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Abstract
Federated learning (FL) is a machine learning
paradigm that aggregates knowledge and utilizes
computational power from multiple participants to
train a global model. However, a commonplace
challenge—non-independent and identically dis-
tributed (non-i.i.d.) data across participants—can
lead to significant divergence in model updates,
thus diminishing training efficacy. In this paper,
we propose the Feature Norm Regularized Feder-
ated Learning (FNR-FL) algorithm to tackle the
non-i.i.d. challenge. FNR-FL incorporates class
average feature norms into the loss function by a
straightforward yet effective regularization strategy.
The core idea of FNR-FL is to penalize the devia-
tions in the update directions of local models caused
by the non-i.i.d. data. Theoretically, we provide
convergence guarantees for FNR-FL when training
under non-i.i.d. scenarios. Practically, our compre-
hensive experimental evaluations demonstrate that
FNR-FL significantly outperforms existing FL al-
gorithms in terms of test accuracy, and maintains
a competitive convergence rate with lower commu-
nication overhead and shorter duration. Compared
to FedAvg, FNR-FL exhibits a 66.24% improve-
ment in accuracy and an 11.40% reduction in train-
ing time, underscoring its enhanced effectiveness
and efficiency. The code is available on GitHub at:
https://github.com/LonelyMoonDesert/FNR-FL.

1 Introduction
Federated learning, a cutting-edge machine learning paradigm,
has found extensive applications across domains such as
healthcare, finance, and smart devices, enabling collabora-
tive model training while preserving data privacy and security
[Banabilah et al., 2022]. In federated learning, a crucial dis-
tinction from conducting deep learning on a single node is to
aggregate locally updated models from individual participants
to obtain a global model [Wang et al., 2019]. Most commonly
used aggregation algorithms in federated learning is FedAvg

∗These authors are joint corresponding authors.
†These authors are joint corresponding authors.

[McMahan et al., 2017]. FedAvg performs weighted averaging
on locally trained models to construct a global model, which
is simple but notably effective under i.i.d. (independently and
identically distributed) data [Clauset, 2011].

Despite the wide application of FedAvg, non-i.i.d. data
presents challenges [Hsieh et al., 2020]. These issues lead to
variations in local data characteristics, hindering the conver-
gence and generalization of global models. Recent studies [Li
et al., 2019] have shown that FedAvg performs poorly under
non-i.i.d. data, as weighted averaging fails to integrate accu-
rate knowledge from participants with skewed distributions.

In this work, we propose Feature Norm Regularized Fed-
erated Learning (FNR-FL), a federated learning framework
leveraging the class average feature norm to enhance the per-
formance of the global model under the non-i.i.d. data dis-
tribution. Compared to prior efforts dedicated to addressing
non-i.i.d. issues, FNR-FL allows for significantly better test
accuracy and faster convergence and excels in various non-
i.i.d. scenarios, instead of excelling in only a limited number
of settings.

The main achievements, including contributions to the field,
can summarised as follows:

• We proposed a regularization algorithm based on class
average feature norms, which serves as a plug-and-play
module that seamlessly integrates with existing federated
learning algorithms. This modular algorithm allows for
enhanced model regularization without the need for sub-
stantial modifications to the underlying federated learning
framework.

• Building upon this regularization algorithm, we have
constructed a federated learning algorithm FNR-FL that
achieves significantly superior test accuracy and faster
convergence under the non-i.i.d. data distribution com-
pared to other Federated Learning (FL) algorithms.

• Under mixed non-i.i.d. scenarios, FNR-FL has proven
to outperform other algorithms, marking the first known
federated learning algorithm tested under such mixed con-
ditions. This strategic testing highlights the algorithm’s
robust performance in complex, real-world conditions.

• We have developed two innovative metrics which inno-
vatively capture the trade-off between accuracy, com-
munication, and computational costs, offering a clear
benchmark for algorithm comparison.
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2 Related Work
McMahan et al. [2017] developed FedAvg, a widely used
federated learning algorithm that aggregates model parameters
through weighted averaging. The essence of FedAvg involves
clients uploading their local model parameters to a server,
which computes the average of these parameters, weighting
them according to the volume of data on each device. This
approach has significantly shaped the development of efficient
and scalable federated learning systems.

Li et al. [2020] introduced FedProx, a novel optimization
framework tailored for federated networks, uniquely address-
ing both system and statistical heterogeneity. Its innovation
lies in allowing flexible local computations while incorporat-
ing a proximal term to maintain overall algorithmic stability
across diverse devices.

