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Abstract

Data augmentation plays a critical role in improv-
ing model performance across various domains, but
it becomes challenging with graph data due to their
complex and irregular structure. To address this
issue, we propose EPIC (Edit Path Interpolation
via learnable Cost), a novel interpolation-based
method for augmenting graph datasets. To inter-
polate between two graphs lying in an irregular
domain, EPIC leverages the concept of graph edit
distance, constructing an edit path that represents
the transformation process between two graphs via
edit operations. Moreover, our method introduces
a context-sensitive cost model that accounts for
the importance of specific edit operations formu-
lated through a learning framework. This allows
for a more nuanced transformation process, where
the edit distance is not merely count-based but re-
flects meaningful graph attributes. With randomly
sampled graphs from the edit path, we enrich the
training set to enhance the generalization capabil-
ity of classification models. Experimental evalu-
ations across several benchmark datasets demon-
strate that our approach outperforms existing aug-
mentation techniques in many tasks.

1 Introduction
Graph data has become increasingly important in various do-
mains, such as social networks, bioinformatics, and recom-
mendation systems [Hu et al., 2020; Morris et al., 2020;
Leskovec et al., 2007]. Despite the increasing importance, the
limited size and diversity of existing graph datasets often limit
the performance of graph-based models. One way to over-
come this limitation is to augment the existing dataset, a tech-
nique that has found success in the other domains [Shorten
and Khoshgoftaar, 2019; Iwana and Uchida, 2021].

An interpolation between points is a recognized method
for data augmentation, yet this approach does not seam-
lessly translate to graphs, due to the irregular structures in-
herent to them. Prior solutions have either adopted a continu-
ous relaxation of graph structures into regular domains [Han
et al., 2022] or employed transplantation of graph compo-

nents [Park et al., 2022], thereby circumventing the difficul-
ties associated with graph interpolation.

We propose a novel interpolation method for graphs based
on the concept of graph edit distance [Ullmann, 1976]. The
graph edit distance, a widely-accepted metric, quantifies
graph similarity by determining the minimum number of nec-
essary edit operations, such as insertions, deletions, or substi-
tutions of nodes and edges. From the graph edit distance be-
tween two graphs, we construct a graph edit path represent-
ing the transformation process from one graph to the other
through the edit operations. The intermediate graphs along
this path can be seen as an interpolation between two graphs
and are used to augment the training set.

However, the conventional edit distance with operation
counts may overlook the significance of individual opera-
tions, such as those that affect functional groups in molec-
ular graphs [Durant et al., 2002; Zhang et al., 2020]. In re-
sponse to this, we propose a context-sensitive cost model built
through an edit distance learning framework that maximizes
the distance between graphs with different labels while min-
imizing those with the same label. This enables us to learn a
cost model that better reflects the underlying graph data char-
acteristics.

By combining the graph edit distance metric with the
learned cost model, we present a novel graph dataset aug-
mentation method named Edit Path Interpolation via learn-
able Cost (EPIC). Through rigorous experimental evaluations
on various graph classification tasks, we demonstrate the su-
periority of our method in comparison to existing techniques.
Additional experiments with noisy labels show the robustness
of our approach against the others.

2 Related Work
2.1 Graph Edit Distance
The graph edit distance is a metric that quantifies the dissim-
ilarity between two graphs [Ullmann, 1976]. It measures the
minimum number of edit operations required to transform
one graph into another. These edit operations include node
and edge insertion, deletion, and substitution. The computa-
tional complexity of obtaining graph edit distance is known to
NP-complete [Abu-Aisheh et al., 2015]. A number of works
addressing the problem of the high computational cost have
been proposed. Cross et al. [1997] casts the optimization pro-
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cess into a Bayesian framework with a genetic search algo-
rithm. Myers et al. [2000] adopts the Levenshtein distance to
model the probability distribution for structural errors in the
graph-matching. In Justice and Hero [2006], a binary linear
programming formulation of the graph edit distance for un-
weighted, undirected graphs is proposed. Fischer et al. [2015]
proposes an approximated graph edit distance based on Haus-
dorff matching. Wang et al. [2021a] adopts the deep learning
method to efficiently prune the search tree in computation.

Recently, deep neural network-based graph edit distance
learning methods have been proposed. In contrast to the tra-
ditional fixed cost distance, these methods learn the cost of
individual edit operations. One standard approach to learn-
ing costs using neural networks involves obtaining embed-
dings from node and edge attributes, which are then used to
compute the edit distance in a supervised manner [Cortés et
al., 2019]. However, these approaches require ground truth
node correspondences provided by an oracle between two
graphs, which are inapplicable in various situations. Riba et
al. [2021] learns the cost using node features extracted by
graph neural networks and optimize the cost by approximat-
ing graph edit distance to Hausdorff distance. The Hausdorff
distance is an effective method for approximating the graph
edit distance in quadratic time, but it is not suitable for edit
path construction since it allows one-to-many substitution be-
tween nodes.

2.2 Graph Augmentation

Augmentation methods for graph-structured data aim to im-
prove the generalization ability of neural networks by cre-
ating diverse training samples. The most commonly used
augmentation methods are based on random modifications of
original data. For example, DropNode [Feng et al., 2020]
and DropEdge [Rong et al., 2019] uniformly drop nodes and
edges, respectively. A subgraph sampling [You et al., 2020;
Wang et al., 2020] and motif swap [Zhou et al., 2020] per-
turb the subgraph of the original graph via subgraph match-
ing. FLAG [Kong et al., 2022] adds adversarial perturbation
to node features. These methods assign the same labels be-
fore and after the perturbation.

