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Abstract
Suppose we are given an integer k ≤ n and n
boxes, labeled 1, 2, . . . , n by an adversary, each
containing a single number chosen from an un-
known distribution; the n distributions are not nec-
essarily identical. We have to choose an order to
sequentially open the boxes, and each time we open
the next box in this order, we learn the number in-
side. If we reject a number in a box, the box cannot
be recalled. Our goal is to accept k of these num-
bers, without necessarily opening all boxes, such
that the accepted numbers are the k largest numbers
in the boxes (thus their sum is maximized). This
problem, sometimes called a free order multiple-
choice secretary problem, is one of the classic ex-
amples of online decision making problems.
A natural approach to solve such problems is to
sample elements in random order; however, as
indicated in several sources, e.g., Turan et al.
NIST’15 [35], Bierhorst et al. Nature’18 [10], pure
randomness is hard to get in reality. Thus, pseudo-
randomness has to be used, with a small entropy.
We show that with a very small O(log log n) en-
tropy an almost-optimal approximation of the value
of k largest numbers can be selected, with only
a polynomially small additive error, for k <
log n/ log log n. Our solution works for exponen-
tially larger range of parameter k compared to pre-
viously known algorithms (STOC’15 [22]). We
also prove a corresponding lower bound on the en-
tropy of optimal (and even close-to-optimal, with
respect to competitive ratio) solutions for this prob-
lem of choosing k largest numbers, matching the
entropy of our algorithm. No previous lower bound
on entropy was known for this problem if k > 1.

1 Introduction
Online decision making problems and their important part –
sampling, heavily depend on randomness. Efficient sampling
has a long history, since Knuth, Vitter and others [Knuth,
1981; Vitter, 1987], who studied how to generate a randomly
ordered sample close to uniformly random. Since then, effi-

cient and accurate sampling has become a fundamental prob-
lem in data science, see the recent survey by Mahmud et
al. [Mahmud et al., 2020]. However, as indicated in several
prominent sources, such as National Institute of Standards
and Technology (NIST) [Turan et al., 2015] or Nature [Bier-
horst et al., 2018], pure randomness is hard to get, thus
in practice pseudo-randomness with a small entropy has to
be used. Recently, the problem has brought more awareness
and detailed analysis also in the online community [Buch-
binder et al., 2023; Kesselheim et al., 2015a].

Prominent examples of the online decision problems are
secretary and prophet-types problems. The most classical
version of the secretary problems, introduced by statisti-
cians in the 60s, asks for irrevocably hiring the best secre-
tary among n rankable applicants and was analyzed in [Lind-
ley, 1961; Dynkin, 1963; Chow et al., 1964; Gilbert and
Mosteller, 1966; Bateni et al., 2013; Rubinstein, 2016; Ru-
binstein and Singla, 2017]. In the simplest problem’s version,
the goal is to find the best strategy when choosing from a se-
quence of randomly ordered applicants. A multiple-choice
refers to the fact that the strategy is allowed to choose up to
k applicants. The secretary problem has also played a funda-
mental role in advancing stopping theory, online algorithms,
and various other fields [Babaioff et al., 2007; Babaioff et
al., 2008; Hajiaghayi et al., 2004; Esfandiari et al., 2017;
Hajiaghayi et al., 2007]. Recently, the problem has attracted
attention from the learning communities who studied modifi-
cations in which the algorithm is given a prediction about the
best among applicants [Antoniadis et al., 2020], a prediction
interval for evaluation of each applicant [Jiang et al., 2021],
or the objective is to rank all applicants rather than choosing
best subset of them [Assadi et al., 2019].

Free-order secretary. We focus on a variant of the secre-
tary problem called the free-order secretary problem. The
free-order assumption reflects the fact that there is a third
party that can decide the order of appearing applicants. This
is in contrast to the original secretary problem where the or-
der is uniformly random, but also generalizes the model as
the third party can always randomly permute the applicants.
On the other hand, the hardness of the problem remains in
the fact that evaluations of candidates are still unknown to
both the third party and an algorithm. For this model, dif-
ferent metrics for creating a fair order cheaper (i.e., an order
for which there exist competitive algorithms) have been pro-
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posed. Kesselheim, Kleinberg, and Niazadeh [Kesselheim et
al., 2015a] were the first to ask this question for secretary
problems, showing how to construct in polynomial-time, a
probability distribution on orders (permutations of size n),
with entropy O(log log n) such that when the classic secre-
tary algorithm (k = 1) is executed on this distribution, it
is successful with probability close to the optimal probabil-
ity 1

e . They also prove that if this distribution has entropy
o(log log n) then no 1-secretary algorithm can achieve con-
stant success probability. When the evaluations of applicants
are not deterministic, but rather follow some probabilistic
distributions, Arsenis, Drosis, and Kleinberg [Arsenis et al.,
2021] prove that a small set of orders can be pre-computed,
such that for any collection of n distributions of evaluations,
the classic secretary algorithm achieves a constant competi-
tive ratio when sampled from the pre-computed distribution.

Despite efforts, previous work does not provide exhaustive
answers to the following important questions:

What is the minimum entropy of a random order
distribution that allows to sample and choose k ele-
ments in polynomial time with nearly-optimal com-
petitive ratio? How large k could be?