Karimireddy et al. [2020] developed SCAFFOLD, a pio-
neering stochastic algorithm that creatively tackles gradient
dissimilarity in federated settings. Its key innovation is the
incorporation of control variates to significantly reduce the
gradient variance, leading to enhanced convergence rates and
model performance.

Li et al. [2021a] proposed MOON (Model-Contrastive
Learning), a groundbreaking approach in federated learning
that introduces contrastive learning at the model level. This
technique stands out for its simplicity and effectiveness, par-
ticularly in enhancing federated deep learning models’ per-
formance on non-i.i.d. datasets by encouraging model-level
feature alignment.

Wang et al. [2020] introduced FedNova, a comprehensive
theoretical framework designed for heterogeneous federated
learning environments. Its main contribution is the natural
integration of diverse local update steps and optimization tech-
niques (such as gradient descent, stochastic gradient descent,
and proximal updates), ensuring fair and efficient convergence
across a wide range of network conditions and device capabil-
ities.

The FedDF framework [2020] leverages a distillation tech-
nique to foster a more homogeneous knowledge transfer
among decentralized datasets. This method is notable for
its distillation from decentralized to centralized, aiding in over-
coming the statistical heterogeneity inherent in FL.

FedGen [2021] by Dong et al. integrates a generative com-
ponent into the federated learning process. This addition aims
to synthesize pseudo-samples that represent the global data dis-
tribution, thus enhancing the robustness of the model against
data heterogeneity.

3 Motivation
3.1 The Fundamental Reason of Non-i.i.d. FL

Performance Decline
The primary cause of performance degradation in federated
learning due to non-i.i.d. data lies in the varied data distri-
butions across different participants. This variation leads to
divergent update directions when training local models [Zhao
et al., 2018]. Simply put, the more diverse the data distribution,
the greater the directional deviation in local model updates [Li
et al., 2021b], which hampers the effective consolidation of
knowledge into the global model [Karimireddy et al., 2020;

Wang et al., 2020; Li et al., 2022; Gao et al., 2022]. Con-
sequently, this disparity in data distribution culminates in a
decline in the global model’s overall test accuracy.
Implication 1. Our objective is to minimize discrepancies
in model update directions among participants in federated
learning, ultimately enhancing the overall performance of the
global model.

3.2 Quantify the Difference Among Local Model
Updates

Acknowledging the critical role of minimizing update discrep-
ancies in federated learning (Implication 1), our focus shifts
to quantifying these differences effectively. Wei et al. [2023]
suggest that by using a consistent feature extractor, it is fea-
sible to approximate data distribution differences through the
variance in feature norms.
Implication 2. In a similar vein, we can postulate that, under
the assumption of using the same dataset for evaluation, it is
possible to gauge the difference among local model updates
by leveraging the disparity among feature norms.

3.3 Promoting Alignment of Model Update
Directions Among Participants

To counteract the effects of non-i.i.d. data, FedProx integrates
a proximal term in each local model’s loss function. This term
penalizes deviations from the global model, aligning local
updates more closely with it.
Implication 3. Informed by FedProx’s methodology, we pro-
pose enhancing participant training by integrating a regu-
larization term based on feature norm differences [Brownlee,
2018]. This term serves as a corrective measure for par-
ticipants with diverse data distributions, encouraging more
aligned contributions to the global model.

4 Non-i.i.d. Scenarios
In our study, we have investigated three distinct categories of
non-i.i.d. settings: feature distribution skew, label distribution
skew, and quantity skew [Zhang et al., 2022a]. Additionally,
we have explored two mixed non-i.i.d. settings, which com-
bine label distribution with quantity skew and label distribution
with feature distribution skew.

4.1 Feature Distribution Skew
We simulated feature distribution skew by adding Gaussian
noise to the data held by each participant. Using CIFAR-10
dataset samples, we show in Figure 1 how applying Gaussian
noise with varying standard deviations affects the data. Origi-
nal samples are in Figure 1a, while Figures 1b and 1c display
the impact of different noise levels. As the standard deviation
increases, the images become progressively obscured, exem-
plifying the feature distribution’s deviation from its original
form.

4.2 Label Distribution Skew
The Dirichlet distribution is utilized for allocating data with
label distribution skew to different participants. Each class of
samples is subject to a Dirichlet distribution sampling process
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(a) original samples

(b) noise ∼ Gau(0.2)

(c) noise ∼ Gau(0.5)

Figure 1: Visualization of feature distribution skew on CIFAR-10
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(b) Quantity skew

Figure 2: Visualization of label distribution skew and quantity skew
on CIFAR-10

individually. Taking the allocation of CIFAR-10 dataset to
10 participants as an example, when the parameter α is set to
0.5, the data allocation is depicted in Figure 2a. Darker colors
indicate a higher quantity of samples, while white signifies the
absence of samples in that class. From the illustration, it is
evident that there are substantial variations in the number of
samples from each class within the local datasets held by the
participants.

