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Abstract

Semi-supervised image classification, leveraging
pseudo supervision and consistency regularization,
has demonstrated remarkable success. However,
the ongoing challenge lies in fully exploiting the
potential of unlabeled data. To address this, we em-
ploy information entropy neural estimation to uti-
lize the potential of unlabeled samples. Inspired
by contrastive learning, the entropy is estimated
by maximizing a lower bound on mutual informa-
tion across different augmented views. Moreover,
we theoretically analyze that the information en-
tropy of the posterior of an image classifier is ap-
proximated by maximizing the likelihood function
of the softmax predictions. Guided by these in-
sights, we optimize our model from both perspec-
tives to ensure that the predicted probability distri-
bution closely aligns with the ground-truth distri-
bution. Given the theoretical connection to infor-
mation entropy, we name our method InfoMatch.
Through extensive experiments, we show its supe-
rior performance. The source code is available at
https://github.com/kunzhan/InfoMatch.

1 Introduction
Deep learning image classifiers typically depend on a con-
siderable amount of labeled data, encountering performance
limitations as the dataset scale increases. In contrast, semi-
supervised learning (SSL) [Lee, 2013; Rasmus et al., 2015]
leverages both limited labeled data and a substantial pool of
unlabeled data, achieving performance comparable to or even
surpassing fully-supervised methods with fewer labels.

Most existing SSL methods utilize two key strategies:
pseudo supervision and consistency regularization. Fix-
Match [Sohn et al., 2020] effectively combines these
strategies. It utilizes weak augmented view to generate
pseudolabels that serve as guidance for the prediction of
strong augmented view. FlexMatch [Zhang et al., 2021],
FreeMatch [Wang et al., 2023], and SoftMatch [Chen et al.,
2023] primarily focus on improving the quality and quantity
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of pseudolabels. These methods center on pseudolabel selec-
tion and leverage confidence metrics to assess uncertainty, la-
beling samples only when confidence surpasses a predefined
threshold. Additionally, variants such as MixMatch [Berth-
elot et al., 2019b] and ReMixMatch [Berthelot et al., 2019a]
delve into generating numerous novel samples through di-
verse data augmentation techniques, intending to introduce
noise and transformations for enhanced model robustness.

Our motivation does not focus on pseudolabel selection
strategies and data augmentation techniques. Instead, we aim
to efficiently exploit the potential of unlabeled data by adapt-
ing the entropy neural estimation from unsupervised repre-
sentation learning [Hjelm et al., 2019; Tian et al., 2023].
The fundamental principle is to maximize the lower bound of
mutual information between two augmented views [Nowozin
et al., 2016; Belghazi et al., 2018; Hjelm et al., 2019;
Tian et al., 2023]. These infomax approaches leverage all
available unlabeled data, allowing the model to delve deeper
into the inherent structure and patterns of the data, ultimately
improving classification accuracy. We generate two strong
augmentation views for all unlabeled data, utilizing the mu-
tual information between these views as a lower bound on the
dataset entropy. This strategy ensures the model consistently
produces accurate output under varying input conditions, ac-
curately capturing the most salient features of the data.

Another motivation of this paper is to improve classifier ac-
curacy by approximating the posterior probability. The prob-
ability of a sample belonging to a class is determined by the
posterior of the classifier. A neural classifier models its last
layer using a softmax function as a parameterized posterior,
meaning the classifier’s predictive probability distribution ap-
proximates the ground-truth posterior distribution. We in-
vestigate the connection between posterior entropy and the
likelihood function of its predictions. Our observation sug-
gests that the upper bound of posterior entropy is effectively
approximated by maximizing the softmax prediction’s likeli-
hood. This finding is critical for advancing model optimiza-
tion, ensuring the predicted-probability distribution more ac-
curately reflects the true distribution. We approximate the
entropy of the ground-truth posterior. To apply the poste-
rior entropy neural estimator to unlabeled samples, we em-
ploy pseudo supervision and weak-to-strong strategies in ad-
dition to the supervision loss of labeled data. We generate
pseudolabels through a weak augmentation view, guiding the
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prediction of two strong augmented views. Additionally, we
introduce CutMix [Yun et al., 2019] as a strong augmentation
view to capture more non-deterministic target features.

In InfoMatch, we are motivated by two key objectives: es-
timating the entropy of the data and estimating the entropy
of the ground-truth posterior. We propose a novel entropy-
based methodology that integrates a data entropy neural esti-
mator with a posterior entropy neural estimator. This combi-
nation prompts the model to thoroughly explore the intrinsic
structure defined by entropy, achieved by maximizing the mu-
tual information between augmented views of all unlabeled
data. Moreover, we make the crucial observation that the up-
per bound on posterior entropy is effectively approximated by
maximizing the predicted softmax likelihood function. This
insightful observation is applied to unlabeled data in our ap-
proach through weak-to-strong, pseudo-supervision, and Cut-
Mix strategies. By approximating these entropies through
gradient descent, our method progressively captures informa-
tion about unlabeled data and model characteristics. Since
our method primarily focuses on information entropy esti-
mations, we aptly name it InfoMatch. The extensive exper-
imental results consistently validate the effectiveness of Info-
Match, especially in scenarios where labeled data is scarce.
Our dual-entropy-based method stands as a robust solution
for fully exploiting the potential of unlabeled data, providing
valuable insights into both the data structure and the posterior
probabilities, thereby enhancing the performance of semi-
supervised image classification.

