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Abstract
Federated causal discovery (FCD) aims to uncover
causal relationships among variables from decen-
tralized data across multiple clients, while preserv-
ing data privacy. In practice, the sample quality of
each client’s local data may vary across different
variable spaces, referred to as sample quality het-
erogeneity. Thus, data from different clients might
be suitable for learning different causal relation-
ships among variables. Model aggregated under
existing FCD methods requires the entire model
parameters from each client, thereby being unable
to handle the sample quality heterogeneity issue.
In this paper, we propose the Federated Adaptive
Causal Discovery (FedACD) method to bridge this
gap. During federated model aggregation, it adap-
tively selects the causal relationships learned un-
der the “good” variable space (i.e., one with high-
quality samples) from each client, while masking
those learned under the “bad” variable space (i.e.,
one with low-quality samples). This way, each
client only needs to send the optimal learning re-
sults to the server, achieving accurate FCD. Ex-
tensive experiments on various types of datasets
demonstrate significant advantages of FedACD
over existing methods. The source code is available
at https://github.com/Xianjie-Guo/FedACD.

1 Introduction
Causal discovery (CD) aims to identify causal relationships
among variables using observational data [He et al., 2021;
Guo et al., 2022], with applications across diverse fields,
including medicine [Anderson et al., 2023], trustworthy ar-
tificial intelligence [Huo et al., 2023a; Yu et al., 2011;
Huo et al., 2023b] and computer science [Pearl, 2018;
Zhang et al., 2023b]. For example, studying the causal re-
lationships between different lifestyles (e.g., diet and ex-
ercise) and chronic diseases (e.g., cardiovascular diseases
and diabetes) can help guide public health policies and rec-
ommendations. CD can be divided into two main cate-
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Figure 1: Examples of FL client sample quality heterogeneity.

gories: 1) combinatorial optimization-based methods, and
2) continuous optimization-based methods [Yu et al., 2020;
Vowels et al., 2022]. The former heuristically evaluates the
goodness-of-fit between structural combinations of variables
and the dataset used to learn optimal causal relationships. The
latter employs gradient descent to optimize a weight adja-
cency matrix to fit causal relationships among variables.

Existing CD methods are always performed at a central-
ized site where all data are stored [Sheng et al., 2024; Xiang
et al., 2023]. In practice, data are often distributed across
multiple parties (e.g., patient data across hospitals [McMa-
han et al., 2017; Liu et al., 2024a; Zhang et al., 2023a]), and
cannot be moved to a central location due to data privacy con-
cerns [Yang et al., 2019; Liu et al., 2022; Zhong et al., 2023;
Miao et al., 2024; Liu et al., 2024b]. As a result, each data
owner holds a relatively small amount of samples, which
severely limits the performance of existing CD methods. To
address this issue, federated causal discovery (FCD) [Ng
and Zhang, 2022] has emerged to uncover the underlying
causal relationships among variables from decentralized data
in a privacy-preserving manner. Existing FCD methods train
models on the entire variable space of each client’s local data.
The entire model parameters from each client are involved in
federated learning (FL) model aggregation at the FL server.
However, for each FL client, the sample quality varies across
different variable spaces. The sample quality heterogeneity
issue results in data from different clients being suitable for
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learning different causal relationships among variables.
For example (Figure 1), when identifying the causal rela-

tionship between X1 and X2, only samples from clients 1 and
3 in the variable space of X1 and X2 exhibit “good” quality
(i.e., can correctly determine the causal relationship between
X1 and X2). In contrast, samples from other clients in the
variable space of X1 and X2 are of “bad” quality (i.e., cannot
correctly learn the causal relationship between X1 and X2).
Similarly, when determining the causal relationship between
variables X3 and X4, only samples from clients 2 and 5 in
the variable space of X3 and X4 are of “good” quality, while
samples from other clients in the variable space of X3 and X4

are of “bad” quality.
Existing FCD methods cannot deal with the sample qual-

ity heterogeneity issue since they train models on the entire
variable space of each local data. To bridge this gap, we pro-
pose a first-of-its-kind Federated Adaptive Causal Discovery
(FedACD) method. At the core of FedACD is a novel strategy
to adaptively select the causal relationships learned under the
“good” variable space (i.e., the space with high-quality sam-
ples) at each FL client, and only send them to the server. The
causal relationships learned under the “bad” variable space
(i.e., the space with low-quality samples) are masked. This
way, each FL client only communicates the optimal learn-
ing results with the FL server during each round of training,
thereby achieving accurate FCD. Under reasonable assump-
tions, theoretical analysis proves the superiority of FedACD
over existing methods. Extensive experiments on benchmark
Bayesian network data, synthetic Non-IID data, and real-
world data demonstrate significant advantages of FedACD
against five state-of-the-art methods, improving the F1 score
by 19.65% and reducing the Structural Hamming Distance by
23.57% compared to the best baseline on average.