To overcome the simplicity of basic approaches, mixup-
based augmentation has been proposed. Manifold Mixup
[Wang et al., 2021b] interpolates embeddings from the last
layer for two graphs and uses it as a graph representation
of the augmented graph. SubMix [Yoo et al., 2022] pro-
poses a node split and merge algorithm to perturb original
graphs and then mix random subgraphs of multiple graphs.
S-Mixup [Ling et al., 2023] uses an alignment matrix from
the graph matching network [Li et al., 2019] to mix node fea-
tures. G-Mixup [Han et al., 2022] mixes graphons [Airoldi
et al., 2013] extracted from different classes of graphs.
GREA [Liu et al., 2022] proposes a rationalization identifica-
tion algorithm that extracts a subgraph explaining a property
of the graph best and uses the subgraph to curate augmented
graphs.

3 EPIC: Edit Path Interpolation via
Learnable Cost

In this section, we first describe a graph data augmentation
method with a graph edit path. We then propose a method to
learn a graph edit distance by learning the cost of individual
edit operations.

3.1 Augmentation with Graph Edit Path
Construction of Graph Edit Path
We consider a graph G = (V , E) associated with node and
edge attributes. The graph edit distance is a metric that quan-
tifies the dissimilarity between two graphs. It measures the
minimum number of edit operations required to transform
one graph into another or computes the total cost of edit op-
erations if the cost of individual operations varies. These edit
operations involve node and edge insertion, deletion, and at-
tribute substitution.

Once the graph edit distance is computed, a graph edit path
can be obtained by applying a series of edit operations from
a source graph to reach a target graph. It represents the step-
by-step transformation from one graph to another while min-
imizing the edit distance.

The graph edit distance is generally invariant to the order
of edit operations. However, there are certain dependencies
between node and edge operations. The node deletion opera-
tion can only be performed after all the connected edges are
deleted. The edge insertion operation can only be performed
when the two target nodes are presented.

We only consider the node operations in order to reduce
the computational complexity of graph edit distance. Specif-
ically, when a new node is inserted into a graph, we perform
edge insertion operations for all edges whose adjacent nodes
are given after insertion. When a node is deleted, we per-
form edge deletion operations for all edges connected to the
deleted node. When a node is substituted, we perform edge
insertion, deletion, and substitution operations accordingly.
The detailed algorithm is provided in Algorithm 1. By doing
so, we can construct the graph edit path whose length is equal
to the number of node edit operations in the computation of
the graph edit distance. Figure 1 illustrates an example of a
graph edit path between two graphs and possible augmenta-
tion.

Graph Augmentation and Label Assignment
We use the graph edit path to construct an augmented graph.
We randomly sample two graphs in the training set. The
graph edit distance between the two graphs is computed, then
the graph edit path is constructed with node operations in ran-
dom order. The samples obtained from a graph edit path are
used as augmented graphs. To prevent the case where the
augmented graph is already presented in the training set, we
add an additional node feature indicating whether the graph
is from the augmentation set or not.

To assign a label to the augmented graph, we use the cost
of edit operations from the augmented graph to the source
and the target graphs. Let (o1, ..., on) be a sequence of edit
operations applied to transforming source graph GS to target
graph GT , and c(o) be the real-valued cost function of opera-
tion o, which is precisely defined in Subsection 3.2. With the
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Figure 1: Illustration of graph edit path and their corresponding labels for augmentation.

Algorithm 1 Applying node operation

Input: A node operation (u → v), source graph GS =
(VS , ES), target graph GT = (VT , ET ), and the current
graph GC = (VC , EC)

Output: The updated graph GC+1 = (VC+1, EC+1)
1: GC+1 = copy(GC)
2: if u = ∅ then
3: Insert the node v to VC+1.
4: else if v = ∅ then
5: Delete the node u from VC+1.
6: else
7: Substitute the node u with the node v in VC+1.
8: end if
9: for each edge (u,w) in EC do

10: if node w ∈ VT and edge (v, w) not in ET then
11: Remove the edge (v, w) from EC+1.
12: else if node w ∈ VT and edge (v, w) in ET then
13: Substitute edge attributes of (v, w) in EC+1 with

those of (v, w) in ET if needed.
14: end if
15: end for
16: for each edge (v, x) ∈ ET adjacent to node v in VT do
17: if node x ∈ VC and edge (u, x) not in EC then
18: Insert the edge (v, x) to EC+1.
19: end if
20: end for

corresponding one-hot classification label of the source graph
yS and the target graph yT , the label of the augmented graph
ȳ obtained by applying the first m operations (o1, ..., om) is
computed as

ȳ =

∑n
i=m+1 c (oi)∑n
i=1 c (oi)

yS +

∑m
i=1 c (oi)∑n
i=1 c (oi)

yT , (1)

where c(·) measures the cost of an operation. The assigned
label is inversely proportional to the operation cost to reach
the source or target from the augmented graph.

3.2 Learning Costs of Edit Operations
The standard unit cost model [Ullmann, 1976; Fischer et
al., 2015; Riesen and Bunke, 2009] of the graph edit dis-

tance is incapable of measuring the importance of each op-
eration as all operations are assigned the same cost, regard-
less of their significance or impact. However, the importance
of edit operations would differ based on the context of the
dataset. For example, changes in a functional group of molec-
ular graphs can lead to larger semantic perturbation than the
other parts in a property prediction task [Durant et al., 2002;
Zhang et al., 2020]. Therefore, the edit operation leading to a
large semantic modification should cost more than the others.
To measure the importance of each operator in the computa-
tion of graph edit distance, we propose a learning algorithm
for the operation cost based on a neural network model.