We make a significant step to answer both questions. We
show that in the free-order model, one can sample from a
polynomially constructible distribution of orders with entropy
O(log log n), achieving a competitive ratio 1 − ϵ(k), where
ϵ(k) part is polynomially smaller than that in [Kesselheim et
al., 2015a] and only

√
log k factor from the absolute bound

Θ( 1√
k
) for any entropy [Kleinberg, 2005]. We prove that no

smaller entropy could yield good competitiveness, for any
k. Our construction lets us select up to k = O( logn

log log n )

candidates, a doubly exponential improvement over k =
O (log log log n) of [Kesselheim et al., 2015a]. Our results
details are in Sec. 2, with overview in Table 1. For the full
version of all sections, see [Hajiaghayi et al., 2024].

Problems and preliminaries. In the free order multiple-
choice secretary problem, we are given integers k, n, 1 ≤
k ≤ n, and n boxes labeled [n] = {1, 2, , . . . , n} by an ad-
versary, each i ∈ [n] containing a single number v(i), chosen
by the adversary from an unknown distribution. The goal is
to choose an order in which we will be sequentially opening
these boxes. Each time we open the next box i in the chosen
order, we learn the number v(i) and decide to accept v(i) or
not. This decision is irrevocable, and we cannot revisit any
box. We have to accept k of these numbers without neces-
sarily opening all boxes, where the objective is to accept k
largest among them, i.e., to accept k elements with maximum
possible sum. Once we have accepted k of the numbers, we
stop opening the remaining boxes, if any. If we have accepted
j numbers so far and there are only k−j remaining boxes, we
have to open all these boxes and accept their numbers. This
problem is also called the free order k-secretary problem, and
when k = 1, it is free order secretary problem.

Notation. Let Πn be the set of all n! permutations of the
sequence (1, 2, . . . , n). A probability distribution p over Πn

is a function p : Πn −→ [0, 1] s.t.
∑

π∈Πn
p(π) = 1.

Shannon entropy, or simply, entropy, of the distribution p is

H(p) = −
∑

π∈Πn
p(π) · log(p(π)), assuming 0 · log(0) = 0,

and all log’s have base 2. Given a distribution D on Πn,
π ∼ D means that π is sampled from D. A special case
of a distribution is given a (multi-)set L ⊆ Πn , and we write
π ∼ L when a random order is selected uniformly at random
(u.a.r.) from L. We abbreviate “random variable” to r.v.

Competitive ratio. As is common, [Jaillet et al., 2013],
we quantify the performance of an algorithm A by the com-
petitive ratio: A is α-competitive or has competitive ratio
α ∈ (0, 1) if it accepts k numbers whose sum is at least α
times the sum of the k largest numbers; the competitive ratio
is usually in expectation using the random order randomness.

Wait-and-pick and threshold algorithms. An algorithm
for the k-secretary problem is called wait-and-pick if it only
observes the first m values (position m ∈ {1, 2, . . . , n−1} is
a fixed checkpoint), selects one of the observed values x (x is
a (value) threshold), and then selects every value of at least x
received after checkpoint position m; however, it cannot se-
lect more than k values in this way, and it may also select the
last i values (even if they are smaller than x) provided it se-
lected only k−i values before that. An extension of wait-and-
pick algorithms, see [Gupta and Singla, 2020], allows parti-
tion of the order into consecutive phases, and selecting po-
tentially different threshold value for each phase (other than
1) based on the values observed in previous phases. Thresh-
olds are computed at checkpoints – last positions of phases.
These thresholds could also be set based on statistics. We call
such algorithms threshold algorithms, or multiple-threshold
algorithms if there are more than two phases.

Related work. Our problem is directly related to the
prophet inequality problem with order selection [Hill, 1983].
Namely, the free order 1-secretary problem is the Hill’s prob-
lem where the numbers in the boxes are given by unknown
single-point distributions, whereas the prophet inequality
problem with order selection assumes arbitrary (un)known
distributions. The free order k-secretary problem is also the
free order matroid secretary problem in [Jaillet et al., 2013]
with a uniform matroid. Recently, the free order (a.k.a., best
order) variants have been studied extensively for the secre-
tary and prophet problems, cf., [Abolhassani et al., 2017; Ar-
senis et al., 2021; Beyhaghi et al., 2021; Chawla et al., 2010;
Correa et al., 2021; Jaillet et al., 2013; Liu et al., 2021a;
Liu et al., 2021b; Peng and Tang, 2022]. The fundamen-
tal question this problem asks is: What is the best order to
choose to maximize the chance of accepting the largest num-
ber?

2 Our Results and Techniques
Main contribution: algorithmic results. Our main result
is a polynomial-time construction of a low-entropy distribu-
tion, guaranteeing an almost-tight competitive factor for the
free order k-secretary problem.

Theorem 1. For any k < log n/ log log n, there exists a
multi-set of n-element permutations Ln s.t. a deterministic
multiple-threshold algorithm for the free order k-secretary

achieves an expected (1 − 4
√

log k
k ) competitive ratio, using
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problem competitive ratio entropy range of k reference
upper k-secr. 1− 4

√
(log k)/k O(log log n) ≤ logn

log log n Sec. 4.4
bounds k-secr. 1−O(1/k1/3) O(log log n) ≤ (log(3) n)δ [Kesselheim et al., 2015a]