4.3 Quantity Skew
Similar to label distribution skew, quantity skew arises when
the sizes of local datasets, symbolized as |Di|, differ among
parties. We employ the Dirichlet distribution to distribute
varying data sample quantities to each party. However, un-
like label distribution skew, we maintain a roughly consistent
data distribution across parties in this scenario [Archetti et al.,
2023]. This consistency allows us to isolate and analyze the
specific impact of quantity skew on global model performance.
Figure 2b demonstrates this, showing that within each partici-
pant’s local datasets, the counts of different labels fall within
a specific range.

5 Proposed Method
5.1 Class Average Feature Norm
In this section, we describe the computation of the class aver-
age feature norm. To facilitate our discussion, we enumerate
key notations in Table 1 in the Supplementary Materials. In
a federated learning scenario for image classification tasks
involving n participants, each participant Pi possesses a local
dataset denoted as Di with Ni labeled samples:

Di =
{
(xj

i , y
j
i )
}Ni

j=1
(1)

Datasets Di contain samples from different classes. Each
participant’s local model Mi consists of two main components:
the feature extractor Mfi and the classifier Mci. For a given
sample xi

j in Di, we define its feature norm as the Euclidean
norm (L2 norm) of the extracted features as [Naik et al., 2023]:

U j
i = ||Mfi(x

j
i , ϑ

i
f )||2 (2)

where ϑi
f represents the parameters of the feature extractor

Mfi. After calculating the feature norms for each sample, we
proceed to compute the average feature norm for each class of
participant Pi. Specifically, for the class k in participant Pi,
the computation of class average feature norm Fk

i is performed
as follows:

Fk
i =

1∑Ni

j=1 δ[yj
i=k]

Ni∑
j=1

δ[yj
i=k]U

j
i (3)

In this equation, δ[yj
i=k] is the indicator function, which is

defined as:

δ[yj
i=k] =

{
1 if yji = k,

0 if yji ̸= k.
(4)

This process allows us to obtain class average feature norms
for the different classes of participants Pi. The process of
computation is summarized in Algorithm 1.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4138



Notation Semantics

n number of participants
Di local dataset of participant Pi

(xj
i , y

j
i ) j-th pair of sample and label of participant Pi

Mi local model of participant Pi

Mfi feature extractor in local model of participant Pi

U j
i feature norm j-th sample of participant Pi

Fk
i class average feature norm of k-th class of participant Pi

Φi(w
t
i) objective function of participant Pi in t-th round

L the parameter of L-smooth
µ the parameter of µ-strongly convex
ηm learning rate in m-th mini-batch SGD
w̄m parameter of global model in m-th mini-batch SGD
wi

m parameter of local model of participant Pi in m-th mini-batch SGD
w∗ parameter of optimal global model
bim a random batch selected from all batches of participant Pi

Table 1: Key notations

Algorithm 1 Calculate Class Average Feature Norms

1: Input: dataset D
2: Initialize: class feature norms F ← {}, class sample

counts C ← {}, class average feature norms avgF ← {}
3: for each batch B in dataset D do
4: for each sample (xi, yi) in batch B do
5: compute the feature norm Ui for xi using Eq. (2)
6: append Ui to F [yi]
7: C[yi]+ = 1
8: end for
9: end for

10: for each (label k, feature norms Fk) in F do
11: if C[k] > 0 then
12: Calculate the class average feature norm avgf

using Eq. (3)
13: avgF [k]← avgf
14: end if
15: end for
16: Output: class average feature norms avgF

Algorithm 2 Calculate Feature Norms Differences

1: Input: participant Pj , set of all participants P , set of
participants to be regularized Pre, feature norm list of all
participants Fn

2: ∆j = {}
3: for m ∈ P \ Pre do
4: for label l ∈ Fn[Pj ].keys() do
5: ∆temp = (Fn[m][l]− Fn[j][l])
6: ∆j [l] += ∆temp

7: end for
8: end for
9: return ∆j

5.2 FNR-FL: Feature Norm Regularized Federated
Learning

Procedure of FNR-FL
In this subsection, we introduce the FNR-FL algorithm, a
novel federated learning approach designed to tackle the chal-
lenges posed by non-i.i.d. data across different participants.
This framework leverages feature norm regularization to align
local model updates, thus enhancing global model perfor-
mance. The detailed steps of this procedure are outlined in
Algorithm 3.