The main contributions are summarized as follows: 1) Our
proposed InfoMatch effectively exploit the potential of un-
labeled data. 2) Leveraging multiple objectives, InfoMatch
approximates the data entropy and the ground-truth posterior
entropy. By utilizing strong-to-strong constrastive, weak-to-
strong pseudo supervision, and CutMix strategies, we apply
this approach to unlabeled data, enabling more efficient uti-
lization of unlabeled data information. 3) Experiments across
various semi-supervised learning benchmarks validate the su-
perior performance of InfoMatch.

2 Related Works
Semi-supervised learning is a crucial branch in the field of
machine learning and computer vision. Its fundamental con-
cept lies in utilizing the data distribution information latent in
a substantial quantity of unlabeled samples to enhance learn-
ing performance when only a limited number of labeled sam-
ples are available. The main strategies behind SSL are pseudo
supervision and consistency regularization.

Consistency regularization. Based on the smoothness as-
sumption, consistency regularization suggests that minor per-
turbations applied to unlabeled samples does not result in
substantial variations in their predictions. To ensure con-
sistency, Π Model [Rasmus et al., 2015] introduces pertur-
bations through data augmentation and dropout, aiming to
maximize the similarity of predictions derived from two for-
ward propagations of identical unlabeled sample. Temporal
Ensembling [Samuli and Timo, 2017] employs a time series
combination model to minimize the mean square error loss
between current and historical predictions, thus streamlin-

ing forward reasoning. MeanTeacher [Tarvainen and Valpola,
2017] converts the exponential moving average of the predic-
tion results into the model weight, penalizing the difference
in predictions between student model and teacher model. In
addition, Unsupervised Data Augmentation (UDA) [Xie et
al., 2020] extends the data augmentation method and em-
ploys specific target data augmentation algorithms for spe-
cific tasks. In contrast, Pseudo Label [Lee, 2013] works by
generating artificial labels for unlabeled data and perform-
ing fully-supervised training using both labeled and pseudo-
labeled data.

Holistic methods. Most SSL methods combine pseudo
supervision with consistency regularization to improve per-
formance. MixMatch [Berthelot et al., 2019b] leverages un-
labeled data by integrating both consistency regularization
and entropy minimization. Based on MixMatch, Remix-
Match [Berthelot et al., 2019a] introduces two innovative
strategies, distribution alignment and augmentation anchor,
to enhance its robustness and accuracy. FixMatch [Sohn et
al., 2020] which maintains the use of Augmentation Anchor,
simplifies the number of strong augmemtations. To improve
the accuracy of pseudolabels, a fixed high threshold is es-
tablished to eliminate unreliable labels. To alleviate class
imbalance and address the issue of low utilization of unla-
beled data in the early stage, FlexMatch [Zhang et al., 2021]
and FreeMatch [Wang et al., 2023] take the model’s learn-
ing status and class learning difficulty into consideration to
adaptively adjust the confidence threshold. SoftMatch [Chen
et al., 2023] uses a truncated Gaussian function to assign
weights to samples based on their confidence, addressing the
inherent trade-off between the quantity and quality of pseu-
dolabels.

Furthermore, methods such as CoMatch [Li et al., 2021],
SimMatch [Zheng et al., 2022], and SimMatchV2 [Zheng et
al., 2023] integrate graph-based learning methods into semi-
supervised image classification, jointly learning two repre-
sentations, class probabilities and low-dimensional embed-
dings, of the training data.

Mixing augmentation. The two prevalent mixing methods
for images are mixup [Zhang et al., 2018] and CutMix [Yun et
al., 2019]. Mixup generates novel training samples by com-
bining two images and their corresponding labels linearly,
aiming to facilitate the model in learning smoother decision
boundaries. Conversely, CutMix swaps segments of one im-
age with those of another, updating the corresponding labels
simultaneously to encourage the model to comprehend and
leverage local information within the image. Interpolation
consistency training [Verma et al., 2022], MixMatch [Berth-
elot et al., 2019b] and RemixMatch [Berthelot et al., 2019a]
combine mixup with consistency regularization to expand
the dataset by generating virtual “mixed” training samples,
and utilize consistency regularization to ensure its general-
ization ability on mixed data. While FMixCutMatch [Wei
et al., 2021] combines Fourier space-based data cutting and
data mixing to augment both labeled and unlabeled samples,
thereby enhancing its performance and generalization. Fur-
thermore, [Ghorban et al., 2022] utilizes mixup and CutMix
simultaneously, aiming to blend the semantic information of
three images and introduce enhanced perturbations into the
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data. To further enhance its attention to local information and
improve its sensitivity to diverse position cues, we employ
CutMix [Yun et al., 2019] in InfoMatch.