1-secr. 1
e − 6 log log n

e log1/2 n
O(log log n) 1 Sec. 2

1-secr. 1
e − ω(( 1

log(3) n
)c) O(log log n) 1 [Kesselheim et al., 2015a]

lower k-secr. ≥ 1− ε ≥ 1−ε
9 log log n ≤ loga n Sec. 2

bounds k-secr. ≥ 1− ε min{log 1/ε, log n
2k}

∗ < n/2 Sec. 2
1-secr. ≥ H(n)

log log n ≥ H(n)∗∗ 1 [Kesselheim et al., 2015a]

notes a, δ ∈ (0, 1) – some constants c, ε ∈ (0, 1) – any constants log(3) n = log log log n

Table 1: Our results vs previous results. The upper bounds are w.r.t. the competitive ratio (success probability, resp.) for the k-secretary
(1-secretary, resp.) problems and appropriate range of k, for which the algorithm runs in polynomial time. Our lower bounds are the first
results for general k-secretary, for k > 1. ∗ wait-and-pick algorithms. ∗∗ H(n) = o(log log n) ⇒ success probability ≤ H(n)

log log n
= o(1).

the order chosen uniformly at random from Ln. Ln is com-
putable in time O(poly n) and the uniform distribution on it
has O(log log n) entropy.

By using our framework we obtain the following fine-grained
results for the classical secretary.

Theorem 2. There exists a multi-set of n-element permu-
tations Ln s.t. the wait-and-pick algorithm with checkpoint
⌊n/e⌋ achieves 1

e − 6 log log n
e log1/2 n

success probability for free or-
der 1-secretary problem, when the adversarial elements are
presented in order chosen uniformly from Ln. Ln is com-
putable in time O(poly n) and the uniform distribution on it
has O(log log n) entropy.

Lower bounds. We complement our results providing the
first known lower bounds on entropy of multiple-choice sec-
retary algorithms achieving any competitive ratio 1− ϵ.

Theorem 3. Let k ≤ loga n for constant a ∈ (0, 1), and let
ϵ ∈ (0, 1). Then, any algorithm (even fully randomized) solv-
ing k-secretary problem while drawing permutations from
some distribution on Πn with an entropy H ≤ 1−ϵ

9 log log n,
cannot achieve the expected competitive ratio of at least 1− ϵ
for sufficiently large n.

The second lower bound on entropy is stronger as it holds
for k < n/2, but it applies only to the class of the wait-and-
pick algorithms.

Theorem 4. Any wait-and-pick algorithm solving k-
secretary problem, for k < n/2, with expected com-
petitive ratio of at least (1 − ϵ) requires entropy
Ω(min{log 1/ϵ, log n

2k}).
For a detailed discussion of our theorems 1-4, see Sec. 5.

Our techniques. We explain our framework on the k-
secretary problem. Our goal is to compute a small (multi)set
L ⊆ Πn, such that there is an algorithm A for the problem
that chooses π ∼ L as its random order, achieving good ex-
pected competitive ratio. Let us start from a fully random
permutation π ∼ Πn as the random order. Algorithm A faces
adversarial values v(1) ≥ · · · ≥ v(n) with indices ind(k′) ∈
[n] for value v(k′), k′ ∈ [n], where (ind(1), . . . , ind(n))
is the adversarial permutation. Algorithm A considers these
values sequentially in order (π(ind(1)), . . . , π(ind(n))).

Our building blocks are atomic events, in the uniform prob-
ability space (π ∼ Πn). Suppose that we are given a parti-
tion of the positions in π into t consecutive blocks (buck-
ets) of positions and a mapping f of the k adversarial indices
{ind(1), . . . , ind(k)} to the t buckets. Let σ be any order-
ing of the indices {ind(1), . . . , ind(k)}. Given f and σ, we
define an atomic event as the event that contains all π ∈ Πn

that obey the mapping f and preserve the ordering σ. Atomic
events are appealing due to their symmetry, leading to simple
algorithms and analysis. But, it might be impossible to pre-
serve atomic events directly while keeping small entropy. Our
new approach is to group atomic events into positive events,
see Def. 2, that model success probability of threshold algo-
rithms. We will now specify the technical details behind each
step of our framework:1

1. Probabilistic analysis and defining positive events. (Sec-
tion 3.1 and 4.1) The first step is a probabilistic analysis
of an algorithm A for the k-secretary problem, assuming
that A uses a random order π ∼ Πn. We need an algo-
rithm whose success probability (expected competitive ratio)
can be analyzed by probabilistic events modelled by atomic
events. We chose as A a modified multiple-threshold algo-
rithm from the survey by Gupta and Singla [Gupta and Singla,
2020], see Algorithm 2. We use the probabilistic analysis
from [Gupta and Singla, 2020], where they apply Chernoff
bound to a collection of indicator random variables, which
indicate if indices fall in an interval in a random permuta-
tion. These random variables are not independent, but they
are negatively associated. We show an additional technical
fact to justify the application of the Chernoff bound to these
negatively-associated r.v.’s. This analysis lets us define posi-
tive events for Algorithm 2, meaning that the algorithm picks
the item with ith largest adversarial value, for i ∈ [k].
2. Decomposing positive event into atomic events. (Sec-
tion 3.1 and 4.2) We show how to define any positive event
as union of atomic events. Once we prove that such a decom-
position exists, it is easy to find it by complete enumeration