2 Related Work
The Fusion Problem in Causal Discovery. Although FCD
and the fusion problem in causal discovery [Mooij et al.,
2020; Perry et al., 2022; Huang et al., 2020] share similari-
ties in integrating causal relationships from multiple datasets,
they have distinct characteristics and challenges. FCD fo-
cuses on learning causal relationships from decentralized data
while preserving privacy and reducing communication costs,
which are not primary concerns in the fusion problem. Ad-
ditionally, in the fusion problem, the causal relationships be-
tween variables in the ground truth causal graph are typically
required to satisfy specific assumptions, and not any arbitrary
directed acyclic graph structure is applicable.

Federated Causal Discovery. Notable FCD methods in-
clude NOTEARS-ADMM [Ng and Zhang, 2022], FED-
CD [Abyaneh et al., 2022], DARLS [Ye et al., 2022],
PERI [Mian et al., 2023], FedDAG [Gao et al., 2023],
FedPC [Huang et al., 2023a] and FedCSL [Guo et al., 2024].
Specifically, NOTEARS-ADMM directly applies the dis-
tributed optimization algorithm ADMM [Boyd et al., 2011] to
optimize the NOTEARS method [Zheng et al., 2018]. FED-
CD is designed for a federated learning scenario that contains
both observational and interventional data. As for DARLS
and PERI, the former utilizes the distributed annealing strat-

egy [Arshad and Silaghi, 2004] to search for the optimal
causal graph, while the latter aggregates the results of the lo-
cal greedy equivalent search [Chickering, 2002] and chooses
the worst-case regret for each iteration. FedDAG adopts a
two-level structure for each local model, where the first level
learns causal relationships by communicating with the server,
and the second level approximates variable relationships at
each client for handling data heterogeneity. FedPC proposed
a layer-wise aggregation strategy to adapt PC [Spirtes et al.,
2000] into FL settings. To address the scalability and accu-
racy limitations of existing methods, FedCSL designs a fed-
erated local-to-global learning strategy and a highly privacy-
preserving weighted aggregation scheme, respectively.

However, these existing studies are not designed to deal
with the FL client sample quality heterogeneity issue, which
limits their applicability in practice. To the best of our knowl-
edge, FedACD is the first FCD method to bridge this gap.

3 Preliminaries
In this work, we consider a horizontal FL setting, where dif-
ferent clients have large overlaps in the variable space but lit-
tle overlap in the sample space. Let C = {ck}k∈{1,2,...,m} =
{c1, c2, ..., cm} be a set of m clients, X = {Xi}i∈{1,2,...,d} =
{X1, X2, ..., Xd} be a set of d variables at each client, and
Dck ∈ Rnck

×d represent the local dataset owned by client
ck. Here, nck is the number of samples in Dck . Causal re-
lationships over X are often represented by a causal directed
acyclic graph (DAG) [Guo et al., 2023]. In a causal DAG, if
there is a direct edge Xi1 → Xi2 (i1, i2 ∈ {1, 2, ..., d}), Xi1
is a direct cause of Xi2 , and Xi2 is a direct effect of Xi1 .

FCD aims to identify a causal DAG G from all local
datasets {Dck}k∈{1,2,...,m} in a privacy-preserving manner.
The causal relationship between variables at different clients
satisfies the following Assumption 1.
Assumption 1 (Invariant Causal DAG [Gao et al., 2023]). All
local datasets are uniformly sampled from the same causal
DAG G, and the probability distribution of samples for the
same variable space can differ across different clients.