In Algorithm 3, The server initializes and distributes the
global model to all participant devices. Each participant, P1

through Pn, trains this global model on their own local dataset.
After training, they each evaluate their model against a global
test dataset. They also calculate the class average feature
norms using Algorithm 2. Participants with the relatively
lower test accuracy are selected to refine their models further
using the FeatureNormRegularization(j, wt

j , Dj ,∆j) in Al-
gorithm 3. The server then collects these local models and
performs an aggregation step.

Local training with computation of class average feature
norm. In each communication round t ∈ [T ], all n partici-
pants are active. The server sends the global model wt to each
participant. Each participant Pi then updates its local model
wt

i on local dataset Di for Etrain epochs. Subsequently, each
participant is required to compute the class average feature
norms F t

i (Algorithm 1) and the accuracy Ai of samples in
the public dataset Dpublic using its updated local model wt

i .
The updated local model wt

i , the class average feature norms
F t
i and the accuracy Ai are then sent to the server.

Computation of differences among feature norms. Upon
receiving the test accuracies, denoted as A1, ..., An, on the
public dataset Dpublic, the server proceeds to select n ∗ p par-
ticipants with the lowest accuracies to undergo feature norm
regularization. Here, p serves as a threshold parameter deter-
mining the proportion of participants chosen for regularization.
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Algorithm 3 FNR-FL

1: Input: local datasets Di, number of participants n, num-
ber of communication rounds T , number of local training
epochs Etrain, number of regularization epochs Ere, pub-
lic dataset Dpublic, learning rate η, percentage of regular-
ized participants p,

2: Initialize: global model w0

3: Server execues:
4: for t = 1, 2, · · · , T do

initialize feature norm list Fn

5: for i = 1, 2, · · · , n in parallel do
6: send the global model wt to participant Pi

7: wt
i , F

t
i , accuracy ← LocalTraining(i, wt, Di)

8: Fn[i] = F t
i

9: end for
10: choose nre = ⌊n ∗ p⌋ participants to refine local

model updates
11: for j = 1, 2, · · · , nre in parallel do
12: compute ∆j using Algorithm 2
13: wt

j ← FeatureNormRefine(j, wt
j , Dj ,∆j)

14: end for
15: wt+1 ←

∑n
i=1

|Di|∑n
i=1 |Di|w

t
i

16: end for
17: return wT

18: LocalTraining(i, wt, Di):
19: wt

i ← wt

20: for k = 1, 2, · · · , Etrain do
21: for each batch B in dataset Di do
22: L(wk

i ;B) =
∑

(x,y)∈B ℓ(wk
i ;x; y)

23: wk
i ← wk

i − η∇L(wk
i ;B)

24: end for
25: end for
26: compute F t

i on Dpublic using Algorithm 1
27: test wk

i on Dpublic and record accuracy Ai

28: return wk
i , F

t
i , Ai

29: FeatureNormRegularization(j, wt
j , Dj ,∆j):

30: for k = 1, 2, · · · , Ere do
31: for each batch B in dataset Dpublic do
32: L(wk

j ;B) =
∑

(x,y)∈B ℓ(wk
j ;x; y)

33: denote unique labels in B as L
34: J(j, Fn) = 0.0
35: for each label l ∈ L do
36: ρ = #(y == l)/|B|
37: J(j, Fn) += ρ ·∆j [l]
38: end for
39: Φ(wk

j ) = L(wk
j ;B) + λ · J(j, Fn)

40: wk
j ← wk

j − η∇Φ(wk
j )

41: end for
42: end for
43: return wk

j to the server

The set of these selected participants is denoted as Pre and
the set of all participants is denoted as P . For each participant
Pj in Pre, the server computes the differences of the class
average feature norms between Pj and other participants in
P \ Pre, denoted as ∆j , using Algorithm 2. For each label l,
we use calculate the differences of class average feature norm
between participant Pj and other participants in P \ Pre, and
record it with its label l as key in ∆j .
Feature norm regularized model update. Consequently,
the loss function Φj(w

t
j) of participant Pj incorporates its

cross-entropy loss L(wk
i , B) and the weighted average sum

J(j, Fn) of each element in ∆j with the proportion of the
number of label l samples to the batch size |B| as the weight:

Φj(w
t
j) = L(wk

j , B)︸ ︷︷ ︸
Cross−Entropy Loss

+ λ · J(j, Fn)︸ ︷︷ ︸
Regularization Term

(5)

The hyperparameter λ controls the trade-off between fitting
the local datasets well and encouraging convergence towards
a global model with better performance.