Triplet Loss for Learning Distance
A good cost function should be problem dependent. We use
the triplet loss with known labels [Schroff et al., 2015] to
learn the graph edit distance and the operation costs therein.
We assume that the pair of graphs within the same class has a
relatively shorter edit distance than those of different classes.
Let GED(G,G′) be the distance between graphs G and G′.
We propose a triplet loss-based objective function to encode
our intuition:

L(G,G+, G−)

= max
(
GED(G,G+)−GED(G,G−) + γ, 0

)
, (2)

where G+ is a positive example whose label is the same as
G, G− is a negative example whose labels are different from
G, and γ is a margin hyperparameter.

Graph Edit Distance as Constrained Optimization
The computational complexity of graph edit distance compu-
tation is NP-complete [Abu-Aisheh et al., 2015]. Learning
graph edit distance often requires relaxation to make the al-
gorithm tractable [Fischer et al., 2015; Riesen and Bunke,
2009]. To simplify the learning, we assume that the cost
of node operation subsumes the cost of dependent edit op-
erations, similar to the construction of the edit path. With
the simplified assumption, we only need to consider the fol-
lowing three cases when computing the edit distance be-
tween source graph GS = (VS , ES) and target graph GT =
(VT , ET ) with operation cost function c : VS∪∅×VT ∪∅ →
R, where ∅ represents an empty node:

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4118



1

3 4

2

d

a

c

b

Node Embedding Space

1

42

b

3

d

substitution 
cost

a b c d
1
2
3
4

d

insertion/
deletion

cost

a b c d
1
2
3
4

Assignment Matrix

Insertion

Source Graph

Target Graph

Triplet Loss

1

3 4

21

3 4

d

a

c

ba

3 4

b

a

3 4

a

c 4

b

Edit Path

Cost Calculation Cost Matrix

D
eletion

Insertion

D
eletion

4

4 d

a

c

Figure 2: Overall illustration of graph edit distance learning. The assignment matrix can be obtained by either Hungarian or Sinkhorn-Knopp.
For learning, we use Sinkhorn-Knopp, and for augmentation, we use Hungarian.

• Node u in VS is substituted by node v in VT with substi-
tution cost c(u, v).

• Node u in VS is deleted with deletion cost c(u,∅).
• Node v in VT is inserted with insertion cost c(∅, v).

We construct a cost matrix that encapsulates all required
costs to compute the edit distance between two graphs. The
cost matrix is constructed as

C =



c (u1, v1) · · · c (u1, vm) c (u1,∅) · · · ∞
...

. . .
...

...
. . .

...
c (un, v1) · · · c (un, vm) ∞ · · · c (un,∅)
c (∅, v1) · · · ∞ ∞ · · · ∞

...
. . .

...
...

. . .
...

∞ · · · c (∅, vm) ∞ · · · ∞


(3)

where n and m are the number of nodes in GS and GT , re-
spectively.

With the cost matrix, the problem of computing the graph
edit distance can be reduced to solving the assignment prob-
lem. Since the node in the source graph can only be sub-
stituted or deleted, only one operation can be performed in
each of the first n rows. Similarly, since the node in the tar-
get graph can only be substituted or inserted, only one op-
eration in each of the first m columns can be performed in
edit distance computation. A binary assignment matrix X ,
whose size is the same as the cost matrix, is introduced to in-
dicate which operation is performed in edit distance compu-
tation. With the assignment matrix, the computation of graph
edit distance can be formulated as a constrained optimization

problem

GED(GS , GT ) =min
X

n+m∑
i=1

n+m∑
j=1

CijXij

s.t.
n+m∑
j=1

Xij =1, 1 ≤ i ≤ n

n+m∑
i=1

Xij = 1, 1 ≤ j ≤ m, Xij ∈ {0, 1}. (4)

Design Cost Function with Neural Networks
We introduce the graph neural network framework to param-
eterize the cost function c. Specifically, we use the embed-
ding distances between two nodes as the substitution cost.
Let hu and hv be the output embedding of node u ∈ GS

and v ∈ GT from a graph neural network. We use the dis-
tance between two embeddings as a substitution cost, i.e.,
cθ(u, v) = ||hu − hv||2, where θ is the parameter of the
graph neural network. The embeddings of the graph neu-
ral network encode the neighborhood structure of the tar-
get node. If the embeddings of two nodes are similar, then
the two nodes are likely to play a similar role in the graph.
Hence, the substitution cost measures the structural similar-
ity between two nodes. For the insertion and deletion op-
erations, we additionally introduce a multi-layer perceptron,
i.e., cθ,ϕ(u,∅) = MLPϕ(hu) and cθ,ϕ(∅, v) = MLPϕ(hv),
where ϕ denotes the parameters of MLP. The MLP com-
putes the cost of insertion and deletion using the embedding
of a node. We use the same network for both insertion and
deletion. The graph neural networks encode the local struc-
ture of nodes into node embeddings. Consequently, by con-
sidering the costs of node operations, we effectively encap-
sulate the information regarding the neighborhood edges as
well.
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Method NCI1 BZR COX2 Mutagen. IMDB-B IMDB-M PROTEINS ENZYMES Rank
G

IN

Vanilla 81.68(0.8) 87.07(2.7) 83.40(2.7) 81.57(0.7) 72.90(0.6) 48.40(1.2) 67.80(2.2) 46.33(2.3) 5.4

