered quantization for communication reduction
in distributed training. arXiv:1904.01197, 2019.

[Aji and Heafield, 2017] Alham Fikri Aji and Kenneth
Heafield. Sparse Communication for Distributed Gradient
Descent. In Proceedings of the 2017 Conference on Empir-
ical Methods in Natural Language Processing, pages 440–
445. Association for Computational Linguistics, 2017.

[Alistarh et al., 2017] Dan Alistarh, Demjan Grubic, Jerry
Li, Ryota Tomioka, and Milan Vojnovic. QSGD:
Communication-efficient SGD via gradient quantization
and encoding. In Advances in Neural Information Pro-
cessing Systems 30, pages 1709–1720. Curran Associates,
Inc., 2017.

[Alistarh et al., 2018] Dan Alistarh, Torsten Hoefler, Mikael
Johansson, Sarit Khirirat, Nikola Konstantinov, and Cédric
Renggli. The convergence of sparsified gradient methods.
In Proceedings of the 32nd International Conference on
Neural Information Processing Systems, NIPS’18, pages
5977–5987. Curran Associates Inc., 2018.

[Basu et al., 2020] Debraj Basu, Deepesh Data, Can
Karakus, and Suhas N. Diggavi. Qsparse-local-SGD:
Distributed SGD with quantization, sparsification, and
local computations. IEEE Journal on Selected Areas in
Information Theory, 1(1):217–226, 2020.

[Bernstein et al., 2018] Jeremy Bernstein, Yu-Xiang Wang,
Kamyar Azizzadenesheli, and Animashree Anandku-
mar. signSGD: Compressed Optimisation for Non-Convex
Problems. In Proceedings of the 35th International Con-
ference on Machine Learning, pages 560–569. PMLR,
2018.

[Caldas et al., 2018] Sebastian Caldas, Sai Meher Karthik
Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan
McMahan, Virginia Smith, and Ameet Talwalkar. Leaf:
A benchmark for federated settings. arXiv:1812.01097,
2018.

[Chen et al., 2018] Chia-Yu Chen, Jungwook Choi, Daniel
Brand, Ankur Agrawal, Wei Zhang, and Kailash Gopalakr-
ishnan. AdaComp : Adaptive residual gradient compres-
sion for data-parallel distributed training. Proceedings
of the AAAI Conference on Artificial Intelligence, 32(1),
2018.

[Chen et al., 2020] Chia-Yu Chen, Jiamin Ni, Songtao Lu,
Xiaodong Cui, Pin-Yu Chen, Xiao Sun, Naigang Wang,
Swagath Venkataramani, Vijayalakshmi (Viji) Srinivasan,
Wei Zhang, and Kailash Gopalakrishnan. ScaleCom: Scal-
able sparsified gradient compression for communication-
efficient distributed training. volume 33, pages 13551–
13563. Curran Associates, Inc., 2020.

[Deutsch, 1996] L. Peter Deutsch. DEFLATE Compressed
Data Format Specification. Request for Comments RFC
1951, Internet Engineering Task Force, 1996.

[Golomb, 1966] Solomon Golomb. Run-Length Encodings
(Corresp.). IEEE Transactions on Information Theory,
12(3):399–401, 1966.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 770–778.
IEEE, 2016.

[Ivkin et al., 2019] Nikita Ivkin, Daniel Rothchild, Enayat
Ullah, Vladimir Braverman, Ion Stoica, and Raman Arora.
Communication-efficient distributed SGD with sketching.
In Proceedings of the 33rd International Conference on
Neural Information Processing Systems, number 1178,
pages 13142–13152. Curran Associates Inc., 2019.

[Jiang et al., 2018] Jiawei Jiang, Fangcheng Fu, Tong Yang,
and Bin Cui. SketchML: Accelerating Distributed Ma-
chine Learning with Data Sketches. In Proceedings of the
2018 International Conference on Management of Data,
SIGMOD ’18, pages 1269–1284. Association for Comput-
ing Machinery, 2018.