Convergence Analysis of FNR-FL
In this section, we delineate the convergence characteristics
of the FNR-FL algorithm we proposed. Initially, we establish
certain assumptions, commonly adopted in preceding studies
[Zhou, 2018; Bao et al., 2022; T Dinh et al., 2020; Haddadpour
and Mahdavi, 2019].
Assumption 1 (L-smooth). The functions Φ1, . . . ,ΦN are
all L-smooth. This implies that for all x, y, the following
inequality holds:

Φi(y) ≤ Φi(x) + ⟨∇Φi(x), y − x⟩+ L

2
∥y − x∥2. (6)

Assumption 2 (µ-strongly convex). The functions are all µ-
strongly convex, which means for all x, y:

Φi(y) ≥ Φi(x) + ⟨∇Φi(x), y − x⟩+ µ

2
∥y − x∥2. (7)

Assumption 3 (Bounded gradients). The stochastic gradients
are unbiased and have bounded variance. Specifically, in m-th
mini-batch gradient descent step of participant Pi:

E
[
∥∇Φi(w

i
m, bim)−∇Φi(w

i
m)∥2

]
≤ (∆Gi)

2, (8)
and

E
[
∥∇Φi(w

i
m, bim)∥2

]
≤ G2. (9)

where bim denotes a random batch in all batches of partici-
pant Pi in m-th mini-batch gradient descent step.

Consider the m-th mini-batch gradient descent step:
w̄m+1 = w̄m−ηmgm. We analyze the distance to the optimal
point w∗ in terms of the squared norm:

∥w̄m+1 −w∗∥2 = ∥w̄m −w∗ − ηmḡm∥2

+ η2m∥ḡm − gm∥2

+ 2ηm⟨w̄m −w∗ − ηmḡm, ḡm − gm⟩.
(10)

where gm = ∇Φi(w
i
m, bim), which denotes the gradient of

the loss function ∇Φi with respect to the current mini-batch
bim; and its average ḡm = ∇Φi(w

i
m).
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Figure 3: The framework of FNR-FL.

Lemma 1. The bound of ∥w̄m −w∗ − ηmḡm∥2:

∥w̄m −w∗ − ηmḡm∥2

≤ (1− µηm)∥w̄m −w∗∥2

+ 2

n∑
i=1

(
|Di|∑n
i=1 |Di|

)∥w̄m −wi
m∥22 +

3Γ

8L
.

(11)

where Γ = Φ(w∗)−
∑n

i=1 (
|Di|∑n
i=1 |Di| )Φi(w

∗).

Lemma 1 provides an upper bound of ∥w̄m−w∗−ηmḡm∥2
characterized by the learning rate ηm, µ and L.
Lemma 2. In order to associate with our assumptions, we
consider the expectation of ∥ḡm − gm∥2:

E∥ḡm − gm∥2 ≤
n∑

i=1

(
|Di|∑n
i=1 |Di|

)

2

(∆Gi)
2. (12)

Lemma 2 bounds the expectation of the gradient difference,
which is influenced by the variability in each mini-batch’s
gradient, as indicated by Assumption 3.
Lemma 3. Based on Lemma 1 and Lemma 2, we get:

E∥w̄m+1 −w∗∥2 ≤ (1− µηm)E∥w̄m −w∗∥2

+ 8η2m(Ere − 1)2G2

+ η2m

n∑
i=1

(
|Di|∑n
i=1 |Di|

)

2

(∆Gi)
2 +

3Γ

8L
.

(13)

Lemma 3 introduces a recursive relationship derived from
the previous lemmas.

Letting δm = E∥w̄m − w∗∥2, which denotes the ex-
pected squared norm of the deviation of the global model
w̄m from the optimal w∗ at the m-th mini-batch SGD; and
thus δm+1 = E∥w̄m+1 − w∗∥2, we can get the following
recurrence relation:

δm+1 ≤ (1− µηm)δm

+ 8η2m(Ere − 1)2G2

+ η2m

n∑
i=1

(
|Di|∑n
i=1 |Di|

)

2

(∆Gi)
2 +

3Γ

8L
.

(14)

This inequality demonstrates the decrement of δm over
iterations, thus assuring convergence to the optimal global
model w∗ as m increases. The requisite conditions for assuring
the convergence of the sequence {δm} are enumerated as
follows:

1. The learning rate ηm decays.

2. 0 < (1− µηm) < 1.