DropEdge [Rong et al., 2019] 74.61(0.7) 85.85(0.4) 80.43(2.7) 79.13(1.1) 71.20(1.6) 47.20(2.0) 68.97(1.6) 39.00(3.1) 8.6
DropNode [Feng et al., 2020] 73.05(1.8) 85.61(3.0) 78.51(1.6) 77.91(1.0) 72.90(3.4) 46.60(2.0) 67.53(3.3) 38.00(3.6) 9.4
Subgraph [You et al., 2020] 74.90(2.6) 79.76(3.3) 81.49(4.9) 69.25(1.8) 71.90(3.1) 46.13(3.0) 63.32(3.5) 34.50(8.4) 10.3
FLAG [Kong et al., 2022] 81.85(0.8) 88.29(1.6) 84.26(2.6) 81.98(0.6) 72.80(0.3) 48.60(1.4) 68.34(2.9) 46.17(2.5) 4.1

SubMix [Yoo et al., 2022] 81.31(0.6) 87.56(3.5) 83.62(2.3) 80.25(1.1) 72.90(0.9) 48.60(1.0) 70.76(2.2) 44.33(4.8) 4.8
M-Mix [Wang et al., 2021b] 81.00(0.4) 85.37(3.6) 84.47(1.0) 81.68(0.9) 73.20(0.6) 47.93(1.8) 68.70(1.1) 46.67(1.7) 4.9
G-Mix [Han et al., 2022] 80.92(1.9) 88.05(1.6) 82.98(0.8) 81.66(0.6) 73.00(0.9) 48.13(1.2) 69.87(2.4) 44.83(1.4) 5.1
GREA [Liu et al., 2022] 74.63(0.5) 85.85(2.2) 81.91(2.4) 79.98(0.4) 72.40(1.0) 46.27(0.7) 73.36(1.4) 46.83(2.1) 6.6
S-Mix [Ling et al., 2023] 81.48(1.4) 85.85(2.5) 83.83(0.5) 82.07(1.1) 73.00(2.0) 48.47(0.6) 69.42(1.6) 44.33(6.3) 4.4

EPIC 82.16(0.7) 88.78(3.3) 84.47(1.9) 82.30(0.5) 73.20(0.4) 49.07(1.2) 71.21(1.4) 47.50(1.8) 1.1

G
C

N

Vanilla 81.07(0.7) 85.85(2.8) 84.26(2.2) 81.70(1.1) 70.60(1.3) 48.27(1.5) 64.13(1.6) 44.67(5.7) 5.1

DropEdge [Rong et al., 2019] 74.24(1.0) 82.93(4.3) 83.40(1.2) 80.37(0.6) 70.50(1.8) 45.67(1.5) 64.75(3.4) 39.33(1.8) 8.0
DropNode [Feng et al., 2020] 73.78(1.8) 80.73(2.4) 79.15(1.8) 78.32(1.6) 69.40(3.0) 39.80(3.7) 68.43(1.8) 36.17(3.6) 9.1
Subgraph [You et al., 2020] 70.11(5.5) 77.80(1.0) 78.09(3.2) 79.47(1.3) 59.00(6.6) 39.07(2.1) 66.28(2.5) 28.33(8.2) 10.5
FLAG [Kong et al., 2022] 82.02(0.6) 88.05(2.3) 85.32(1.4) 81.01(0.8) 71.00(2.0) 47.33(2.7) 67.62(1.2) 47.50(4.4) 3.1

SubMix [Yoo et al., 2022] 81.99(0.6) 86.34(2.0) 84.68(3.7) 80.99(0.6) 70.30(1.4) 46.47(2.5) 67.80(2.0) 43.67(4.9) 5.1
M-Mix [Wang et al., 2021b] 81.41(0.5) 84.15(2.3) 83.83(2.1) 81.96(0.6) 69.40(1.1) 46.40(2.7) 66.28(1.5) 44.00(5.3) 6.1
G-Mix [Han et al., 2022] 82.04(1.8) 87.32(2.4) 84.89(1.4) 80.32(0.7) 69.90(1.8) 45.87(3.0) 68.07(1.2) 46.17(4.3) 4.8
GREA [Liu et al., 2022] 75.31(0.4) 84.39(0.9) 80.43(0.5) 80.48(0.5) 65.50(0.0) 45.73(1.4) 73.18(0.7) 38.00(2.2) 7.4
S-Mix [Ling et al., 2023] 81.65(0.7) 87.56(2.8) 83.40(1.4) 81.63(0.4) 69.60(0.8) 46.20(0.8) 68.52(0.8) 45.00(3.2) 4.8

EPIC 82.14(0.8) 88.78(2.3) 85.53(1.6) 82.44(0.7) 71.70(1.0) 47.93(1.3) 69.06(1.0) 45.00(3.0) 1.5

Table 1: Classification accuracy of TUDataset. We report the average and standard deviation (in brackets) over five seeds. We mark the best
and the second-best performances in bold and underline, respectively. The rank column shows the average rank of model performance across
all datasets.