[Karimireddy et al., 2019] Sai Praneeth Karimireddy,
Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error
Feedback Fixes SignSGD and other Gradient Compres-
sion Schemes. In Proceedings of the 36th International
Conference on Machine Learning, pages 3252–3261.
PMLR, 2019.

[Kingma and Ba, 2017] Diederik P Kingma and Jimmy
Ba. Adam: A method for stochastic optimization.
arXiv:1412.6980, 2017.

[Krizhevsky et al., 2009] Alex Krizhevsky, Geoffrey Hinton,
et al. Learning multiple layers of features from tiny im-
ages. Technical report, 2009.

[Li et al., 2020] Tian Li, Anit Kumar Sahu, Manzil Zaheer,
Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. In
Proceedings of Machine Learning and Systems, volume 2,
pages 429–450, 2020.

[Li et al., 2022] Qinbin Li, Yiqun Diao, Quan Chen, and
Bingsheng He. Federated learning on non-IID data silos:
An experimental study. In IEEE International Conference
on Data Engineering, 2022.

[Lin et al., 2018] Yujun Lin, Song Han, Huizi Mao,
Yu Wang, and Bill Dally. Deep Gradient Compression:
Reducing the Communication Bandwidth for Distributed
Training. In International Conference on Learning Repre-
sentations, 2018.

[Marcus et al., 1993] Mitchell P. Marcus, Beatrice Santorini,
and Mary Ann Marcinkiewicz. Building a large annotated
corpus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330, 1993.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4154

[McMahan et al., 2017] Brendan McMahan, Eider Moore,
Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-efficient learning of deep networks
from decentralized data. In Proceedings of the 20th Inter-
national Conference on Artificial Intelligence and Statis-
tics, volume 54 of Proceedings of Machine Learning Re-
search, pages 1273–1282. PMLR, 2017.

[Phansalkar and Sastry, 1994] Vijay V Phansalkar and
P Shanti Sastry. Analysis of the back-propagation algo-
rithm with momentum. IEEE Transactions on Neural
Networks, 5(3):505–506, 1994.

[Philippenko and Dieuleveut, 2022] Constantin Philippenko
and Aymeric Dieuleveut. Bidirectional compression in
heterogeneous settings for distributed or federated learn-
ing with partial participation: Tight convergence guaran-
tees. arXiv:2006.14591, 2022.

[Press and Wolf, 2017] Ofir Press and Lior Wolf. Us-
ing the output embedding to improve language models.
arXiv:1608.05859, 2017.

[Qian, 1999] Ning Qian. On the momentum term in gradient
descent learning algorithms. Neural Networks, 12(1):145–
151, 1999.

[Sattler et al., 2019] Felix Sattler, Simon Wiedemann,
Klaus-Robert Muller, and Wojciech Samek. Sparse
Binary Compression: Towards Distributed Deep Learning
with minimal Communication. In 2019 International
Joint Conference on Neural Networks, pages 1–8. IEEE,
2019.

[Sattler et al., 2020] Felix Sattler, Simon Wiedemann,
Klaus-Robert Müller, and Wojciech Samek. Robust
and Communication-Efficient Federated Learning From
Non-i.i.d. Data. IEEE Transactions on Neural Networks
and Learning Systems, 31(9):14, 2020.

[Seide et al., 2014] Frank Seide, Hao Fu, Jasha Droppo,
Gang Li, and Dong Yu. 1-bit stochastic gradient descent
and its application to data-parallel distributed training of
speech DNNs. In Interspeech 2014, pages 1058–1062.
ISCA, 2014.

[Stich et al., 2018] Sebastian U Stich, Jean-Baptiste Cordon-
nier, and Martin Jaggi. Sparsified SGD with memory. In
Advances in Neural Information Processing Systems, vol-
ume 31. Curran Associates, Inc., 2018.

[Strom, 2015] Nikko Strom. Scalable distributed DNN train-
ing using commodity GPU cloud computing. In Sixteenth
Annual Conference of the International Speech Communi-
cation Association, 2015.

[Tang et al., 2019] Hanlin Tang, Chen Yu, Xiangru Lian,
Tong Zhang, and Ji Liu. DoubleSqueeze: Parallel
Stochastic Gradient Descent with Double-pass Error-
Compensated Compression. In Proceedings of the 36th
International Conference on Machine Learning, pages
6155–6165. PMLR, 2019.