1Sections 3.1-3.3 present our techniques on the highest level of
generality, but below we explain our framework on the k-secretary
problem. Problem-specific application to the k-secretary problem is
in Section 4.
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over the space of atomic events, since the size of this space,
tk · k!, basically only depends on k. Section 3.1 defines pos-
itive and atomic events abstractly. The decomposition of a
positive event for Algorithm 2 for the k-secretary problem
into atomic events is in Section 4.2.
3. Abstract derandomization of positive events via concen-
tration bounds. (Section 3.2 and 4.3) Let each positive event
Pγ , defined by atomic events A ∈ Atomic(Pγ), hold with
probability pγ . We prove by Chernoff bound (Theorem 5)
that there exists a small (multi)set L ⊆ Πn nearly preserving
probabilities pγ of events Pγ , when Algorithm 2 uses π ∼ L
as random order. We show how to derandomize this theorem
by the method of conditional expectations with a special pes-
simistic estimator of failure probability, see Sec. 3.2. This es-
timator is derived from the proof of Chernoff bound, inspired
by Young [Young, 1995]. Our derandomization Algorithm 1
uses algorithm from Lemma 2 to compute a decomposition
of Pγ into atomic events. Algorithm 1 calls Prob(A) (defined
in Appendix) to compute conditional probabilities. This cru-
cially uses a symmetric nature of atomic events. Algorithm
Prob(A) and its analysis are much simpler compared to di-
rectly computing conditional probabilities for positive events,
and this also gives a promise for further applications.
4. Dimension reduction and lifting positive events. (Sec-
tion 3.3 and 4.4) The above abstract derandomization has
time complexity Θ(nk), being polynomial only for non-
constant k. To make it polynomial, we design dimension re-
ductions from n to poly log(n). We build on the idea of using
Reed-Solomon (RS) codes from [Kesselheim et al., 2015a],
with two changes. First, we only use one RS code; they use
a product of 2 or 3 such codes. Second, we replace their sec-
ond step based on complete enumeration by our derandom-
ization step 3. To define the dimension reduction, we propose
in Lemma 1, a new technical ingredient: an algebraic con-
struction of a family of functions that have bounded number
of collisions and their preimages are of almost same sizes up
to additive 1. We prove it by carefully using algebraic proper-
ties of polynomials. Our construction significantly improves
and simplifies the constructions in [Kesselheim et al., 2015a]
by adding the constraint on sizes of preimages and using only
one RS code. The last step of is to lift the lower-dimensional
permutations back to the original dimension, i.e., to prove
that we lose only slightly on the probability of positive events
when going from the low-dimensional permutations back to
dimension n, see Sections 3.3 and 4.4.

3 Generic Construction for Threshold
Algorithms

3.1 Probabilistic Atomic and Positive Events for
Threshold Algorithms

Let Ω = (Πn, µ) denote the probabilistic space of all
n! permutations of n elements with uniform probabilities:
Pr[π ∈ Πn] = µ(π) = 1/n!. We will define atomic
events in space Ω. Given any integer t ∈ {2, 3, . . . , n},
let B := B1, B2, . . . , Bt, be a bucketing of the sequence
(1, . . . , n), i.e., partition of sequence (1, . . . , n) into t dis-
joint subsets (buckets) of consecutive numbers whose union

is the whole sequence. Formally, there are indices τ1 < τ2 <
· · · < τt−1 < τt = n, ∀j ∈ [t − 1] : τj ∈ [n], such
that B1 = {1, . . . , τ1}, and Bj = {τj−1 + 1, . . . , τj}, for
j ∈ {2, 3, . . . , t}.
Definition 1 (Atomic events). Let σ = (σ1, . . . , σk) =
(σ(1), . . . , σ(k)) be any k-tuple of set [n], i.e., injection
σ : [k] −→ [n]. Let f : [k] → [t] be a non-decreasing
mapping of elements from the sequence into t buckets of the
bucketing B. Then an atomic event in probability space Ω for
the chosen σ and f is defined as:

Aσ,f = {π ∈ Ω : ∀i∈[k]π
−1(σi) ∈ Bf(i) and

π−1(σ1) < π−1(σ2) < . . . < π−1(σk)} .
The family Ak,B of all atomic events, parameterized by k and
B, is defined as Ak,B =

⋃
σ,f Aσ,f .

Definition 2 (Positive events). A positive event P is any sub-
set of the atomic family Ak,B, denoted Atomic(P ) ⊆ Ak,B,
such that every two atomic events from P are disjoint, P =
·⋃
A∈Atomic(P ) A. Any set of positive events is called a posi-

tive family of events.
We will propose in Sec. 4 a positive events family capturing

behavior of an optimal algorithm for the k-secretary problem,
showing how to express the positive events by atomic events.

3.2 Derandomization of Positive Events via
Concentration Bounds: Theorem 5

Let Ω = (Πn, µ) be the probabilistic space of n-element
permutations with uniform probabilities. Given integer t ∈
{2, 3, . . . , n}, let B = B1, B2, . . . , Bt, be a bucketing of the
sequence (1, . . . , n). We will prove the following probabilis-
tic result and its derandomization in Theorem 5.
Theorem 5. Let k ∈ [n], k > 2 and Ak,B be the fam-
ily of atomic events in the space Ω, where bucketing B has
t buckets. Let P = {P1, . . . , Pq} be a family of positive
events based on Ak,B, for some integer q > 1, such that
for any Pγ ∈ P , γ ∈ [q], we have Prπ∼Πn [Pγ ] ≥ pγ > 0
for some pγ ∈ (0, 1). Let p0 = min{p1, p2 . . . , pq}, and
for any Pγ ∈ P , Atomic(Pγ) be the set of atomic events
that define Pγ . Then, for any δ ∈ (0, 1), there exists a
multi-set L of permutations with |L| ≤ ℓ = 2 log q

δ2p0
, such

that Prπ∼L[Pγ ] ≥ (1 − δ) · pγ , for each Pγ ∈ P , and
L can be computed by Algorithm 1 in deterministic time
O
(
ℓn3q · t2k · (k!)2 ·

(
n+ kk! + k log2 n

))
.