Optimization with a Differentiable Assignment Matrix
To learn the graph edit distance, we need to minimize the
loss in Equation 2 w.r.t θ and ϕ. However, this optimization
involves a non-differentiable optimization problem w.r.t the
assignment matrix X in Equation 4. The Hungarian algo-
rithm [Kuhn, 1955] can be used to find the optimal assign-
ment X for each iteration of the stochastic gradient descent
step. However, the Hungarian algorithm is non-differentiable
and has a computational complexity of O(n3), making it dif-
ficult to employ during gradient-based optimization. We in-
stead employ the Sinkhorn-Knopp algorithm [Sinkhorn and
Knopp, 1967] to address this issue to obtain a differentiable
assignment matrix. The Sinkhorn-Knopp algorithm trans-
forms a non-negative matrix into a doubly stochastic ma-
trix to approximate the Hungarian algorithm. Specifically,
Sinkhorn-Knopp iteratively updates a soft assignment matrix
X̃ via two intermediate variables u and v. Once u and v are
initialized as a vector of ones, i.e., u(0) = [1, · · · , 1]⊤, at k-
th iteration of Sinkhorn-Knopp approximates the assignment
matrix via

u(k) =
X(k−1)1

Kv(k−1)
, v(k) =

X(k−1)⊤1

K⊤u(k−1)
,

X̃(k) = diag(u(k))K diag(v(k)), (5)
where each entry of matrix K is parameterized by the cost
matrix and a regularizer parameter δ as Kij = exp(−Cij/δ),

and 1 is a vector of ones. δ is a regularization term controlling
the sharpness of the assignment matrix.

Note that the back-propagation algorithm needs to opti-
mize the entire iterative process of the Sinkhorn-Knopp ap-
proximation. In experiments, we set the number of maximum
iterations to 10 to reduce the computational cost. After learn-
ing the cost function, to augment a pair of randomly selected
graphs, we first compute the cost matrix and then create a
graph edit path using the optimal assignment from the Hun-
garian algorithm. Figure 2 shows the overall illustration of
our proposed approach.

4 Experiments
In this section, we first show the effect of EPIC in graph clas-
sification tasks over 11 datasets. We further evaluate the ro-
bustness of GNNs with our method against corrupted labels.
We provide additional analysis of our model selection pro-
cess.

4.1 Effect of Augmentation for Graph
Classification

Datasets. We used eight classification datasets: NCI1,
BZR, COX2, Mutagenicity, IMDB-BINARY, IMDB-MULTI,
PROTEINS, ENZYMES from TUDataset [Morris et al.,
2020] and three classification dataset: BBBP, BACE, HIV
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from MoleculeNet [Wu et al., 2018]. The datasets cover a
wide range of tasks, including social networks, bioinformat-
ics, and molecules.

Baselines. For baseline augmentation models, we use two
graph augmentation methods as baselines: one that modi-
fies a single graph, DropEdge [Rong et al., 2019], DropN-
ode [Feng et al., 2020], Subgraph [You et al., 2020] and
FLAG [Kong et al., 2022], another that mixes information
from two graphs, SubMix [Yoo et al., 2022], Manifold-Mixup
(M-Mixup) [Wang et al., 2021b], G-Mixup [Han et al., 2022],
GREA [Liu et al., 2022], and S-Mixup [Ling et al., 2023].
We also report the performance of a vanilla model without
augmentation.

Implementation details. We first learn the cost of edit op-
erations for each dataset. We use Adam optimizer [Kingma
and Ba, 2014] with a learning rate decay of 0.1 every 25
epochs. We train the cost function for 100 epochs on TU-
Dataset. While we use the Sinkhorn-Knopp approximation
with k = 10 in Equation 5 for training, the Hungarian al-
gorithm is used for inference to obtain an optimal assign-
ment given costs. We perform graph classification tasks with
GIN [Xu et al., 2018] and GCN [Kipf and Welling, 2016]
as a backbone model for augmentation. When we train each
backbone model, for a fair comparison, we use the same hy-
perparameters and architecture tuned from the vanilla model
for our method and other baseline models. We follow the
Open Graph Benchmark setting [Hu et al., 2020] for Molecu-
leNet dataset. When training classification models, we com-
pute the edit path between randomly paired graphs in each
batch and use randomly chosen graphs from the edit path as
augmentation. We use the validation set to choose the portion
of augmented data points.

Classification results. Table 1 shows the overall results of
the TUDataset for graph classification tasks. Our augmen-
tation method outperforms the other baselines on seven and
five datasets with GIN and GCN backbones, respectively,
and achieves the second-best performance on one and two
datasets with GIN and GCN. Table 2 shows the AUC-ROC
scores with MoleculeNet datasets. We achieve the best per-
formance on all datasets except for one second-best perfor-
mance with GIN and GCN backbones over other baselines.
The results from two benchmarks show our augmentation
method consistently improves the generalization of GNNs.

4.2 Robustness Analysis
Verma et al. [2019] theoretically demonstrates that mixup-
based augmentation enhances the robustness of deep neural
networks against noisy labels. We also conduct a similar
study. Following the settings used in Han et al. [2022] and
Ling et al. [2023], we randomly corrupt labels in the train-
ing set of IMDB-BINARY, IMDB-MULTI, and Mutagenicity
datasets and test the model performance with the uncorrupted
test set. We run the experiments with three different propor-
tions of noise: {0.2, 0.4, 0.6} based on GIN. Except for the
noise, we use the same setting used in Subsection 4.1. Ta-
ble 3 shows the classification accuracy with different propor-
tions of noisy labels. EPIC outperforms the other baseline

Method BBBP BACE HIV Rank

G
IN

Vanilla 65.90(1.9) 77.01(2.7) 75.10(2.7) 6.3

DropEdge 65.32(1.8) 74.50(0.9) 75.57(0.6) 8.0
DropNode 64.32(5.0) 76.37(3.0) 75.36(1.3) 8.3
Subgraph 62.85(5.7) 76.15(4.3) 73.84(0.9) 10.0
FLAG 65.64(0.8) 79.45(4.5) 75.24(1.9) 5.7