3 Entropy Neural Estimation
We employ an independent and identically distributed (i.i.d.)
training dataset denoted as X = Xl ∪ Xu, where Xl com-
prises labeled data pairs (xi,pi), ∀ i ∈ {1, . . . , nl}, and Xu
consists of unlabeled data xi, ∀ i ∈ {nl + 1, . . . , nl + nu}.
The sizes of labeled and unlabeled datasets are denoted by nl
and nu, respectively, with nl � nu, and the total dataset size
is n = nl + nu. Here, each xi represents a data point, and pi
corresponds to its ground-truth class label, represented using
a one-hot encoding. C = {c1, . . . , ck} denotes the class set.
If 1xi belongs to cj class, we have p(cj |xi) = pij = 1 .

We employ an encoder to generate a latent feature zi =
[zij ] and define the posterior probability σ(cj |xi, θ) of xi be-
longing to the j-th class cj using a softmax function σ(·):

yij = σ(cj |xi, θ) =
exp(zij)∑
j exp(zij)

. (1)

yij denotes the probability of xi belonging to the j-th class
while pij = p(cj |xi) = 1 representing a one-hot encoding.
It means that we model σ(cj |xi, θ) as an encoder to approxi-
mate the truth posterior pij = p(cj |xi) = 1.

According to the second term of the information bottle-
neck theory [Tishby et al., 1999], min I(X ;Y)−βI(Y; C), the
neural network codes σ(cj |xi, θ) to close to p(cj |xi) . Here,
I(·, ·) denotes the mutual information, and H(·) is the entropy.
Theorem 1. For an i.i.d. finite dataset (X , C), the approxi-
mation H(C|X ) ' − ln p(C|X ) holds .

Proof. Since xi are sampled i.i.d., p(c|xi) corresponds point-
to-point with xi and is regarded as an i.i.d. set, the posterior is
p(C|X ) =

∏n
i=1 p(c|xi) . Then the expectation with respect

to p(x) is approximated by a finite sum over X , so that

H(C|X ) = −Ep(x)Ep(c|x) ln p(c|x)

' −
n∑
i=1

ln p(c|xi) = − ln

n∏
i=1

p(c|xi)

= − ln p(C|X ) .

Thus, the equation H(C|X ) ' − ln p(C|X ) holds.

3.1 Posterior Entropy Neural Estimation
Suppose that the ground-truth posterior is being generated
from the unknown distribution p(c|xi) that we aim to model.
We approximate p(c|xi) using the parametric probability dis-
tribution σ(c|x, θ),

divkl(p‖σ) '
n∑
i=1

{
− lnσ(c|xi, θ) + ln p(c|xi)

}
(2)

= −
{

lnσ(C|X , θ)− ln p(C|X )} > 0 (3)

H(C|X ) 6 − lnσ(C|X , θ) . (4)

where divkl denotes the Kullback-Leibler divergence. The
left-hand side of Eq. (4) is independent of θ, and the right-
hand term is the negative log likelihood function for θ under

the posterior distribution evaluated using the training dataset.
Thus we see that minimizing Eq. (3) is equivalent to max-
imizing the likelihood function, i.e., minimizing this upper
bound of the posterior entropy. For an i.i.d. finite dataset X ,
when approximating p(c|x) through a parametric distribution
σ(c|x, θ), the following Lemma 1 holds:

Lemma 1. Maximizing the likelihood function is equivalent
to minimizing the upper bound on the posterior entropy.

3.2 Data Entropy Neural Estimation
We approach H(X ) by maximizing the mutual information
of pairwise augmentation views of X [Oord et al., 2018;
Belghazi et al., 2018; Ma et al., 2023]. Then, we have

H(X ) = I(X ;X ) > I(X (1);X (2)) . (5)

Then, the mutual information between the two augmented
views X (1) and X (2) is given by

I(X (1);X (2)) = divkl

(
p(x(1),x(2))‖p(x(1))p(x(2))

)
(6)

where x(1) and x(2) are two augmented data points.
Following contrastive learning [Oord et al., 2018; Belghazi

et al., 2018; Tian et al., 2023], the maximization of the mu-
tual information between two views turns into a lower bound
maximization problem. Then, the following Lemma 2 holds,

Lemma 2. Maximizing the mutual information between two
augmentation views is equivalent to maximizing the lower
bound of the entropy.

3.3 Entropy Estimation for SSL
We assume that bothXl andXu share the same distribution as
X , and implement an encoder to optimize it from two bounds.