In the reminder of Section 3.2 we present the proof of Theo-
rem 5; missing details appear in [Hajiaghayi et al., 2024].
Preliminaries. To derandomize the Chernoff argument in
Theorem 5, we will derive a special conditional expectations
method with a pessimistic estimator. We will model an ex-
periment to choose u.a.r. a permutation πj ∈ Πn by indepen-
dent “index” r.v.’s Xi

j : Pr[Xi
j ∈ {1, 2, . . . , n − i + 1}] =

1/(n − i + 1), for i ∈ [n], to define π = πj ∈ Πn

“sequentially”: π(1) = X1
j , π(2) is the X2

j -th element in
I1 = {1, 2, . . . , n} \ {π(1)}, π(3) is the X3

j -th element in
I2 = {1, 2, . . . , n} \ {π(1), π(2)}, etc, where elements are
increasingly ordered.
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Algorithm 1: Find permutations distribution (for positive events).
Input: Positive integers n, k ≤ n, ℓ ≥ 2, such that log k ≥ 8.
Output: Multi-set L ⊆ Πn of size ℓ. /* Function Prob(A) is defined in Appendix. */

1 π1 := (1, 2, . . . , n); L := {π1}; Let P = {P1, . . . , Pq} be the set of all positive events.
2 for γ ∈ {1, . . . , q} do w(Pγ) := 1− δ · ϕ1(Pγ)
3 for s = 1 . . . ℓ− 1 do
4 for r = 1 . . . n do
5 for γ ∈ {1, . . . , q} do
6 for τ ∈ [n] \ {πs+1(1), πs+1(2), . . . , πs+1(r − 1)} do
7 for A ∈ Atomic(Pγ) do
8 Pr[A |πs+1(1), . . . , πs+1(r − 1), πs+1(r) = τ ] := Prob(A)

9 E[ϕs+1(Pγ) |πs+1(r) = τ ] :=
∑

A∈Atomic(Pγ)
Pr[A |πs+1(1), . . . , πs+1(r − 1), πs+1(r) = τ ]

10 Choose πs+1(r) = τ for τ ∈ [n] \ {πs+1(1), πs+1(2), . . . , πs+1(r − 1)} to minimize∑q
γ=1 ω(ℓ, s, γ) · w(Pγ) · (1− δ · E[ϕs+1(Pγ) |πs+1(r) = τ ]).

11 L := L ∪ {πs+1}; for γ ∈ {1, . . . , q} do w(Pγ) := w(Pγ) · (1− δ · ϕs+1(Pγ))

Suppose random permutations L = {π1, . . . , πℓ} are gen-
erated using X1

j , X
2
j , . . . , X

n
j for j ∈ [ℓ]. Given a positive

event Pγ ∈ P , γ ∈ [q], let Xj(Pγ) = 1 if event Pγ holds for
random permutation πj , j ∈ [ℓ], and Xj(Pγ) = 0 otherwise.
For X(Pγ) = X1(Pγ) + · · · + Xℓ(Pγ) and δ ∈ (0, 1),
we have that E[X(Pγ)] ≥ pγℓ and by Chernoff bound we
have Pr[X(Pγ) < (1 − δ) · pγℓ] < exp(−δ2pγℓ/2), and so(
Pr[∃Pγ ∈ P : X(Pγ) < (1− δ)pγℓ] < 1 if ℓ ≥ 2 log q

δ2p0

)
.

We call the positive event Pγ ∈ P not well-covered if
X(Pγ) < (1 − δ) · pγℓ (then a new r.v. Y (Pγ) = 1),
and well-covered otherwise (then Y (Pγ) = 0).
Let Y =

∑
P∈P Y (P ). By the above argument

E[Y ] =
∑

P∈P E[Y (P )] < 1 if ℓ ≥ 2 log q
δ2p0

. We will
keep the expectation E[Y ] below 1 in each step of the
derandomization, and these steps will sequentially define the
permutations in L.

Derandomization outline. We will choose permutations
{π1, π2, . . . , πℓ} sequentially, with π1 = (1, 2, . . . , n). For
some s ∈ [ℓ − 1] let permutations π1, . . . , πs have already
been chosen (“fixed”). We will choose a “semi-random”
permutation πs+1 position by position using Xi

s+1. Suppose
πs+1(1), πs+1(2), ..., πs+1(r) are already chosen for some
r ∈ [n − 1], where all πs+1(i) (i ∈ [r − 1]) are fixed and
final, except πs+1(r) which is fixed but not final yet. We
will vary πs+1(r) ∈ [n] \ {πs+1(1), πs+1(2), ..., πs+1(r −
1)} to choose the best value for πs+1(r), assuming that
πs+1(r+1), πs+1(r+2), ..., πs+1(n) are random. Permuta-
tions πs+2, . . . , πn are “fully-random”.