In this paper, if there is Xi1 → Xi2 or Xi2 → Xi1 , we
say that Xi1 and Xi2 are causal neighbors to each other. We
use CN ck

i to represent the causal neighbor of Xi learned at
client ck. Under the faithfulness and causal sufficiency as-
sumptions [Pearl, 1988], if Xi1 ∈ CN ck

i2
or Xi2 ∈ CN ck

i1
hold at client ck, Xi1 ̸⊥⊥ Xi2 |Z always holds, where Z ⊆
X \ {Xi1 , Xi2}. We use ̸⊥⊥ (or ⊥⊥) to represent the de-
pendence (or independence) relation. We employ the G2

test [Spirtes et al., 2000] for discrete data and Fisher’s Z
test [Pena, 2008] for continuous data to conduct conditional
independence (CI) tests for identifying causal relationships
between variables. Assume that ρ is the p-value returned by
CI tests, and α is a given significance level. Under the null
hypothesis of “H0 : Xi1 ⊥⊥ Xi2 |Z”, for a CI test of Xi1 and
Xi2 given Z, Xi1 ⊥⊥ Xi2 |Z holds if and only if ρ > α.

When conducting CI tests for two variables under all sub-
sets consisting of their respective causal neighbors, if there
exists a CI test that makes ρ ∈ (α, 1] hold, then the CI test
with a larger p-value is more reliable [Ramsey, 2016]. Thus,
we make the following assumption.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4072



Assumption 2. Given a local dataset Dck , if for ∀Z1 (⊆
CN ck

i1
or ⊆ CN ck

i2
), there exists CI tests that makes Xi1 ⊥

⊥ Xi2 |Z hold, with the maximum p-value across all CI tests
denoted as p̂(Xi1 , Xi2), and similarly if for ∀Z2 (⊆ CN ck

i3
or ⊆ CN ck

i4
), there exists CI tests that makes Xi3 ⊥⊥ Xi4 |Z

hold, with the maximum p-value denoted as p̂(Xi3 , Xi4), then
the test result between Xi1 and Xi2 is more reliable than that
between Xi3 and Xi4 if p̂(Xi1 , Xi2) > p̂(Xi3 , Xi4).

4 The Proposed FedACD Method
As shown in Figure 2, the proposed FedACDmethod consists
of two phases: 1) federated causal skeleton learning (FCSL,
details in Section 4.1) and 2) federated skeleton orientation
(FSO, details in Section 4.2). Due to space limit, the detailed
pseudo-code of FedACD is provided in Appendix B, and its
time complexity is analyzed in Appendix C.

4.1 Federated Causal Skeleton Learning (FCSL)
As shown in Figure 2, Phase 1 is an iterative process. Specif-
ically, FedACD first constructs a complete undirected graph
over X = {Xi}i∈{1,2,...,d} and sends it to each client. Then,
at each client, it utilizes the conditional independence (CI)
tests with the size of the conditioning set as l (start with 0)
to remove the false causal edges. Next, it adaptively masks
causal edges that may be deleted by mistake and sends all
masked causal skeletons to the server for aggregation. Fi-
nally, it determines whether the aggregated causal skeleton
meets the convergence condition: if so, Phase 1 ends; other-
wise, it increments the size of l for the next iteration.
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Figure 2: An overview of the proposed FedACD method.

Phase 1-1: Learning Causal Skeleton.
Since the sample space at different clients almost does not
overlap in the horizontal FL scenario, the causal skeletons
learned at each client may differ greatly, resulting in poor
aggregation results. Therefore, we aggregate and update the
causal skeletons learned at each client by limiting the size of
the condition set for CI tests.

At client ck (k ∈ {1, 2, ...,m}), for two variables Xi1
and Xi2 (Xi1 , Xi2 ∈ X ) that are causal neighbors, FedACD
utilizes CI tests to determine whether they are condition-
ally independent given the conditioning set Z (Z ⊆ CN ck

i1
or Z ⊆ CN ck

i2
) with |Z| = l. If Xi1 ⊥⊥ Xi2 |Z holds,

the causal edge between Xi1 and Xi2 is removed. By per-
forming the above operations at each client, we obtain m
causal skeletons and their corresponding adjacency matrices
{Ack

l }k∈{1,2,...,m}. Ack
l (i1, i2) = 1 indicates that on the local

dataset Dck , Xi1 and Xi2 are conditionally dependent given
any Z (Z ⊆ CN ck

i1
or Z ⊆ CN ck

i2
) with |Z| = l. On the con-

trary, Ack
l (i1, i2) = 0 means that there exists a Z (Z ⊆ CN ck

i1
or Z ⊆ CN ck

i2
) with |Z| = l that makes Xi1 and Xi2 con-

ditionally independent. Since the causal skeleton is an undi-
rected graph, Ack

l (i1, i2) = Ack
l (i2, i1) holds for ∀i1, i2, k, l.