Given the modeling of labeled data point (x,p) by the pa-
rameter θ to produce y = σ(cj |xi, θ), we encode all labeled
data Xl, and the corresponding labeled data set is Cl. Dur-
ing the training process, we strive to align the predictive cod-
ing of InfoMatch with the ground-truth coding, which essen-
tially means modeling yij to align closely with pij . In other
words, we aim to approximate the entropy of the ground-
truth posterior − ln p(C|X ) with its negative log likelihood
− lnσ(C|X , θ). Referring to Lemma 1, the likelihood is

σ(Cl|Xl, θ) =

nl∏
i=1

k∏
j=1

σ(cj |xi, θ)pij =

nl∏
i=1

k∏
j=1

y
pij
ij , (7)

where pij is an element of nl × k matrix of ground-truth ma-
trix P = [pij ]. The loss is defined by taking the negative log-
arithm of the likelihood, resulting in the cross-entropy loss:

`lupper = − lnσ(Cl|Xl, θ) = −
nl∑
i=1

k∑
j=1

pij ln yij . (8)

Referring to Lemma 2, we employ the strategy of con-
trastive learning by maximizing the lower bound of en-
tropy for Xu . We choose Jensen-Shannon divergence over
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Kullback-Leibler divergence, following [Nowozin et al.,
2016]. The lower bound Llower is derived from

divjs

(
p(x(1),x(2))‖p(x(1))p(x(2))

)
>Ep(x(1),x(2)) log

(
d(z(1), z(2)|θ)

)
+Ep(x(1))p(x(2)) log

(
1− d(z(1), z(2)|θ)

)
= −Llower (9)

where divjs represents the Jensen-Shannon divergence and
d(·, ·) is the similarity score of pairwise logits.

Similar to [Hjelm et al., 2019; Tian et al., 2023], we em-
ploy the view-wise contrastive loss, i.e., Llower,

Llower =− 1

|P|
∑

(i,i)∈P

log d(z
(1)
i , z

(2)
i |θ)

− 1

|N |
∑

(i,j)∈N

log
(
1− d(z

(1)
i , z

(2)
j |θ)

)
(10)

where P and N denote positive and negative sets, respec-
tively, i.e., z(1)

i and z
(2)
i are belong to positive pairs (i, i) ∈ P

while z
(1)
i and z

(2)
j are negative pairs (i, j) ∈ N , ∀ i 6= j.

4 InfoMatch
Utilizing a neural network σ(cj |xi, θ) to approximate the in-
formation entropy for semi-supervised image classification,
we call our method InfoMatch. For each unlabeled data point
x ∈ Xu, we conduct augmentation processing, creating one
weak view, i.e., performing random flip, and two strong aug-
mented views [Cubuk et al., 2020] represented by x′, x(1),
and x(2), respectively.

4.1 Minimize Upper Bound
In InfoMatch, neural networks aim to approximate the upper
bound of posterior entropy by maximizing the likelihood.

According to Eq. (8), minimizing the cross entropy be-
tween the predicted-probability distribution and the ground-
truth distribution amounts to minimizing the likelihood func-
tion. By employing optimization algorithms like gradient de-
scent, InfoMatch is gradually steered away from the incorrect
distribution towards the accurate one.

In practice, when dealing with labeled data, standard super-
vised learning which relies on cross-entropy loss is employed,
and the corresponding loss function is designated as Llupper.

To incorporate unlabeled data into training, we utilize
pseudo supervision and weak-to-strong strategies. Let the
one-hot vector p̂i = [p̂ij ] represent the pseudolabel cor-
responding to the weak-view prediction y′

i, the pseudo-
supervised loss function from weak to strong is given by:

Luupper = −1

2

nu∑
i=1

k∑
j=1

mij p̂ij(ln y
(1)
ij + ln y

(2)
ij ) (11)

where y
(1)
i and y

(2)
i correspond to the predictions for x

(1)
i

and x
(2)
i , respectively, and M = [mij ] is utilized to mask

pseudolabels with confidence levels below a threshold.
Additionally, we use CutMix to generate a new strong aug-

mentation view on the top of weak augmentation, aiming to

create more challenging samples and compel InfoMatch to
fully extract meaningful features. To enhance computational
efficiency, we shuffle the dataset in batches and randomly se-
lect an image, denoted as x′

r, at the corresponding position of
x′
i. Subsequently, these images are used to generate CutMix

images in a one-to-one manner. Furthermore, we evaluate the
quantity of semantic information retained from the original
images within the CutMix images, according to the size of
the region. Consequently, the CutMix image and its corre-
sponding pseudolabel is expressed by:

xci = bη � x′
i + (1− bη)� x′

r (12)
p̂cij = ηmij p̂ij + (1− η)mrj p̂rj (13)

where bη represents a random binary mask indicating where
to exclude and incorporate information from two images, η
denotes the area proportion of x′

i in the mixed image, ob-
tained by averaging the values of the binary matrix bη , and �
performs element-wise multiplication. The loss for the Cut-
Mix image is given by