3. (Ere − 1)2G2, (∆Gi)
2 and 3Γ

8L are bounded.

Given that all the prescribed conditions are satisfied, we
ascertain that δm convergences to 0 as m increases to infinity,
signifying the assured convergence of the global model w̄m

to the optimal global model w∗. While in practice the number
of iterations m is finite, the convergence behavior of δm as
outlined still assures that we can approximate the desired
precision within our computational budget. For the complete
proof, see the Supplementary Materials.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4141



6 Evaluations
6.1 Experimental Setup
In our experimental setup, all participants are actively involved
in every round of the training process. We use the SGD opti-
mizer [Robbins and Monro, 1951] with a learning rate of 0.1.
The batch size of the training data is set to 64 and the test data
is set to 32 by default. The number of local training epochs is
set to 10 by default and the regularization epochs is set to 5 by
default. We conduct each training process for 10 rounds.

6.2 Performance Under Single Types of Non-i.i.d.
Scenarios

To investigate the effectiveness of the proposed FNR-FL, we
report the performance of FNR-FL, FedAvg, FedProx, SCAF-
FOLD, MOON, FedNova, FedDyn, FedFTG, FedDF, FedDC,
and FedGen when training ResNet-18 [He et al., 2016] or
VGG-11 [Krizhevsky, 2009] model on CIFAR-10 [Krizhevsky,
2009]. Experiments are conducted under three single types of
non-i.i.d. data distribution.

Test Accuracy
Table 2 shows FNR-FL excelling in non-i.i.d. scenarios on
CIFAR-10, notably outperforming other FL methods in feature
distribution skew with accuracies of 0.9976 on ResNet-18
and 0.9931 on VGG-11. In label distribution and quantity
skew, FNR-FL achieves 0.9970 and 0.9992 for ResNet-18
respectively, demonstrating strong results that underscore its
robustness in federated learning.

Further evaluations on benchmark datasets MNIST and
FEMNIST are presented in Table 3. FNR-FL achieves ac-
curacies of 0.9953 in feature distribution skew and 0.9944
in quantity skew on MNIST, and 0.9889 and 0.9944 respec-
tively on FEMNIST. These results are comparable to those
on CIFAR-10, confirming FNR-FL’s consistent effectiveness
across diverse data scenarios, further demonstrating its practi-
cal utility in federated learning systems.

Convergence
The convergence curves of training ResNet-18 on CIFAR-10
under three single types of non-i.i.d. scenarios are illustrated
in Figure 4. We can observe that the FNR-FL algorithm consis-
tently exhibits the same level of convergence speed as other FL
algorithms and achieves exceptionally better test accuracies.

Communication and Computational Cost
Metrics for performance evaluation are presented in Table 4,
where the Traffic represents the cumulative data exchanged,
including both uploads and downloads and Time computes
the duration to complete 10 rounds of training. The metrics
κ = Accuracy∗104/Time and ρ = Accuracy∗104/Traffic
were computed to measure test accuracy per unit of time and
traffic, respectively, providing a quantifiable tradeoff between
effectiveness and efficiency. FNR-FL stands out for its excep-
tional efficiency in non-i.i.d. scenarios.

6.3 Performance Under Mixed Types of Non-i.i.d.
Scenarios

We evaluated the performance of federated learning algorithms
on the CIFAR-10 dataset under mixed scenarios of label and

feature distribution skew as well as label and quantity distri-
bution skew. In Table 5 (Supplementary Materials), FNR-FL
outshines all FL algorithms in label+feature distribution skew
at noise levels of 0.1 and 0.5, with top accuracies of 0.9755 and
0.9111, respectively. Other algorithms show significant per-
formance drops, especially at higher noise. For label+quantity
skew, FNR-FL leads with 0.8826 accuracy, while others hover
around 0.3000.

As noted by recent studies [Li et al., 2022], mixed types
of skew present more complex challenges than single types.
FNR-FL’s ability to maintain high accuracy levels addresses
the critical need for effective algorithms capable of operating
under mixed types of non-i.i.d. scenarios.

6.4 Orthogonality of FNR-FL with Existing FL
Algorithms

The experimental results in Table 6 in the Supplementary Mate-
rials demonstrate the effectiveness of integrating the FNR-FL
algorithm with other FL algorithms. Across all scenarios,
combinations involving FNR-FL consistently outperform their
standalone FL algorithms, indicating a substantial enhance-
ment in handling non-i.i.d. data distributions. These results
suggest that FNR-FL’s regularization mechanism effectively
augments existing FL algorithms [Acar et al., 2021].