SubMix 65.58(5.0) 77.50(5.5) 76.36(1.3) 4.3
M-Mix 64.48(1.6) 75.30(2.6) 75.55(2.0) 8.0
G-Mix 64.33(3.2) 78.54(1.9) 76.06(0.7) 5.7
GREA 68.57(0.6) 79.97(1.2) 76.18(1.1) 2.3
S-Mix 65.89(2.0) 75.04(5.5) 75.63(3.0) 6.3

EPIC 68.88(2.1) 81.00(1.1) 76.38(0.3) 1.0

G
C

N

Vanilla 66.08(3.4) 76.35(4.2) 75.45(0.7) 7.0

DropEdge 65.71(2.5) 72.79(7.9) 75.90(1.6) 7.7
DropNode 68.33(3.0) 71.37(5.0) 74.41(0.9) 7.7
Subgraph 63.09(0.6) 76.39(1.3) 73.75(1.7) 9.3
FLAG 68.14(3.5) 77.87(1.9) 76.74(3.2) 3.3

SubMix 67.68(1.2) 75.19(5.6) 75.61(2.1) 6.3
M-Mix 67.38(2.0) 79.67(0.9) 75.23(1.2) 5.3
G-Mix 65.10(2.3) 77.54(5.3) 75.99(0.9) 6.0
GREA 68.23(1.9) 77.29(4.0) 76.85(1.7) 3.3
S-Mix 65.65(2.7) 74.04(2.6) 75.32(3.8) 8.7

EPIC 68.52(1.7) 78.05(1.3) 77.30(3.1) 1.3

Table 2: Classification AUC-ROC of MoleculeNet

Figure 3: Training and validation loss curves on HIV dataset with
Hungarian and Sinkhorn-Knopp algorithms in the training process.

models, except for one case, showing the robustness of our
augmentation under the noisy environment.

4.3 Ablation Studies
In this subsection, we show the result of ablation studies on
each component in EPIC. Further ablation studies are shown
in Appendix A.

Cost function variations. We test the effectiveness of the
learnable cost function against other variations of the cost
function. We use two variations of the cost function: unit
cost, which measures the number of edit operations, and
feature-distance cost, which measures the distance between
two input node features, adopted from Ling et al. [2023]. The
result in Table 4a shows that the learnable cost outperforms
the other cost functions across all datasets. The results empir-
ically verify our claim that the good cost function should be
problem-dependent and can be learned from the dataset. We
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IMDB-BINARY IMDB-MULTI Mutagenicity

Method 20% 40% 60% 20% 40% 60% 20% 40% 60%

Vanilla 72.50(1.2) 66.10(1.6) 44.30(6.6) 48.00(1.2) 46.07(1.1) 42.33(3.7) 75.30(0.7) 68.52(1.4) 46.38(3.1)

DropEdge [Rong et al., 2019] 70.30(4.1) 66.20(5.1) 48.30(4.0) 44.80(2.4) 42.60(3.1) 37.93(2.2) 75.47(0.9) 67.71(1.5) 45.13(4.1)

DropNode [Feng et al., 2020] 70.90(1.0) 68.80(3.4) 52.40(2.3) 45.60(1.9) 43.00(2.5) 39.53(1.9) 72.98(1.5) 66.26(1.5) 45.89(3.1)

SubMix [Yoo et al., 2022] 72.20(1.0) 67.70(2.0) 43.10(9.4) 48.67(1.2) 45.53(1.3) 40.60(5.2) 73.00(1.5) 66.86(2.6) 59.03(2.5)

ManifoldMix [Verma et al., 2019] 71.90(1.1) 69.90(3.8) 49.70(6.5) 48.07(1.3) 46.67(1.1) 43.40(3.3) 75.49(0.9) 67.43(3.6) 45.91(2.7)

G-Mix [Han et al., 2022] 71.60(1.9) 70.00(4.3) 44.60(10.0) 47.33(0.8) 44.80(2.1) 40.67(1.7) 76.06(1.5) 69.25(0.8) 45.27(4.1)

GREA [Liu et al., 2022] 71.80(1.8) 67.50(5.8) 49.20(1.8) 45.53(1.5) 44.13(3.7) 39.73(1.2) 76.60(1.8) 68.63(1.6) 49.64(7.3)

S-Mix [Ling et al., 2023] 72.60(1.0) 70.30(3.6) 52.50(7.4) 48.40(0.5) 46.60(1.5) 42.07(4.3) 75.56(0.5) 68.22(3.8) 58.50(5.3)

EPIC 72.90(1.0) 71.30(3.4) 52.60(10.3) 49.00(0.9) 47.13(1.7) 44.40(3.7) 76.78(1.2) 69.48(1.9) 53.90(5.6)

Table 3: Robustness analysis on IMDB-BINARY, IMDB-MULTI, and Mutagenicity datasets.

Method NCI1 ↑ Mutagen.↑ IMDB-B↑ IMDB-M ↑
Unit cost 81.56(1.3) 81.73(0.2) 71.90(0.9) 48.53(1.0)

Feature-distance 81.07(0.9) 81.68(0.8) 72.20(1.2) 48.53(1.0)

EPIC 81.70(1.4) 82.30(0.5) 73.20(0.4) 49.07(1.2)

(a) Classification accuracy with augmentation

Method NCI1 ↑ Mutagen.↑ IMDB-B↑ IMDB-M ↑
Unit cost 60.49(0.4) 56.69(2.0) 55.50(2.8) 36.33(2.2)

Feature-distance 60.70(0.8) 55.51(1.8) 56.00(2.8) 36.20(1.6)

EPIC 72.69(0.3) 75.33(1.0) 67.70(1.8) 39.33(2.8)

(b) Distance-based classification accuracy

Table 4: Comparisons between three different cost functions.

also classify the graphs in the test dataset based on their dis-
tance to the closest graph in each class. If the cost is learned
properly, the distance from a test graph to the graph in the
same class should be close to each other. Table 4b shows the
result of distance-based classification. In most cases, EPIC
outperforms the other fixed-cost methods. Results for all TU-
Dataset can be found in Appendix B.