Lcupper = −
nu∑
i=1

k∑
j=1

p̂cij ln ycij (14)

where the prediction of xci is yci . By combining aforemen-
tioned losses, we obtain the upper bound of posterior entropy,

Lupper = Llupper + Luupper + Lcupper . (15)

4.2 Maximize Lower Bound
InfoMatch effectively captures the mutual information be-
tween pairs of augmentation views derived from the original
dataset. By Eq. (10), minimizing the contrast loss is syn-
onymous with maximizing the mutual information between
pairwise augmentation views, thereby compelling InfoMatch
to delve into the inherent structure dictated by H(X ). Af-
ter multiple random augmentations, the distribution of aug-
mentation views will gradually align with the distribution of
the raw dataset, i.e., through multiple trainings with random
augmentations of diverse samples, the neural network pro-
gressively approaches the information entropy of the original
dataset.

Inspired by BYOL [Grill et al., 2020], we compute the
contrastive loss by utilizing the positive pairs only, guaran-
teeing that samples of the same class are situated adjacent to
each other in the embedding space. Furthermore, latent fea-
tures often serve as covert structures or patterns derived from
the data, offering a deeper understanding of the relationships
within the data than merely predicting probability distribu-
tions. Consequently, we utilize the mutual information be-
tween the latent features corresponding to the two augmented
views to approximate the lower bound of entropy.

The similarity d(·, ·) of positive logits is defined by the
Gaussian function [Tian et al., 2023],

d(z
(1)
i , z

(2)
i |θ) = exp

(
−
∥∥z(1)

i − z
(2)
i

∥∥2
2

)
, (16)

and the similarity defined in Eq. (16) implies that if any two
logits are identical, the similarity is one; otherwise, it tends to
zero as their distance increases significantly.
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Algorithm 1 The InfoMatch algorithm.

Input: X = Xl ∪ Xu, batch size nbl and nbu, parameter λ.
Output: Optimal model parameters θ?.

1: Initialization: epoch = 0, epochmax, and θ.
2: while epoch ≤ epochmax do
3: for mini-batch samples in X do
4: Obtain augmented images x′, x(1), x(2) and xc;
5: Feed samples into model for forward propagation;
6: Calculate Llupper by Eq. (8);
7: Obtain the mask M for filtering pseudolabels;
8: Calculate Luupper and Lcupper by Eqs. (11) and (14);
9: Calculate Lupper = Llupper + Luupper + Lcupper

10: Calculate Llower by Eq. (17);
11: Calculate L = Lupper + λLlower

12: Update parameter θ by minimizing L;
13: epoch = epoch+ 1;
14: end for
15: end while

Substituting Eq. (16) into Eq. (10), we obtain

Llower =
1

nu

nu∑
i=1

∥∥z(1)
i − z

(2)
i

∥∥2
2
. (17)

4.3 InfoMatch Algorithm
We introduce an innovative semi-supervised image classifica-
tion algorithm, called InfoMatch, which treats the classifica-
tion task as an entropy approximation problem. For labeled
data, we utilize the cross entropy loss function as an upper
bound for posterior entropy. InfoMatch mainly focuses on
effectively leveraging vast amounts of unlabeled data.

In InfoMatch algorithm, we initiate with pseudo supervi-
sion and weak-to-strong strategies. This allows us to trans-
form the entropy upper bound into pseudo-supervised cross
entropy loss, serving as a supervisory signal for unlabeled
data. Furthermore, to enrich the diversity of our dataset, we
introduce a new strong augmentation method, CutMix, that
enhances its generalization capabilities by formulating corre-
sponding loss. Subsequently, we consider the potential fea-
ture contrastive loss between the two augmented views as a
lower bound for dataset entropy. By maximizing this lower
bound and minimizing the upper bound, we gradually opti-
mize InfoMatch, even when limited labeled data is available.

The overall objective function incorporates the three cross-
entropy losses of Eq. (15) and contrastive loss of Eq. (17),

L = Lupper + λLlower (18)
where λ serves as a non-negative hyperparameter, regulating
the relative influence of the upper and lower bounds. During
the experiment, we employ mini-batches for training, utiliz-
ing both labeled and unlabeled samples with batch sizes of
nbl and nbu, respectively. Algorithm 1 offers a comprehensive
overview of the learning process.

5 Experimental Results
5.1 Experimental Setup
We evaluate InfoMatch on well-known benchmark datasets,
including CIFAR-10/100 [Krizhevsky and Hinton, 2009],

SVHN [Netzer et al., 2011], STL-10 [Coates et al., 2011],
and ImageNet [Deng et al., 2009]. Additionally, we conduct
experiments using varying amounts of labeled data.