Conditional probabilities. Given Pγ ∈ P ,
r ∈ [n − 1], note that Xs+1(Pγ) depends only
on πs+1(1), πs+1(2), . . . , πs+1(r). We define
Pr[Xs+1(Pγ) = 1 |πs+1(1), πs+1(2), . . . , πs+1(r)] =
Pr[Xs+1(Pγ) = 1] when r = 0. We will show how to
compute the conditional probabilities Pr[Xs+1(Pγ) =
1 |πs+1(1), πs+1(2), . . . , πs+1(r)], where randomness is
over random positions πs+1(r+1), πs+1(r+2), . . . , πs+1(n),
see Theorem 6 and [Hajiaghayi et al., 2024] for details.

Theorem 6. Suppose πs+1(1), πs+1(2), . . . , πs+1(r) have
already been fixed for some r ∈ {0} ∪ [n]. There
is a deterministic algorithm to compute Pr[Xs+1(Pγ) =
1 |πs+1(1), πs+1(2), . . . , πs+1(r)], for any positive event Pγ ,
where the random event is a random choice of the semi-
random permutation πs+1 conditioned on its first r ele-
ments already being fixed. This algorithm calls function
Prob(A) for A ∈ Atomic(Pγ), and has running time
O(|Atomic(Pγ)| · (n2 + nk(k! + log2 n))) .

Pessimistic estimator. For Pγ ∈ P , let E[Xj(Pγ)] =
Pr[Xj(Pγ) = 1] = µγj for each j ∈ [ℓ], and E[X(Pγ)] =∑ℓ

j=1 µγj = µγ . By assumption in Theorem 5, µγj ≥ pγ ,
for j ∈ [ℓ]. We use Raghavan’s proof of Hoeffding bound,
see [Young, 1995], for any δ > 0, using that µγj ≥ pγ :

Pr [X(Pγ) < (1− δ) · ℓ · pγ ] ≤
ℓ∏

j=1

1− δ · E[Xj(Pγ)]

(1− δ)(1−δ)pγ

<
ℓ∏

j=1

exp(−δµγj)

(1− δ)(1−δ)pγ
≤

ℓ∏
j=1

exp(−δpγ)

(1− δ)(1−δ)pγ

=
1

exp(b(−δ)ℓpγ)
<

1

exp(δ2ℓpγ/2)
,

where b(x) = (1 + x) ln(1 + x) − x and the last inequality
follows by b(−x) > x2/2. By the union bound:

Pr [∃Pγ ∈ P : X(Pγ) < (1− δ) · ℓ · pγ ]

≤
q∑

γ=1

ℓ∏
j=1

1− δ · E[Xj(Pγ)]

(1− δ)(1−δ)pγ
. (1)

Inequality (1) helps us derive a pessimistic estimator of this
failure probability. Let ϕj(Pγ) = 1 if πj makes event Pγ

true, and ϕj(Pγ) = 0 otherwise. The resulting pessimistic

estimator is Φ =
∑q

γ=1 ω(ℓ, s, γ)·
(∏s

j=1(1− δ · ϕj(Pγ))
)
·

(1− δ · E[ϕs+1(Pγ)]), where ω(ℓ, s, γ) =
(1−δpγ)

ℓ−s+1

(1−δ)(1−δ)pγℓ .
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3.3 A Polynomial Time Construction of a
Dimension-Reduction Set

A set G of functions g : [n] → [ℓ] is called a dimension-
reduction set with parameters (n, ℓ, d) if the following two
conditions hold:
(1) the number of functions that have the same value on any
element of the domain is bounded:
∀i,j∈[n],i̸=j : |{g ∈ G : g(i) = g(j)}| ≤ d; and
(2) for each function, the elements of the domain are al-
most uniformly partitioned into the elements of the image:
∀i∈[ℓ],g∈G : n

ℓ ≤ |g−1(i)| ≤ n
ℓ + o(ℓ).

The dimension-reduction set of functions is key in finding
low-entropy probability distribution that implies high proba-
bility of positive events. It reduces the size of permutations
from n to ℓ. [Kesselheim et al., 2015a] were first to use such
reduction for secretary problems. Our refinement is the new
condition (2) above, which significantly strengthens the re-
duction. We show a general pattern for constructing a set of
functions that reduce the dimension from n to q < n by using
refined Reed-Solomon codes.
Lemma 1. There exists a set G of functions g : [n] −→ [q],
for some prime integer q ≥ 2, such that for any two distinct
indices i, j ∈ [n], i ̸= j, we have

|{g ∈ G : g(i) = g(j)}| ≤ d and

∀q′ ∈ [q] : |g−1(q′)| ∈ {⌊n/q⌋, ⌊n/q⌋+ 1} ,

where 1 ≤ d < q is an integer such that n ≤ qd+1. More-
over, |G| = q and set G can be constructed in deterministic
polynomial time in n, q, d.
Corollary 1. Observe that setting q ∈ Ω(log n), d ∈ Θ(q) in
Lemma 1 results in a dimension-reduction set of functions G
with parameters (n, q,

√
q). Moreover, set G has size q and as

long as q ∈ O(n), it can be computed in polynomial time in n.