Phase 1-2: Adaptively Masking the Causal Skeleton.
As illustrated in Figure 1, the sample quality heterogeneity
issue implies that the local datasets {Dck}k∈{1,2,...,m} from
different clients might be suitable for learning different causal
relationships among variables. Therefore, we design an adap-
tive strategy to mask the causal edges that may be erroneously
removed from {Ack

l }k∈{1,2,...,m}, which has been learned in
Phase 1-1 with “-1”, rendering them ineffective in subsequent
aggregation phase. The detailed process is as follows.

Let r ∈ [0, 1] denote the masking rate for each adjacency
matrix Ack

l , tck represent the number of causal edges re-
moved on the adjacency matrix Ack

l in Phase 1-1, and Eck
j

(j ∈ {1, 2, ..., tck}) denote the j-th causal edge removed on
Ack

l . Further, Eck
j (a) and Eck

j (b) represent the two variables
linked by this edge. In Phase 1-1, there might be multiple
conditioning sets that can make two variables Eck

j (a) and
Eck
j (b) conditionally independent. However, the CI test with

a larger p-value is considered more reliable [Ramsey, 2016].
Therefore, we only record the test results with the maximum
p-value among all CI tests that indicate the conditional in-
dependence of two variables, and denote the maximum p-
value as p̂(Eck

j (a), Eck
j (b)). According to Assumption 2, the

smaller p̂(Eck
j (a), Eck

j (b)), the more likely outcome is that
Eck
j is a mistakenly deleted causal edge. Conversely, a larger

value of p̂(Eck
j (a), Eck

j (b)) implies that there is no causal con-
nection between Eck

j (a) and Eck
j (b) in the ground truth. Thus,

we need to mask the causal edges that have been removed
from Ack

l learned in Phase 1-1 with low p̂(·, ·). Let the in-
dices of the edges that need to be masked in Ack

l be stored in
the vector Φck , we have:

Φck

k=1,2,...,m
= ˚Bottom⌈r∗tck⌉({p̂(Eck

j (a), Eck
j (b))}

j∈{1,2,...,tck}
), (1)

where ˚Bottom⌈r∗tck⌉ is used to obtain the indices corre-
sponding to the bottom ⌈r∗tck⌉ elements in a vector sorted in
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descending order. We use Ack
l to denote the adjacency matrix

after masking Ack
l :

Ack
l (i1, i2)

k=1,2,...,m
i1,i2=1,2,...,d

=

 -1
if ∃ψ ∈ Φck such that
Eckψ (a) = i1 ∧ Eckψ (b) = i2
or Eckψ (a) = i2 ∧ Eckψ (b) = i1

A
ck
l (i1, i2) otherwise.

(2)

Phase 1-3: Aggregating All Masked Causal Skeletons.
After obtaining all the masked matrices {Ack

l }k∈{1,2,...,m} in
Phase 1-2, the FL server aggregates and updates these matri-
ces. Since a value of “-1” in a cell of the masked matrices
indicates that the corresponding learning result is unreliable,
such masked causal relationships are invalid during aggrega-
tion. In other words, each element in Ack

l only participates in
voting if its value is not “-1”. Let the aggregated adjacency
matrix be Al, we have:

Al(i1, i2)
i1,i2=1,2,...,d

=

{
1 if y ≥ m−|x|

2
0 otherwise.

, (3)

where x represents the number of adjacency matrices in
{Ack

l }k∈{1,2,...,m} where the causal relationship between Xi1
and Xi2 is masked, i.e.,

x =
m∑

k=1

Ack
l (i1, i2) subject to Ack

l (i1, i2) = −1, (4)

and y denotes the number of adjacency matrices in
{Ack

l }k∈{1,2,...,m} where there exists a causal edge between
Xi1 and Xi2 , i.e.,

y =
m∑

k=1

Ack
l (i1, i2) subject to Ack

l (i1, i2) = 1. (5)

Phase 1-4: Iterating Phases 1-1 to 1-3 until Convergence.
For the newly aggregated causal skeleton Al, the server first
determines whether it has converged (i.e., whether any erro-
neous causal edges have not been removed). Specifically, the
server checks whether there are variables in Al whose number
of causal neighbors is greater than l. If such variables exist,
it means that new CI tests, where the size of the conditioning
set is greater than l, can be performed to remove possible er-
roneous causal edges further; otherwise, it means that Al has
converged and no more CI test is needed. The convergence
condition is formalized as:

d
max
i1=1

(
d∑

i2=1

Al(i1, i2)

)
> l. (6)

If Eq. (6) holds, l is incremented by 1, and the server sends
Al as the new initial causal skeleton to each client to repeat
Phases 1-1 to 1-3; otherwise, the optimal causal skeleton is
returned.