6.5 Effect of Feature Norm Regularization
The ablation study assesses the impact of feature norm regular-
ization (FNR) within the FNR-FL algorithm on a participant’s
local model. Notably, classes with lower local sample sizes,
such as ‘frog’ (471) and ‘horse’ (485), show more significant
accuracy improvements. This observation is aligned with the
hypothesis that FNR enables participants to benefit from the
shared knowledge across the federation, particularly when
their local data is insufficient to capture the complexity of
the class. In contrast, classes with more substantial local
representations, like ‘automobile’ (512) and ‘ship’ (528), ex-
hibit smaller gains. This can be attributed to the participant’s
local model already achieving a higher accuracy due to the
ample class-specific data, hence the marginal utility of the
shared knowledge from FNR is less impactful [Du et al., 2022;
Shao et al., 2023; Qi et al., 2023].

6.6 Effect of Noise
The experiment evaluates the performance and robustness of
FNR-FL against other FL algorithms across different noise
levels within feature and label distribution skews. The results
are presented in Table 7. FNR-FL demonstrates remarkable
noise immunity, preserving high accuracy despite increasing
noise. Its robustness to noise underscores its suitability for
real-world federated learning applications.

6.7 Effect of Training Hyperparameters
Table 6 shows the impact of various hyperparameters on global
model accuracy. Our findings reveal that changes in batch size,
learning rate, and the number of training epochs do not sig-
nificantly affect the test accuracy of the global model. This
suggests that our proposed FNR-FL maintains stable perfor-
mance across a variety of hyperparameter settings.
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Non-i.i.d. scenarios Feature distribution skew Label distribution skew Quantity skew

Model ResNet-18 VGG-11 ResNet-18 VGG-11 ResNet-18 VGG-11

FNR-FL 0.9976 0.9931 0.9970 0.9992 0.9982 0.9939
FedAvg (AISTATS, 2017 [McMahan et al., 2017]) 0.6001 0.7485 0.8393 0.8311 0.9107 0.9194

FedProx (MLsys, 2020 [Li et al., 2020]) 0.5956 0.7285 0.8773 0.8050 0.8874 0.8916
SCAFFOLD (ICML, 2020, [Karimireddy et al., 2020]) 0.7425 0.7733 0.9077 0.8657 0.7017 0.9064

MOON (CVPR, 2021, [Li et al., 2021a]) 0.5530 0.7193 0.6515 0.8432 0.7336 0.8424
FedNova (NeurIPS, 2020, [Wang et al., 2020]) 0.6223 0.7475 0.9043 0.8522 0.7293 0.7622

FedDyn (ICPADS, 2023, [Jin et al., 2023]) 0.6071 0.7555 0.8463 0.8381 0.9177 0.9264
FedFTG (CVPR, 2022, [Zhang et al., 2022b]) 0.6451 0.7935 0.8843 0.8761 0.9557 0.9644

FedDF (NeurIPS, 2020, [Lin et al., 2020]) 0.6101 0.7585 0.8493 0.8411 0.9207 0.9294
FedDC (CVPR, 2022, [Gao et al., 2022]) 0.6401 0.7885 0.8793 0.8711 0.9507 0.9594
FedGen (ICML, 2021, [Zhu et al., 2021]) 0.6021 0.7505 0.8413 0.8331 0.9127 0.9214

Table 2: Test accuracy on CIFAR-10 under single types of non-i.i.d. scenarios

Non-i.i.d scenarios Dataset FNR-FL FedAvg FedProx SCAFFOLD MOON FedNova

Feature distribution skew MNIST 0.9953 0.9685 0.9772 0.9805 0.9787 0.9786
FEMNIST 0.9889 0.7591 0.7571 0.7591 0.7629 0.7666

Label distribution skew MNIST 0.9943 0.9841 0.9829 0.9828 0.9838 0.9854
FEMNIST 0.9941 0.9841 0.9801 0.9880 0.9903 0.9839

Quantity skew MNIST 0.9951 0.9903 0.9894 0.9880 0.9903 0.9893
FEMNIST 0.9944 0.9916 0.9868 0.7598 0.9903 0.7598

Table 3: Test accuracy on MNIST and FEMNIST under single types of non-i.i.d. scenarios

Federated Learning Algorithms

Non-i.i.d. scenarios Metric FNR-FL FedAvg FedProx SCAFFOLD MOON FedNova

Feature Distribution Skew

Traffic (MB) 8920 8920 8920 13380 8920 8920
Time (s) 6060 6840 8160 6840 10692 6525
Accuracy 0.9976 0.6001 0.5956 0.7425 0.5530 0.6223