[Tang et al., 2023] Zhenheng Tang, Shaohuai Shi, Bo Li, and
Xiaowen Chu. GossipFL: A decentralized federated learn-
ing framework with sparsified and adaptive communica-

tion. IEEE Transactions on Parallel and Distributed Sys-
tems, 34(3):909–922, 2023.

[Wang et al., 2020] Jun-Kun Wang, Chi-Heng Lin, and Ja-
cob Abernethy. Escaping Saddle Points Faster with
Stochastic Momentum. In International Conference on
Learning Representations, 2020.

[Wen et al., 2017] Wei Wen, Cong Xu, Feng Yan, Chunpeng
Wu, Yandan Wang, Yiran Chen, and Hai Li. TernGrad:
Ternary gradients to reduce communication in distributed
deep learning. In Advances in Neural Information Pro-
cessing Systems 30, pages 1509–1519. Curran Associates,
Inc., 2017.

[Witten et al., 1987] Ian H. Witten, Radford M. Neal, and
John G. Cleary. Arithmetic coding for data compression.
Commun. ACM, 30(6):520–540, 1987.

[Wu et al., 2018] Jiaxiang Wu, Weidong Huang, Junzhou
Huang, and Tong Zhang. Error Compensated Quantized
SGD and its Applications to Large-scale Distributed Op-
timization. In Proceedings of the 35th International Con-
ference on Machine Learning, pages 5325–5333. PMLR,
2018.

[Wu et al., 2022] Donglei Wu, Xiangyu Zou, Shuyu Zhang,
Haoyu Jin, Wen Xia, and Binxing Fang. SmartIdx: Reduc-
ing communication cost in federated learning by exploit-
ing the CNNs structures. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 36(4):4254–4262, 2022.

[Xu et al., 2021] Hang Xu, Kelly Kostopoulou, Aritra Dutta,
Xin Li, Alexandros Ntoulas, and Panos Kalnis. DeepRe-
duce: A Sparse-tensor Communication Framework for
Federated Deep Learning. In Advances in Neural Informa-
tion Processing Systems, volume 34, pages 21150–21163.
Curran Associates, Inc., 2021.

[Yang et al., 2019] Qiang Yang, Yang Liu, Yong Cheng, Yan
Kang, Tianjian Chen, and Han Yu. BatchCrypt: Efficient
Homomorphic Encryption for Cross-Silo Federated Learn-
ing. Synthesis Lectures on Artificial Intelligence and Ma-
chine Learning, 13(3):1–207, 2019.

[Yu et al., 2019] Yue Yu, Jiaxiang Wu, and Junzhou Huang.
Exploring Fast and Communication-Efficient Algorithms
in Large-Scale Distributed Networks. In Proceedings of
the Twenty-Second International Conference on Artificial
Intelligence and Statistics, pages 674–683. PMLR, 2019.

[Yue et al., 2022] Kai Yue, Richeng Jin, Chau-Wai Wong,
and Huaiyu Dai. Communication-efficient federated learn-
ing via predictive coding. IEEE Journal of Selected Topics
in Signal Processing, 16(3):369–380, 2022.

[Zhang et al., 2020] Xiongtao Zhang, Xiaomin Zhu,
Ji Wang, Hui Yan, Huangke Chen, and Weidong Bao.
Federated Learning with Adaptive Communication
Compression Under Dynamic Bandwidth and Unreliable
Networks. Information Sciences, 540:242–262, 2020.

[Zheng et al., 2019] Shuai Zheng, Ziyue Huang, and James
Kwok. Communication-Efficient Distributed Blockwise
Momentum SGD with Error-Feedback. In Advances in
Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4155

	Introduction
	Backgrounds
	Hybrid Gradient Compression
	Hybrid Compression
	Optimization Techniques

	Analysis
	Selection of the Compressor
	Convergence Analysis
	Communication and Computation Cost

	Experiments
	Comparison with Other Methods
	Adaptiveness to Federated Learning
	Ablation Studies

	Conclusion