Hungarian vs Sinkhorn-Knopp. We investigate the im-
pact of a differentiable assignment matrix with the Sinkhorn-
Knopp algorithm against a fixed assignment matrix from the
Hungarian algorithm in the process of training. In Figure 3,
we present the training and validation curve on the HIV
dataset. In general, the Sinkhorn-Knopp algorithm shows a
more stable learning process than the Hungarian algorithm.
The training loss with Hungarian has not been stabilized af-
ter 20 epochs in HIV datasets. Moreover, the validation loss
of Sinkhorn-Knopp is consistently lower than Hungarian af-
ter certain iterations. We conjecture that the non-smooth loss
surface of Hungarian makes the gradient descent work hard,
and eventually, the model fails to reach a good local mini-
mum, whereas the smooth loss surface of Sinkhorn-Knopp
results in a better performance despite being an approxima-
tion of Hungarian.

4.4 Qualitative Analysis
To examine how the results of the learned distance are re-
flected in the augmented graph, we conduct an experiment

(a) Nodes with substitution operations

(b) Sampled edit path

Figure 4: Examples of learned edit distance from a lollipop dataset.
The dashed lines in (a) represent substitution operations.

with a lollipop dataset whose structural properties are easily
visualized. The (m,n)-lollipop graph consists of a head, a
complete graph with m nodes, and a tail, a chain structured
n nodes. The lollipop dataset consists of graphs with varying
m and n. The label of a graph is the size of the head, i.e., m.
Figure 4 displays examples of the trained graph edit distances
and the corresponding edit path. With a positive pair, the
learned graph edit distance substitutes the head nodes from
the source graph for those of the target graph. Eventually, it
maintains the complete subgraph of the head along the edit
path. Additionally, we present the assigned cost for substitu-
tion to each node in Appendix C, which consistently shows
the effectiveness of the cost function for EPIC.

5 Conclusion
In this paper, we propose a novel approach for graph dataset
augmentation based on the graph edit distance. Our method
overcomes the limitations of linear interpolation techniques
in the non-Euclidean domain and provides a tailored augmen-
tation solution for graph data. Through extensive experiments
on benchmark datasets, we have demonstrated the effective-
ness of our approach in improving the performance and ro-
bustness of graph-based models.
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k

Dataset 1 2 3 4 5 6 7 8 9 10
G

IN

BZR 87.56(2.3) 87.32(2.4) 89.51(2.5) 86.59(2.6) 88.05(1.6) 87.32(1.8) 87.32(2.4) 87.32(2.0) 88.05(3.2) 88.78(3.3)

COX2 82.98(1.8) 82.13(3.6) 83.19(4.2) 83.40(2.7) 82.55(2.9) 84.68(1.8) 81.06(4.4) 84.47(1.6) 84.47(1.2) 84.47(1.9)

IMDB-B 72.30(1.3) 72.20(0.8) 72.80(0.6) 72.90(0.5) 72.60(0.7) 72.70(0.9) 72.70(0.8) 72.50(0.7) 72.60(1.1) 73.20(0.4)

IMDB-M 48.40(0.7) 48.33(0.2) 48.67(0.9) 48.53(0.7) 49.27(0.6) 48.67(0.2) 48.93(0.9) 49.13(1.6) 48.33(0.8) 49.07(1.2)

ENZYMES 45.00(3.4) 44.83(3.2) 46.50(3.9) 43.67(4.7) 46.00(5.5) 47.67(2.2) 45.17(2.4) 49.33(3.2) 46.00(3.7) 47.50(1.8)

Rank 7.4 8.6 3.8 6.8 4.6 3.6 6.2 3.8 5.0 2.2

Table 5: Classification performance under varying values of k.

Method NCI1 BZR COX2 Mutagen. IMDB-B IMDB-M PROTEINS ENZYMES

G
IN BFS 81.75(0.8) 88.78(2.0) 84.68(2.7) 82.51(1.0) 73.00(0.5) 49.60(0.8) 70.94(1.8) 46.83(2.5)

Random 82.16(0.7) 88.78(3.3) 84.47(1.9) 82.30(0.5) 73.20(0.4) 49.07(1.2) 71.21(1.4) 47.50(1.8)

Table 6: Comparison of randomly ordered augmentation and BFS-ordered augmentation.

A Further Ablation Studies
In this section, we describe the ablation studies for model
configuration. Specifically, we examine methods for deter-
mining the operation order in the edit path and the number of
iterations in the Sinkhorn-Knopp algorithm.
Iterations of the Sinkhorn-Knopp algorithm. We adopt
the Sinkhorn-Knopp algorithm to approximate the Hungarian
algorithm to make the assignment matrix differentiable for
optimization during training as described in Subsection 3.2.
To analyze the effect of the number of iterations of the
Sinkhorn-Knopp algorithm, we evaluate the classification
performance under varying values of k in Equation 5. Table 5
presents the results of an ablation study. We further exper-
iment to observe how well the assignment matrix, XS , de-
rived from the Sinkhorn-Knopp algorithm approximates the
assignment matrix, XH , from the Hungarian algorithm, as the
parameter k varies. Firstly, we calculate both assignment ma-
trices from our learned cost function on the test dataset and
compute the Frobenius norm of the difference between the
two matrices, ||XA||F = ||XS − XH ||F , and then, measure
an average of each Frobenius norm across the entire dataset.
Figure 5 shows the average of Frobenius norm with varying
k. We observe that the error decreases as k increases, sug-
gesting that the Sinkhorn-Knopp algorithm’s assignment ma-
trix becomes more similar to the assignment matrix from the
Hungarian algorithm. However, as k increases, the compu-
tational cost required for training also increases, indicating a
trade-off relationship.
Operation ordering. When calculating the edit distance,
the specific operation order does not affect the final result. To
construct the edit path, we need to determine the operation
order. In our analysis, we investigate the difference between
two choices of operation orders. To maintain the local con-
nectivity of the target graph within the edit path, we employ
a breadth-first search (BFS) on the target graph, and node in-
sertion/deletion/substitution is performed following the BFS
order. The results in Table 6 compare randomly ordered aug-