Analytical Evaluation of FCSL
Here, under reasonable assumptions, we theoretically show
the superiority of FedACD over existing methods in Phase
1. Let Á represent the adjacency matrix corresponding to
the causal skeleton in the ground truth. According to the

adaptive masking strategy in Eqs. (1) and (2), at client ck,
the probability of not being masked in {Eck

j }j∈{1,2,...,tck} is
(1 − r), i.e., P (Ack

l (Eck
j (a), Eck

j (b)) ̸= −1). Thus, when

P (Á(Eck
j (a), Eck

j (b)) = 0) ≥ (1−r)
2 holds, in Phase 1-2, the

proportion of correctly removed Eck
j in all unmasked Eck

j is
50% or more in Ack

l . Therefore, we have Theorem 1.

Theorem 1. If P (Á(Eck
j (a), Eck

j (b)) = 0) ≥ (1−r)
2 , then

P (Á(Eck
j (a), Eck

j (b)) = 0|Ack
l (Eck

j (a), Eck
j (b)) ̸= −1) ≥ 1

2 .

For existing voting-based FCD methods (e.g., FedPC),
to ensure that each client has correctly removed causal
edges in more than half of all removed causal edges in
each round of iteration, P (Á(Eck

j (a), Eck
j (b)) = 0) ≥ 1

2
must be satisfied, whereas our method only needs to satisfy
P (Á(Eck

j (a), Eck
j (b)) = 0) ≥ (1−r)

2 . According to the aggre-
gation rule in Eq. (3), we have the following Theorem 2.
Theorem 2. Given ∀Xi1 , Xi2 ∈ X , in {Ack

l }k∈{1,2,...,m}

containing m matrices, if P (Ack
l (i1, i2) = 0|Á(i1, i2) =

0) >
1−P (Ack

l (i1,i2)=−1|Á(i1,i2)=0)

2 holds, the false causal
edge between Xi1 and Xi2 can be correctly removed in
Phase 1-3; if P (Ack

l (i1, i2) = 1|Á(i1, i2) = 1) ≥
1−P (Ack

l (i1,i2)=−1|Á(i1,i2)=1)

2 holds, the true causal edge be-
tween Xi1 and Xi2 does not be discarded in Phase 1-3.

Existing voting-based FCD methods (e.g., FedPC) require
P (Ack

l (i1, i2) = 1|Á(i1, i2) = 1) ≥ 1
2 and P (Ack

l (i1, i2) =

0|Á(i1, i2) = 0) > 1
2 to ensure that the true causal edge

between Xi1 and Xi2 does not be discarded while the false
causal edge between Xi1 and Xi2 can be correctly removed
in each round of aggregation. In contrast, based on Theo-
rem 2, FedACD only requires P (Ack

l (i1, i2) = 0|Á(i1, i2) =
0) >

1−P (Ack
l (i1,i2)=−1|Á(i1,i2)=0)

2 and P (Ack
l (i1, i2) =

1|Á(i1, i2) = 1) ≥ 1−P (Ack
l (i1,i2)=−1|Á(i1,i2)=1)

2 to achieve
optimal performance, which greatly improves the accuracy
of the aggregated causal skeleton in practice. The proofs of
Theorems 1 and 2 are given in Appendix A.

4.2 Federated Skeleton Orientation (FSO)
As shown in Figure 2, after obtaining the optimal causal
skeleton, Phase 2 orients the undirected edges at each client
for learning m causal DAGs, and then aggregates all causal
DAGs at the server side to produce the final causal DAG.

Phase 2-1: Orienting Undirected Edges at Each Client.
Let A∗ represent the adjacency matrix corresponding to the
optimal causal skeleton obtained in Phase 1. The server first
sends A∗ to each client, then the score-and-search strategy is
adopted to greedily orient the undirected edges in A∗ for ob-
taining a causal DAG with the highest score at each client.
Let Gck denote the causal DAG learned at client ck, and
“Gck(i1, i2) = 1” denotes that there is an edge from Xi1
to Xi2 in Gck . For discrete datasets, we utilize a Bayesian
score, BDeu [Scutari, 2016], and a search procedure, hill-
climbing [Gámez et al., 2011], to implement the above score-
and-search process. Here, the BDeu score for the causal DAG
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Gck learned on client dataset Dck is defined as:

BDeu(Gck ,Dck) = lnP (Dck |β,Gck) + lnP (β,Gck), (7)

where P (Dck |β,Gck) denotes the probability of the local
dataset Dck given the equivalent sample size parameter β and
the causal DAG Gck . It measures how well the causal DAG
predicts the observed discrete data. P (β,Gck) represents the
prior probability of β. It serves as a regularization term and
influences the strength of prior beliefs about the density of the
causal DAG.