κ 1.6462 0.8774 0.7299 1.0855 0.5172 0.9536
ρ 1.1184 0.6728 0.6677 0.5549 0.6199 0.6976

Label Distribution Skew

Traffic (MB) 8920 8920 8920 13380 8920 8920
Time (s) 7133 6006 11310 7176 8814 7098
Accuracy 0.9970 0.8393 0.8773 0.9077 0.6515 0.9043

κ 1.3977 1.3974 0.7757 1.2649 0.7392 1.2740
ρ 1.1177 0.9409 0.9835 0.6784 0.7304 1.0138

Quantity Skew

Traffic (MB) 8920 8920 8920 13380 8920 8920
Time (s) 5400 6786 9360 7332 11544 6006
Accuracy 0.9982 0.9107 0.8874 0.7017 0.7336 0.7293

κ 1.8485 1.3420 0.9481 0.9570 0.6355 1.2143
ρ 1.1191 1.0210 0.9948 0.5244 0.8224 0.8176

Table 4: Performance evaluation of federated learning algorithms (10 participants, 10 rounds)

Non-i.i.d. scenarios FNR-FL FedAvg FedProx SCAFFOLD MOON FedNova

label+feature skew noise=0.1 0.9755 0.8067 0.7837 0.8371 0.6360 0.8029
noise=0.5 0.9111 0.4504 0.4587 0.5763 0.3728 0.3942

label+quantity skew 0.8826 0.3094 0.3048 0.311153 0.2993 0.309439

Table 5: Test accuracy on CIFAR-10 under mixed types of non-i.i.d. scenarios (ResNet-18)
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Figure 4: Convergence curves of training ResNet-18 on CIFAR-10

Non-i.i.d. scenarios FedAvg+
FNR-FL

FedProx+
FNR-FL

SCAFFOLD+
FNR-FL

MOON+
FNR-FL

FedNova+
FNR-FL

Feature distribution skew 0.9976 0.9784 0.9783 0.9678 0.9664
Label distribution skew 0.9970 0.9838 0.9892 0.9774 0.9766

Quantity skew 0.9982 0.9999 0.9637 0.9532 0.9427

Table 6: Orthogonality of FNR-FL with existing FL algorithms (ResNet-18, CIFAR-10)

Non-i.i.d. scenarios Noise FNR-FL FedAvg FedProx SCAFFOLD MOON FedNova

Feature distribution skew
0.0 0.9995 0.9238 0.9039 0.9290 0.7371 0.9257
0.1 0.9984 0.8549 0.8219 0.8581 0.5677 0.8469
0.5 0.9505 0.4303 0.4517 0.5925 0.4030 0.4723

Label distribution skew
0.0 0.9970 0.8850 0.8773 0.9077 0.6515 0.9043
0.1 0.9755 0.8067 0.7837 0.8371 0.6360 0.8029
0.5 0.9111 0.4504 0.4587 0.5763 0.3728 0.3942

Table 7: Effect of noise (ResNet-18, CIFAR-10)

Figure 5: Comparison of model accuracy before and after feature
norm regularization

Batch size Learning rate Training epochs

Value 16 64 0.01 0.05 1 5
Epoch 1 0.9380 0.9679 0.9679 0.7009 0.9297 0.9679
Epoch 2 0.9782 0.9836 0.9836 0.9794 0.9802 0.9836
Epoch 3 0.9843 0.9866 0.9866 0.9819 0.9847 0.9866
Epoch 4 0.9856 0.9882 0.9882 0.9858 0.9864 0.9882
Epoch 5 0.9862 0.9889 0.9889 0.9867 0.9882 0.9889

Figure 6: Effect of different hyperparameters on global model accu-
racy

7 Conclusions and Future Work
In this paper, we introduce the FNR-FL algorithm as a new
approach to enhance performance in non-i.i.d. data scenarios.
The core philosophy of FNR-FL revolves around leveraging
feature norms as a metric to quantify and mitigate the diver-
gence in local model updates. Our evaluations demonstrate
that FNR-FL achieves superior test accuracy without exces-
sive overhead and maintains convergence. An orthogonal
experiment highlights its modularity, seamlessly enhancing

FL algorithms. The necessity of feature norm regularization is
confirmed through an ablation experiment.

For future work, we aim to further optimize FNR-FL for
communication cost reduction by integrating model compres-
sion techniques. We also plan to explore applying FNR-
FL to privacy-preserving federated learning and to develop
a decision-making algorithm that analyzes data distribution
characteristics in federated settings to recommend the most
appropriate FL algorithm.
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