Figure 5: Difference between assignment matrix from Hungarian
and Sinkhorn algorithm with varying k in Equation 5.

mentation with BFS-ordered augmentation on eight datasets.
We find no significantly better ordering choices between these
two methods. To minimize additional computational over-
head, we utilize random ordering for the main result.

B Results on TUDataset Based on Cost
Function Variations

In this subsection, we show the full result of classification de-
scribed in Table 4 based on different cost functions: the unit
cost, which counts edit operations, and the feature-distance
cost, derived from Ling et al. [2023], which measures the
distance between input node features. Table 7a demonstrates
that the learnable cost outperforms other cost functions on
all datasets. The result empirically proves our claim that
an effective cost function should be problem dependent and
learned from the dataset.

Also, if the cost is learned correctly, the graph with the
shortest graph edit distance to a given graph should be in the
same class. Under this premise, we classify the graphs in the
test dataset based on their distance to the closest graph in each
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Method NCI1 ↑ BZR↑ COX2↑ Mutagen.↑ PROTEINS↑ ENZYMES↑ IMDB-B↑ IMDB-M ↑
Unit cost 81.56(1.3) 85.37(2.7) 84.04(2.5) 81.73(0.2) 70.13(0.9) 45.33(3.2) 71.90(0.9) 48.53(1.0)

Feature-distance 81.07(0.9) 87.80(2.3) 82.34(2.4) 81.68(0.8) 71.12(.12) 47.33(1.8) 72.20(1.2) 48.53(1.0)

EPIC 81.70(1.4) 88.78(3.3) 84.47(1.9) 82.30(0.5) 71.21(1.4) 47.50(1.8) 73.20(0.4) 49.07(1.2)

(a) Classification accuracy with augmentation

Method NCI1 ↑ BZR↑ COX2↑ Mutagen.↑ PROTEINS↑ ENZYMES↑ IMDB-B↑ IMDB-M ↑
Unit cost 60.49(0.4) 72.20(3.7) 52.34(3.8) 56.69(2.0) 56.86(1.5) 25.83(3.0) 55.50(2.8) 36.33(2.2)

Feature-distance 60.70(0.8) 72.93(4.0) 52.55(3.2) 55.51(1.8) 57.31(1.7) 25.83(2.9) 56.00(2.8) 36.20(1.6)

EPIC 72.69(0.3) 77.80(2.9) 60.43(3.5) 75.33(1.0) 56.95(0.8) 23.67(4.7) 67.70(1.8) 39.33(2.8)

(b) Distance-based classification accuracy

Table 7: Comparisons between three different cost functions. Three different cost functions: unit, feature-distance, and EPIC, are tested on
TUDataset. GIN is used as a backbone.

Head-head cost: 0.97

Tail-tail cost: 0.04

(a) Average substitution costs between negative pair

Head-head cost: 0.07

Head-tail cost: 0.8

Tail-tail cost: 0.2

(b) Average substitution costs between positive pair

Figure 6: Analysis of substitution cost on lollipop graph. Nor-
malized average substitution costs between source nodes and target
nodes for negative pair are shown in Figure 6a and positive pair in
Figure 6b. The costs are averaged across the entire dataset.

class. Table 7b shows the result of distance-based classifica-
tion. In most cases, EPIC outperforms the other fixed-cost
methods.

C Further Analysis on Lollipop Dataset
To further show the effectiveness of the cost function for
EPIC, we analyze the cost for substitution to each node on the
lollipop dataset. (m,n)-lollipop graph consists of a head, a
complete graph with m nodes, and a tail, a chain structured n
nodes, with varying m and n. We use the number of heads as
the label of a graph, i.e., m. Figure 6 shows the head-to-head,
head-to-tail, and tail-to-tail substitution costs. For instance,

the head-to-head substitution cost measures the average sub-
stitution costs between the head nodes from the source graph
with those of the target graph.

With the negative pair, the average node substitution cost
for the head nodes is 0.97, whereas the average for the tail
nodes is 0.04. These results align with our intuition that
editing the head, closely related to the label, incurs a high
cost. Thus, any modification to this part leads to substantial
changes in the label. With the positive pair, the head-to-head
and tail-to-tail substitution costs are 0.07 and 0.2, respec-
tively. Those values are much smaller than 0.8 of head-tail
costs. The lower cost for the head-head substitution in a pos-
itive pair resulted from the fact that it involves the exchange
of nodes associated with the same label. Similarly, the low
cost for the tail-to-tail substitution aligns well with our intu-
ition since the nodes are unrelated to the label. In contrast,
the head-to-tail substitution is assigned a high cost because
it substitutes a label-associated part with a non-associated
part. This preserves the head part of every graph on the
edit path between positive-pair, ensuring that the augmented
graph keeps the same label over the path.
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