For continuous datasets, we use an information-theoretic
score, BIC [Watanabe, 2013], to calculate the fitting score
between Gck and Dck . The BIC score for Gck learned on Dck

is defined as:

BIC(Gck ,Dck) = −2 · ln(L̂(Gck ,Dck)) + µ · ln(nck), (8)

where L̂(Gck ,Dck) denotes the ability of the causal DAG to
explain the observed continuous dataset Dck . A higher like-
lihood indicates a better fit. µ represents the average density
of Gck . The penalty term “µ · ln(nck)” discourages overly
dense causal DAGs, favoring sparser causal DAGs to reduce
the risk of overfitting.

Phase 2-2: Aggregating All Causal DAGs at the Server.
FedACD sends all causal DAGs {Gc1 ,Gc2 , · · · ,Gcm} learned
in Phase 2-1 back to the server to compute the aggregated
causal DAG G∗ as:

G∗ = Gc1 ⊕ Gc2 ⊕ · · · ⊕ Gcm , (9)

where ⊕ represents the element-wise addition of matrices. Fi-
nally, we compare the elements at corresponding positions on
the diagonal of matrix G∗ for obtaining the final causal DAG.
Specifically, if G∗(i1, i2) > G∗(i2, i1), then there exists a di-
rected edge from Xi1 to Xi2 . If G∗(i1, i2) ≤ G∗(i2, i1) and
G∗(i2, i1) ̸= 0, there exists a directed edge from Xi2 to Xi1 ;
Otherwise, there is no edge between Xi1 and Xi2 . To sum-
marize, we have: G∗(i1, i2) = 1 ∧ G∗(i2, i1) = 0 if G∗(i1, i2) > G∗(i2, i1)

G∗(i1, i2) = G∗(i2, i1) = 0 if G∗(i1, i2) = G∗(i2, i1) = 0
G∗(i1, i2) = 0 ∧ G∗(i2, i1) = 1 otherwise,

(10)
where i1 = 1, 2, · · · , d and i2 = 1, 2, · · · , (i1 − 1).

4.3 Privacy and Cost Analysis
Privacy Preservation Capability of FedACD
In Phases 1-1 and 1-2, all CI tests requiring raw data are per-
formed by the respective FL clients, and the adaptive mask-
ing strategy is locally executed by each client based on the p-
values obtained from the CI tests. In Phase 2-1, the score-and-
search process, which requires raw data, is also performed
locally by each client. As a result, FedACD only exchanges
structural information represented by the adjacency matrices
throughout the entire FL process, without exposing clients’
raw data or any statistical information from the CI tests.

To further mitigate the risk of inferring local data from
the learned structural information, FedACD can be combined
with the following techniques. (1) Additive homomorphic en-
cryption (Paillier’s scheme [Paillier, 1999]) can be applied in

the aggregation process of Phase 1-3 and Phase 2-2 to prevent
leakage of the sample quality heterogeneity reflected in the
masking information on each client. (2) To prevent the leak-
age of semantic information about each variable during com-
munication between clients and the server, we incorporate an
easily implementable privacy protection strategy [Huang et
al., 2023a] into FedACD. Specifically, the remote server in-
structs each client to assign unique identifiers (e.g., “1”, “2”,
“3”, etc.) to the variable semantics following their alphabet-
ical order. If multiple variables share the same initial letter,
they are further sorted by subsequent letters. Each client then
sends only these assigned identifiers to the remote server for
aggregation, protecting the variable semantics.

Communication Cost of FedACD
Communication is a critical bottleneck in FL. Therefore,
developing communication-efficient methods for FL model
training is essential. Here, we argue that FedACD introduces
relatively low communication overhead. In Phase 1, during
each iteration, all clients need to send a masked adjacency
matrix Ack

l of size d ∗ d to the server. The server, in turn,
sends back the aggregated adjacency matrix Al to each client,
requiring O(m|Ack

l |+m|Al|) = O(md2+md2) = O(md2)
information cost. Assume that Phase 1 requires L (usually
L ≤ 3) iterations in total. Therefore, Phase 1 incurs a to-
tal communication cost of O(md2L). In Phase 2, firstly, the
adjacency matrix A∗ corresponding to the final causal skele-
ton needs to be sent from the server to each client. Then,
the adjacency matrices Gck learned by each client are sent
back to the server to obtain the final causal DAG through an
aggregation strategy, resulting in a total information cost of
O(m|A∗|+m|Gck |) = O(md2 +md2) = O(md2).