4 Generic Construction Applied to Free
Order Multiple-Choice Secretary

For ℓ = Θ(poly log(n)), we define atomic events with re-
spect to the bucketing on ℓ-element permutations. We employ
a refined version of an algorithm from [Gupta and Singla,
2020], see Algorithm 2, with permutation distribution D =
Πℓ. Then we show that the algorithm’s success can be de-
scribed by atomic events. Even for such small ℓ, the family
of atomic events is too rich to support the construction of a
low-entropy distribution preserving all atomic events’ proba-
bilities. So we group atomic events into positive events, that
have larger probabilities. Derandomization from Section 3.2
is used to construct such low-entropy distribution Lℓ support-
ing positive events’ probabilities. Doing so on ℓ-element per-
mutations, makes it computable in polynomial time in n, if
ℓ is sufficiently small. This results in our derandomized al-
gorithm Algorithm 2 that uses our low entropy distribution
D = Lℓ. To lift the constructed distribution back to size n-
permutations, we use dimension-reduction from Section 3.3.

4.1 Positive Events and Probabilistic Analysis
We show a lower bound on the measure of a positive event
in the space Ωℓ. Let a random permutation π ∼ Πℓ. Let

Ŝ = {j1, . . . , jk}, called a k-tuple, be an ordered subset
{j1, . . . , jk} ⊆ [ℓ]. Ŝ models the positions in the adversarial
permutation of the k largest adversarial values v(1) ≥ . . . ≥
v(k), i.e., ji ∈ [ℓ] is the position of value v(i) in π. Let K be
the set of all such k-tuples.

Let us first define the following events: Hj = {τj ≥
min{v(i) : i = 1, ..., k} = v(k)}, and Lj = {τj ≤
v((1 − 2εj)k)}. Now, event Ci means that item ji with
value v(i) will be chosen by the above algorithm for i ∈
{1, 2, . . . , (1 − δ)k}. Assuming that (1 − 2εj)k = 1 for
j = −1, we can define for each j ∈ {−1, 0, 1, ..., log 1/δ−1}
and for each i ∈ {(1− 2εj)k, . . . , (1− 2εj+1)k}:

Ci = {item ji arrives after position ℓj+1 in π} .

We define a positive event corresponding to the k-tuple
Ŝ and any i ∈ {1, 2, . . . , (1 − δ)k} as PŜ,i =(⋂

j∈[0,log 1/δ] (Lj ∩Hj)
)

∩ Ci. By refining the analy-

sis in [Gupta and Singla, 2020] using Hoeffding-Chernoff
bounds for negatively associated r.v.’s, we can prove that
Prπ∼Πℓ

[PŜ,i] ≥ (1− log(k)/k) · (1− 2j+1 · δ).

4.2 Decomposing Positive Event into Atomic
Events

We will design an algorithm to express each positive event as
a union of disjoint atomic events. We also give an algorithm
to compute conditional probabilities.

Let us define the following bucketing B1: B1 =
{1, 2, . . . , ℓ0}, Bj = {ℓj−2 + 1, ℓj−2 + 2, . . . , ℓj−1}, for
j = 2, 3, . . . , log(1/δ) + 1. We will now define all atomic
events that define a given positive event Pi for some i. The
bucketing has t = log(1/δ) + 1 buckets, so we will use the
mappings f : [k] −→ [t], that fulfil (1), (2), (3) below; it can
easily be shown that such mappings exist:
(1) : ∀j ∈ [0, log 1/δ] ∃J ⊆ {j1, . . . , jk} : |J | ≥ (1 −
εj)kj & f(J) ⊆ {1, 2, . . . , j + 1} ;
(2) : ∀j ∈ [0, log 1/δ] : |f−1({1, 2, . . . , j + 1}) ∩
{j1, . . . , j(1−2εj)k}| ≤ (1− εj)kj ;
(3) : f(ji) > j + 2, i.e., item ji arrives after time ℓj+1 .

Let FCi
, for i ∈ {1, 2, . . . , (1 − δ)k}, be the family of all

mappings f : [k] −→ [t] s.t. (1), (2), (3) hold. Given any
f ∈ FCi

, define a set of permutations Σf of the sequence
Ŝ = (j1, . . . , jk) consistent with f , i.e., σ ∈ Σf if ∀i, i′ ∈
[k], i ̸= i′ : f(i) < f(i′) ⇐⇒ σ−1(ji) < σ−1(ji′). We
express the positive events PŜ,i as follows:

PŜ,i =
⋃

f∈FCi

⋃
σ∈Σf

Aσ,f , for any i ∈ {1, 2, . . . , (1− δ)k} .

Family PG-S of positive events of interest of Algorithm 2 is
PG-S = {PŜ,i : Ŝ ⊆ [ℓ], i ∈ [(1− δ)k]}.

Lemma 2. For any k-tuple Ŝ and any positive event PŜ,i,
i ∈ {1, 2, . . . , (1 − δ)k}, for the Algorithm 2 for the
multiple-choice secretary problem, we can compute the set
Atomic(PŜ,i) of all atomic events defining PŜ,i in time
O(tk · k! · ℓ), where t = log(1/δ).
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Algorithm 2: Multiple-choice secretary algorithm with adaptive thresholds and permutation distribution D ∈ {Πℓ,Lℓ}.
Input: Integers ℓ ≥ 2, k ≤ ℓ; sequence of ℓ items each with an adversarial value; π s.t. π ∼ D.
Output: Selected k items from the input sequence.

1 Set δ :=
√

log k
k . Consider the ℓ items in the order given by the random permutation π.

2 Denote ℓj := 2jδℓ and ignore the first ℓ0 = δℓ items.
3 for j ∈ [0, log 1/δ), phase j runs on arrivals in window Wj := (ℓj , ℓj+1] do
4 Let kj := (k/ℓ)ℓj and let εj :=

√
3δ/2j .