To ensure a fair comparison, we follow the experimen-
tal setup as in FixMatch [Sohn et al., 2020] and FreeMatch
[Wang et al., 2023]. Specifically, we employ standard
stochastic gradient descent algorithm with cosine learning
rate decay as the optimizer across all datasets, with an initial
learning rate of 0.03 and a momentum of 0.9. For all experi-
ments, we set the total number of iterations to 220. InfoMatch
performance is then evaluated using the EMA with a param-
eter of 0.999. Additionally, for ImageNet, we maintain a
batch size of 128 for both labeled and unlabeled samples, i.e.,
nbl = nbu = 128, and utilize the ResNet-50 architecture [He et
al., 2016]. While for other datasets, we adjust the batch sizes
to nbl = 64 and nbu = 448, and employ the Wide ResNet vari-
ants, such as Wide ResNet-28-2 [Zagoruyko and Komodakis,
2016] and Wide ResNet-28-8 [Zhou et al., 2020].

To evaluate the impact of the two distinct terms of the loss
Eq. (18) in InfoMatch, we introduce a non-negative hyper-
parameter λ. Then, we ensure an equitable representation
of both real and pseudolabels in the likelihood function and
maintain equilibrium between RandAugment [Cubuk et al.,
2020] and CutMix [Yun et al., 2019]. Subsequently, we adjust
the parameter λ that regulates the entropy bounds to 0.002.

In addition, we employ distinct threshold selection strate-
gies to eliminate the impact of pseudolabel errors on Info-
Match. For SVHN, we adopt a fixed threshold of 0.95. Con-
versely, for other datasets, we utilize the self-adaptive thresh-
olding method proposed by FreeMatch, which measures the
overall learning progress by utilizing the expectation of the
highest confidence across all unlabeled data in the current
batch as the global threshold and assess the class-specific
learning status by calculating the average prediction proba-
bilities corresponding to each class.

Finally, to guarantee a precise and unbiased evaluation, we
conduct multiple training sessions for each model using vari-
ous random seeds and calculate the mean and standard devi-
ation of the optimal accuracy achieved.

5.2 Main Results
We compare InfoMatch with full-supervised learning method
and a range of representative semi-supervised learning meth-
ods, including pseudolabel-based methods such as Flex-
Match [Zhang et al., 2021] and FreeMatch [Wang et al.,
2023], as well as graph-based methods like SimMatch[Zheng
et al., 2022] and SimMatchV2 [Zheng et al., 2023]. The Top-
1 error rates for CIFAR-10/100, SVHN, and STL-10 under
various labeled data sizes are presented in Tables 1 and 2.

Based on these results, it is evident that InfoMatch ex-
hibits superior performance across all benchmarks, enhanc-
ing performance by an average of 1.49%, 0.55%, 0.13%, and
2.12% on the four datasets. In particular, InfoMatch impres-
sively lower the mean Top-1 error rate from 8.07% to 4.39%
(−3.68%) in the CIFAR-10 dataset, which contains just 10
labeled data. While in in the STL-10 dataset with 40 labeled
data, the Top-1 error rate is reduces from 13.74% to 9.86%
( −3.88%). Additionally, on both CIFAR-10 and SVHN
datasets, our approach achieves remarkable performance im-
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Dataset CIFAR-10 CIFAR-100

# Label 10 40 250 4000 10000

Π Model [Rasmus et al., 2015] 79.18 ±1.11 74.34 ±1.76 46.24 ±1.29 13.13 ±0.59 36.65 ±0.00

Pseudo Label [Lee, 2013] 80.21 ±0.55 74.61 ±0.26 46.49 ±2.20 15.08 ±0.19 36.55 ±0.24

VAT [Miyato et al., 2018] 79.81 ±1.17 74.66 ±2.12 41.03 ±1.79 10.51 ±0.12 32.14 ±0.19

MeanTeacher [Tarvainen and Valpola, 2017] 76.37 ±0.44 70.09 ±1.60 37.46 ±3.30 8.10 ±0.21 31.75 ±0.23

MixMatch [Berthelot et al., 2019b] 65.76 ±7.06 36.19 ±6.48 13.63 ±0.59 6.66 ±0.26 27.78 ±0.29

ReMixMatch [Berthelot et al., 2019a] 20.77 ±7.48 9.88 ±1.03 6.30 ±0.05 4.84 ±0.01 20.02 ±0.27

UDA [Xie et al., 2020] 34.53 ±10.69 10.62 ±3.75 5.16 ±0.06 4.29 ±0.07 22.49 ±0.23

FixMatch [Sohn et al., 2020] 24.79 ±7.65 7.47 ±0.28 4.86 ±0.05 4.21 ±0.08 22.20 ±0.12