5 Experimental Evaluation

5.1 Experiment Setting

Datasets. We utilize the following three types of datasets.

• Benchmark BN datasets. We use three benchmark BN
datasets: Child with 20 variables, Insurance with 27
variables and Alarm with 37 variables, and each dataset
contains 5,000 samples [Tsamardinos et al., 2006].

• Synthetic Non-IID datasets. We employ the publicly
available code from [Gao et al., 2023] to generate two
batches of Non-IID datasets, distributed among a total
of 5,000 samples across {3, 5, 10, 15, 20} clients, with
each client’s data originating from a different distribu-
tion. The ground truth for each batch of data across dif-
ferent clients is consistent, comprising 20 variables with
40 edges and 30 variables with 60 edges, respectively.

• Real-world datasets. We also compare the proposed
method with the baselines on two non-overlapping net-
works of sizes {8, 20} from the lung cancer gene-
expression dataset, REGED [Statnikov et al., 2015]. For
each network, we generate {3, 5, 10, 15, 20} distinct
environments (i.e., FL clients) to create a horizontal FL
scenario, with a total of 1,000 samples.
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Figure 3: Experimental results on benchmark BN datasets. There
are 5,000 samples in total, allocated evenly across {3, 5, 10, 15, 20}
clients. We show the performance of all methods in two metrics
(SHD and F1 score from top to bottom).

Evaluation metrics. We adopt the Structural Hamming
Distance (SHD) (the lower the better) and F1 score (the
higher the better) [Huang et al., 2023b] to evaluate the learned
causal DAGs in FL settings. We have also adopted other met-
rics (details can be found in Appendix D).

Comparison methods. FedACD is compared with five
state-of-the-art FCD methods: 1) NOTEARS-ADMM [Ng
and Zhang, 2022], 2) NOTEARS-MLP-ADMM [Ng and
Zhang, 2022], 3) GS-FedDAG [Gao et al., 2023], 4) AS-
FedDAG [Gao et al., 2023] and 5) FedPC [Huang et al.,
2023a]. We adopt these baselines partly because of their pub-
licly available implementations.

Implementation details of the FedACD algorithm and the
baselines are provided in Appendix F.

5.2 Results on Benchmark Bayesian Network Data
In this section, we report the comparison results between
FedACD and the baselines on benchmark Bayesian network
datasets in terms of SHD and F1 score.

From Figure 3, it can be observed that FedACD achieves
the lowest SHD value and the highest F1 score in most sce-
narios, which validates its superiority. In particular, on the
Child and Alarm datasets, when the number of clients reaches
20, FedACD shows significantly superior performance com-
pared to other baselines. This is attributed to the fact that,
with a larger number of clients, the allocated sample size
per client becomes smaller. In such scenarios, the sample
quality varies significantly across different variable spaces at
each client, yet existing FCD methods cannot discern which
variable spaces exhibit better sample quality. In contrast,
FedACD’s adaptive masking strategy renders the learning
results from samples in low-quality variable spaces at each
client ineffective, while preserving the results from samples
in high-quality variable spaces.
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Figure 4: Experimental results on synthetic Non-IID datasets. There
are 5,000 samples in total, allocated evenly across {3, 5, 10, 15, 20}
clients. We show the performance of all methods in two metrics
(SHD and F1 score from top to bottom).

Compared with the best baseline, FedPC, the F1 score of
FedACD is 42% higher on the Child dataset when the num-
ber of clients is 20. The F1 scores achieved by FedACD
are significantly higher than those achieved by NOTEARS-
ADMM, NOTEARS-MLP-ADMM, GS-FedDAG and AS-
FedDAG, since it is hard for them to select a suitable thresh-
old to prune false causal edges. As a result, the causal DAGs
learned by these four baselines often contain a larger number
of false causal edges. In addition, as the number of clients
increases, all algorithms experience significant performance
degradation, whereas FedACD maintains good stability.