5 Set threshold τj to be the (1− εj)kj th-largest value among the first ℓj items.
6 Choose any item in window Wj with value above τj (until budget k is exhausted).

4.3 Derandomization of Positive Events via
Concentration Bounds

The derandomization from Section 3.2 implies the existence
of multi-set Lℓ of ℓ-element permutations where the uniform
distribution on Lℓ preserves probabilities of positive events:
Lemma 3. There is (multi)set Lℓ ⊆ Πℓ with entropy O(log ℓ)
of the uniform distribution on Lℓ s.t.

Prπ∼Lℓ

[
π ∈ PŜ,i

]
≥

(
1− 1√

k

)
Prπ∼Πℓ

[
π ∈ PŜ,i

]
,

for any positive event PŜ,i ∈ PG-S. The (multi)set Lℓ can be
computed in O(ℓ10 · t2k · (k!)3) time.

4.4 Lifting Lower-Dimension Permutations
Distribution Satisfying Positive Events

We apply a dimension-reduction from Section 3.3, to turn a
set Lℓ of ℓ-element permutations to a set Ln of n-element
permutations such that the competitive ratio of Algorithm 2
executed on the uniform distribution over Lℓ is carried to the
ratio of this algorithm on the uniform distribution over Ln.

That is, we use a dimension-reduction set G from Corol-
lary 1 with parameters (n, ℓ,

√
ℓ), and Lℓ from Lemma 3. For

given g ∈ G, π ∈ Lℓ, let π ◦g : [n] → [n] be any permutation
σ ∈ Πn obtained as follows: function g ∈ G, g : [n] → [ℓ]
assigns each element from [n] to one of ℓ blocks; permutation
π ∈ Lℓ determines the order of the blocks; and permutation
σ is obtained by listing elements from the blocks according
to π where order of elements inside blocks is irrelevant. The
final set Ln is defined as Ln = {π ◦ g : π ∈ Lℓ, g ∈ G}.
Lemma 4. Let ALGG-S(π) be the output of Algorithm 2 on
the permutation π. Assuming ℓ2 < n

ℓ , one can compute a
multi-set of n-element permutations Ln s.t.

Eπ∼Ln
(ALGG-S(π)) >

(
1− k2√

ℓ

)(
1− 1√

k

)(
1−

√
log k

k

)
v∗

where v∗ = v(1) + . . . + v(k) is the sum of k largest
adversarial elements. Given Lℓ we can construct Ln in
O(n · k2 log(ℓ)) time and the entropy of the uniform distri-
bution over Ln is O(log ℓ+ log |Lℓ|).
Theorem 7. For any k < logn

log log n , there exists a multi-set of

n-element permutations Ln s.t. Algorithm 2 has 1− 4
√

log k
k

expected competitive ratio for the free order k-secretary prob-
lem, when elements are presented in order chosen uniformly

from Ln. Ln is computable in time O(poly (n)) and uniform
distribution over Ln has entropy O(log k) = O(log log n).

Proof. Set k, k < log n/ log log n, ℓ := k8, then the claim
follows by applying Lemma 3 and 4 to the parameters. The
running time follows because if k < log n/ log log n, the time
of the construction by Lemma 3 is O(ℓ10 · t2k · (k!)3) =
poly(n), as the dominant time is k! ≤ kk = poly(n).

5 Discussion and Conclusions
Theorem 3 uses a non-trivial extension of semitone sequences
from [Kesselheim et al., 2015a]. One of technical challenges
we had to overcome is that the algorithm picks k values, in-
stead of one, creating additional probabilistic dependencies.

By Theorem 3, entropy Ω(log log n) is necessary for any
algorithm to achieve even a constant competitive ratio 1 − ϵ,
for k = O(loga n), a < 1, for k-secretary problem, implying
that our upper bound in Thm. 1 is tight. Thm. 4 implies that
entropy Ω(log log n) is necessary for any wait-and-pick algo-
rithm to get a close-to-optimal competitive ratio 1 − Ω( 1

ka ),
for any k < n

2 , where a ≤ 1
2 . Moreover, the entropy Ω(log k)

is necessary, which could be Ω(log n) for k = poly(n).
Theorem 1 implies an (almost)2 optimal competitive ra-

tio 1 − O(
√

log k/k), with minimal entropy O(log log n),
when k < log n/ log log n, for k-secretary in non-uniform
arrival model. This improves over competitive ratio (1 −
O(1/k1/3) − o(1)) of [Kesselheim et al., 2015a], who used
entropy O(log log n) and constructed the distribution for k =
O((log log log n)ϵ) only. We improve the range of working
values k exponentially. Entropy optimality follows by our
new lower bounds in Thm. 3 and 4. Such lower bounds were
unknown before for the k-secretary problem, for k > 1. For
1-secretary, Thm. 2 improves, over doubly-exponentially, on
the additive error to 1

e of ω( 1
(log log log(n))c ) by [Kesselheim

et al., 2015b], which holds for any constant c ∈ [0, 1], by a
polynomial-time construction with additive error Θ( log log n

log1/2 n
).

We have applied our new derandomization techniques to
two different secretarial problems: 1-secretary and multiple-
choice secretary problems. Further promising candidates are
the online bipartite matching and matroid secretary problems,
see [Gupta and Singla, 2020].

2The competitive ratio is optimal up to a factor of
√
log k, see

[Kleinberg, 2005; Gupta and Singla, 2020; Agrawal et al., 2014] for
a matching lower bound.
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