Dash [Xu et al., 2021] 27.28 ±14.09 8.93 ±3.11 5.16 ±0.23 4.36 ±0.11 21.88 ±0.07

MPL [Pham et al., 2021] 23.55 ±6.01 6.62 ±0.91 5.76 ±0.24 4.55 ±0.04 21.74 ±0.09

FlexMatch [Zhang et al., 2021] 13.85 ±12.04 4.97 ±0.06 4.98 ±0.09 4.19 ±0.01 21.90 ±0.15

FreeMatch [Wang et al., 2023] 8.07 ±4.24 4.90 ±0.04 4.88 ±0.18 4.10 ±0.02 21.68 ±0.03

CoMatch [Li et al., 2021] - 6.91 ±1.39 4.91 ±0.33 4.27 ±0.12 22.11 ±0.22

SimMatch [Zheng et al., 2022] - 5.60 ±1.37 4.84 ±0.39 3.96 ±0.01 20.58 ±0.11

SimMatchV2 [Zheng et al., 2023] - 4.90 ±0.16 5.04 ±0.09 4.33 ±0.16 21.37 ±0.20

InfoMatch 4.39 ±0.22 4.22 ±0.14 4.01 ±0.07 3.29 ±0.08 19.47 ±0.56

Fully-Supervised 4.62 ±0.05 19.30 ±0.09

Table 1: Top-1 error rates (%) on CIFAR-10/100 datasets. Bold indicates the best result, while underline indicates the second-best result.

provements, surpassing not only other semi-supervised base-
lines but also outperforming fully-supervised learning meth-
ods across all benchmarks. Furthermore, comparing to other
methods, InfoMatch exhibits a smaller standard deviation
across multiple experiments with varying seeds, thereby high-
lighting the superior stability and robustness of InfoMatch.

It is worth noting that InfoMatch significantly outperforms
other methods when the number of labeled data is extremely
limited. Especially in the CIFAR-10 dataset, even when only
one labeled data is available for each class, the average Top-1
error rate reachs 4.39%, which is lower than that of fully-
supervised learning methods (−0.23%).

We assess InfoMatch on ImageNet to show its efficacy.
Following the settings of FreeMatch, we select 100 labeled
samples per class. Table 3 illustrates a comparison of the av-
erage Top-1 and Top-5 errors across different models. With
identical parameters, InfoMatch has a significant improve-
ment of 4.49% in Top-1 accuracy and 2.86% in Top-5 ac-
curacy over FreeMatch.

5.3 Ablation Study
InfoMatch primarily explores how to utilize of unlabeled data,
where we use the weak-to-strong supervision based on two
strong augmentation methods, RandAugment [Cubuk et al.,
2020] and CutMix [Yun et al., 2019], represented by Luupper
and Lcupper respectively, as well as the contrastive loss Llower

between two strong augmented views. To evaluate the impact
of these losses, we conduct in-depth ablation studies on the
CIFAR-10 dataset with 40 labels.

To determine the effectiveness of each loss term, we con-
duct experiments by excluding some components. As shown
in Fig. 1, Results indicate that eliminating certain losses lead
to different levels of decline in model performance. This sug-
gests that each component is important and complementary.

Figure 1: Ablation studies on the Cifar-10 dataset with 40 labels.

Comparing to RandAugment [Cubuk et al., 2020], Cut-
Mix [Yun et al., 2019] employs a stronger augmentation
by combining two images, addressing the limitations of low
mask-based augmentation ratio. This approach enables Info-
Match to more effectively comprehend and capture the essen-
tial features, thus enhancing the generalization performance
of InfoMatch. However, utilizing CutMix exclusively may
distort the original features, potentially leading InfoMatch to
learning incorrect or distorted features during training, ulti-
mately resulting in performance deterioration.

By minimizing Llower, we optimize InfoMatch from a dif-
ferent perspective. InfoMatch maximizes the mutual informa-
tion between features in different augmented views, enabling
InfoMatch to learn feature representations that express the
same information from different perspectives. Consequently,
the performance of InfoMatch is further improved.
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Dataset SVHN STL-10

# Label 40 250 1000 40 1000

Π Model [Rasmus et al., 2015] 67.48 ±0.95 13.30 ±1.12 7.16 ±0.11 74.31 ±0.85 32.78 ±0.40

Pseudo Label [Lee, 2013] 64.61 ±5.6 15.59 ±0.95 9.40 ±0.32 74.68 ±0.99 32.64 ±0.71

VAT [Miyato et al., 2018] 74.75 ±3.38 4.33 ±0.12 4.11 ±0.20 74.74 ±0.38 37.95 ±1.12

MeanTeacher [Tarvainen and Valpola, 2017] 36.09 ±3.98 3.45 ±0.03 3.27 ±0.05 71.72 ±1.45 33.90 ±1.37

MixMatch [Berthelot et al., 2019b] 30.60 ±8.39 4.56 ±0.32 3.69 ±0.37 54.93 ±0.96 21.70 ±0.68

ReMixMatch [Berthelot et al., 2019a] 24.04 ±9.13 6.36 ±0.22 5.16 ±0.31 32.12 ±6.24 6.74 ±0.14