5.3 Results on Synthetic Non-IID Data
In real-world scenarios, clients’ local datasets are often Non-
IID. Therefore, in this section, we also evaluate the perfor-
mance of all algorithms on synthesized Non-IID data. The
results are shown in Figure 4. It can be observed that regard-
less of the number of clients, FedACD consistently achieves
the lowest SHD values and the highest F1 scores. This indi-
cates that the adaptive masking strategy designed in FedACD
is well suited to the horizontal FL setting with Non-IID local
data. This is because in such scenarios, the significant differ-
ences in sample quality across variable spaces at each client
are obvious, and FedACD is designed to address this issue.

5.4 Results on Real-World Data
The experimental results on the two real-world datasets,
REGED with 8 nodes and 20 nodes [Statnikov et al., 2015],
are presented in Figure 5. It can be observed that under
REGED with 8 nodes, FedACD achieves the lowest SHD
value when the number of clients is 3, 10, 15 and 20. In ad-
dition, FedACD achieves the highest F1 score under REGED
with 20 nodes, except when the number of clients is 20. Com-
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Figure 5: Experimental results on real-world datasets. There are
1,000 samples in total, allocated evenly across {3, 5, 10, 15, 20}
clients. We show the performance of all methods in two metrics
(SHD and F1 score from top to bottom).
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Figure 6: Ablation study results.

pared to other baselines, our method achieves more stable
performance under REGED with 8 nodes with different num-
bers of clients.

5.5 Ablation Study

In this section, we conduct ablation experiments to validate
the effectiveness of the proposed adaptive masking strategy.
Specifically, we first develop a variant of FedACD, denoted as
“FedACD w/o masking”, which maintains a constant mask-
ing rate of 0 throughout the entire learning process. We then
compare FedACD with “FedACD w/o masking” using three
benchmark BN datasets, Child, Insurance and Alarm, across
{3,5,10,15,20} clients. The experimental results are pre-
sented in Figure 6. It can be observed that FedACD consis-
tently achieves higher F1 scores and lower SHD values than
“FedACDw/o masking”. This demonstrates the effectiveness
of our proposed adaptive masking strategy under a horizontal
FL setting, especially when dealing with potentially signif-
icant differences in sample quality across different variable
spaces at each client.
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Figure 7: Sensitivity analysis of FedACD to the masking rate r.

5.6 Sensitivity Analysis
In this section, we conduct sensitivity analysis on the mask-
ing rate r of FedACD using the benchmark datasets. Specif-
ically, we first generate three batches of data using Child, In-
surance and Alarm BNs, respectively. For each dataset, there
are 5,000 samples in total, allocated evenly across 10 clients.
Then, we test FedACD on these datasets by varying the mask-
ing rate from 0.1 to 0.9, and record the F1 scores obtained.
The experimental results are presented in Figure 7.

It can be observed that the F1 score achieved by FedACD
increases with the increase of the masking rate r when
r ≤ 0.6. However, when r ≥ 0.7, the F1 score achieved
by FedACD drops significantly. The reason behind this
phenomenon lies in Theorem 1, which indicates that when
P (Á(Eck

j (a), Eck
j (b)) = 0) is fixed, a larger masking rate r

implies a higher probability of successfully removing a false
causal edge in Phase 1-2. However, when the masking rate
becomes excessively large (e.g., r ≥ 0.7), ∃i1, i2 such that
“
∑m

k=1 A
ck
l (i1, i2) ̸= −m” holds, leading to the ineffective-

ness of the aggregation strategy in Eq. (3). Consequently, the
performance of FedACD experiences a noticeable decline. In
our experiments, the masking rate r for FedACD is set to 0.6
on all types of datasets.

6 Conclusions and Future Work
In the horizontal FL scenarios, the sample quality under dif-
ferent variable spaces at each FL client can be different. As
a result, the local data of each client might only be suitable
for learning the causal relationships among certain variables,
while the effectiveness of learning causal relationships among
other variables may be limited. Existing FCD methods can-
not effectively handle this sample quality heterogeneity issue.
Our proposed FedACD bridges this crucial gap by adaptively
selecting and sending only the optimal causal relationships
learned under the “good” variable space (i.e., the space with
high-quality samples) at each FL client to the server, while
masking the causal relationships learned under the “bad” vari-
able space (i.e., the space with low-quality samples) at each
FL client, during FL model training. In this way, each client
only communicates the optimal learning results to the server,
achieving accurate FCD. Theoretical analysis and extensive
experimental results demonstrate the efficacy of FedACD.

In the future, we plan to explore FCD in more challenging
scenarios, such as data containing hidden variables and data
combining observational and interventional sources.
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