UDA [Xie et al., 2020] 5.12 ±4.27 1.92 ±0.05 1.89 ±0.01 37.42 ±8.44 6.64 ±0.17

FixMatch [Sohn et al., 2020] 3.81 ±1.18 2.02 ±0.02 1.96 ±0.03 35.97 ±4.14 6.25 ±0.33

Dash [Xu et al., 2021] 2.19 ±0.18 2.04 ±0.02 1.97 ±0.01 34.52 ±4.30 6.39 ±0.56

MPL [Pham et al., 2021] 9.33 ±8.02 2.29 ±0.04 2.28 ±0.02 35.76 ±4.83 6.66 ±0.00

FlexMatch [Zhang et al., 2021] 8.19 ±3.20 6.59 ±2.29 6.72 ±0.30 29.15 ±4.16 5.77 ±0.18

FreeMatch [Wang et al., 2023] 1.97 ±0.02 1.97 ±0.01 1.96 ±0.03 15.56 ±0.55 5.63 ±0.15

CoMatch [Li et al., 2021] 8.20 ±5.32 2.16 ±0.04 2.01 ±0.04 13.74 ±4.20 5.71 ±0.08

SimMatch [Zheng et al., 2022] 7.60 ±2.11 2.48 ±0.61 2.05 ±0.05 16.98 ±4.24 5.74 ±0.31

SimMatchV2 [Zheng et al., 2023] 7.92 ±2.80 2.92 ±0.81 2.85 ±0.91 15.85 ±2.62 5.65 ±0.26

InfoMatch 1.84 ±0.07 1.79 ±0.01 1.75 ±0.03 9.86 ±1.13 5.27 ±0.09

Fully-Supervised 2.13 ±0.01 -

Table 2: Top-1 error rates (%) on SVHN and STL-10 datasets. Bold indicates the best result, while underline indicates the second-best result.

Method Top-1 Top-5

FixMatch [Sohn et al., 2020] 43.66 21.80
FlexMatch [Zhang et al., 2021] 41.85 19.48
FreeMatch [Wang et al., 2023] 40.57 18.77

InfoMatch 36.21 15.91

Table 3: Error rates (%) on ImageNet with 100 labels per class.

Figure 2: Compare InfoMatch with FixMatch, FlexMatch, and
FreeMatch on the CIFAR-10 dataset with 40 labeled data in terms
of Top-1 accuracy and utilization of unlabeled data. (a) Top-1 accu-
racy, and (b) Utilization of unlabeled data.

5.4 Qualitative Analysis
To further evaluate the performance of InfoMatch in classi-
fication tasks, we conduct a comparative analysis with Fix-
Match, FlexMatch, and FreeMatch in terms of Top-1 accu-
racy and utilization of unlabeled data. This analysis is con-
ducted using the CIFAR-10 dataset with 40 labeled data.

Initially, a noteworthy advantage of InfoMatch is its ex-
cellent convergence speed, which is illustrated in Fig. 2(a).
Within 100 epochs, InfoMatch achieves a 94.70% accuracy
rate. By the time it reaches 200 epochs, our accuracy even
exceeds the highest accuracy achieved by FreeMatch, reach-

ing 95.49%. Additionally, as shown in Fig. 2(b), in contrast
to other methods, the utilization rate of unlabeled data in Info-
Match quickly rises to and stabilizes above 90% after a brief
decline, further encouraging InfoMatch to incorporate more
unlabeled samples into training during the early stages.

6 Conclusion
We present an extension of the entropy neural estimation
method to the semi-supervised domain, enabling to measure
the uncertainty of classification models from an entropy per-
spective. We introduce an upper bound on the entropy of the
ground-truth posterior, indicating that maximizing the like-
lihood function of InfoMatch corresponds to minimizing the
upper bound on the posterior entropy. Similarly, we estab-
lish a lower bound on entropy for a given dataset, demon-
strating that maximizing the mutual information between dif-
ferent augmented views of the data aligns with maximizing
the lower bound of entropy. Drawing upon these two theo-
ries, we introduce InfoMatch to optimize it from two perspec-
tives. To leverage unlabeled data more effectively, we em-
ploy strategies like weak-to-strong and pseudo supervision,
and introduce CutMix as a new strong augmentation view.
Using optimization methods such as gradient descent, Info-
Match ensures that its predicted probability distribution grad-
ually aligns with the ground-truth distribution, even in the
presence of input perturbations. We introduce InfoMatch that
seamlessly integrates pseudo supervision, consistency regu-
larization, and mixing strategies to improve its generaliza-
tion capabilities. The results from various SSL benchmark
tests demonstrate that InfoMatch achieves good performance,
especially in scenarios with limited labels, surpassing even
fully-supervised learning methods. The experimental results
confirm the effectiveness of InfoMatch.
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