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Abstract
Point-supervised vision tasks, including detection
and segmentation, aiming to learn a network that
transforms from points to pseudo labels, have at-
tracted much attention in recent years. However,
the lack of precise object size and boundary an-
notations in the point-supervised condition results
in a large performance gap between point- and
fully-supervised methods. In this paper, we pro-
pose a novel iterative learning framework, Point
to Prompt (P2P), for point-supervised object de-
tection and segmentation, with the key insight of
transforming from point supervision to explicit vi-
sual prompt of the foundation model. The P2P
is formulated as an iterative refinement process of
two stages: Semantic Explicit Prompt Generation
(SEPG) and Prompt Guided Spatial Refinement
(PGSR). Specifically, SEPG serves as a prompt
generator for generating semantic-explicit prompts
from point input via a group-based learning strat-
egy. In the PGSR stage, prompts guide the vi-
sual foundation model to further refine the object
regions, by leveraging the outstanding generaliza-
tion ability of the foundation model. The two
stages are iterated multiple times to improve the
quality of predictions progressively. Experimental
results on multiple datasets demonstrate that P2P
achieves SOTA performance in both detection and
segmentation tasks, further narrowing the perfor-
mance gap with fully-supervised methods. The
source code and supplementary material can be
found at https://github.com/guangqian-guo/P2P.

1 Introduction
The accurate detection and segmentation of objects in diverse
scenarios stand as important tasks, serving as the founda-
tion for various high-dimensional perception domains, like
robotic perception, autonomous driving, etc.

In recent years, weakly supervised methods have gained
widespread attention as an approach to reduce the depen-
dence on annotations in fully supervised methods.
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Figure 1: Training paradigms with two different PSOD frameworks:
(a) Basic PSOD framework, generally using a cascaded MIL fash-
ion. (b) Our P2P framework.

Typically, the weak supervision includes image-level
[Bilen and Vedaldi, 2016; Wan et al., 2018; Xu et al., 2022],
point-level [Chen et al., 2022; Liao et al., 2023] and scribble-
level [Zhang et al., 2020], etc. Among them, object detec-
tion and instance segmentation with point-level supervision
(shortened to PSOD and PSIS, respectively) have attracted
growing attention recently thanks to the low annotation bur-
den and distinctive location information of points.

However, the performance of existing point-supervised
methods is still far from satisfactory, about 59% and 55% of
that of fully supervised detection and segmentation baselines.
This is contrary to the core of weakly supervised methods,
i.e., to release the annotation burden while still achieving
decent performance. PSOD is used as an example to illus-
trate the limitations of point-supervised vision tasks. The cur-
rent PSOD methods generally follow the paradigm of Multi-
ple Instance Learning (MIL) or Cascaded MIL (C-MIL) fash-
ion. They first use proposal generation methods (e.g., Se-
lective Search [Uijlings et al., 2013], MCG [Arbeláez et al.,
2014] or neighbor proposal sampling [Chen et al., 2022]) to
construct proposal bags. After that, top-k proposals with high
scores are selected from hundreds of independent proposals
as the final result by MIL. Due to the lack of object size and
edge information, proposal generation is more random and

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4053

https://github.com/guangqian-guo/P2P


low-quality, and the results are limited by inaccurate propos-
als. Additionally, multiple independent proposals bring high
randomness in the selection process, and it is easy to converge
to the sub-optimal solution and focus on the discriminative
part rather than the entirety of the object.

Thanks to the substantial progress in the visual founda-
tion models, such as Segment Anything Model (SAM) [Kir-
illov et al., 2023], many downstream tasks have witnessed
significant breakthroughs [Wang et al., 2023]. We hold the
perspective that, rather than directly designing large foun-
dation models, it is more meaningful to leverage them for
specific tasks in resource-constrained situations. Notably,
some efforts have been made to adapt SAM for weakly su-
pervised tasks, e.g., weakly supervised semantic segmenta-
tion [Chen et al., 2023b]. However, these studies have em-
ployed SAM as a supplementary tool in a simplistic way and
have not attempted to explore how to better guide SAM by
enhancing the semantic representation capability of prompts.
Compared with bounding boxes or masks, point annotations
inherently possess limited semantic representation. When
points are directly used as prompts for SAM, only 40% of
the masks cover more than 70% of foreground pixels, signif-
icantly lower than the results (about 80%) obtained when us-
ing boxes as prompts. This highlights the crucial importance
of semantic-explicit prompts.

In this paper, we propose a novel framework, referred to
as Point-to-Prompt (P2P) for point-supervised detection and
segmentation, by transforming the point supervision into vi-
sual prompt learning. We are the first to attempt to switch
point-supervised tasks into visual prompt learning based on
foundation model. An overview of the contrast between the
existing PSOD framework and our framework is presented in
Fig. 1. P2P comprises two integral processes: the Semantic-
Explicit Prompt Generation (SEPG) stage and the Prompt
Guided Spatial Refinement (PGSR) stage. Specifically, the
SEPG stage is designed to generate semantic explicit pseudo
boxes as prompts under the guidance of semantic confidence.
The PGSR stage further refines the target regions covered in
the semantic-explicit prompts by leveraging the outstanding
generalization ability of the foundation model SAM. It oper-
ates through an iterative process, involving multiple iterations
between SEPG and PGSR, ultimately resulting in the gener-
ation of precise pseudo-labels. Utilizing SAM, our method
can output precise pseudo-masks, so it can be applied as both
a point-supervised detection and segmentation method that
transforms points into accurate pseudo masks and boxes. Ex-
periments on the challenging MS COCO 2017 and PASCAL
VOC 2007 datasets are conducted to validate both the detec-
tion and the segmentation performance. Given point super-
vision, P2P further closes the gap with the fully supervised
model and achieves 84% and 75% of the performance of fully
supervised on the COCO dataset, respectively. Our main con-
tributions are as follows:

• We design a novel Point-to-Prompt (P2P) method for
point-supervised object detection and segmentation, which
transforms the point supervision into prompting to predict
precise pseudo-labels.

• We propose an iterative learning framework using vi-
sual foundation model to achieve a semantic-explicit output,

including a semantic-explicit prompt generation stage and a
prompt guided spatial refinement stage.

• Our P2P method achieves state-of-the-art performance
on detection and segmentation, significantly narrows the per-
formance gap with fully supervised methods, and provides
new insights for point supervision tasks.

2 Related Work
Weakly Supervised Detection. For image-supervised detec-
tion, the difficulty lies in how to mine the location of each
instance with only semantic information. Existing meth-
ods [Tang et al., 2018; Wan et al., 2018; Gao et al., 2019]
generally build image-level proposal bags containing hun-
dreds of proposals, and then mine instance-level supervision
through MIL, unsupervised clustering, and contrastive learn-
ing. Due to the lack of location information, the performance
is still poor for some complex datasets, such as COCO [Lin et
al., 2014]. Point-supervised methods benefit from additional
point-level annotations, providing coarse location informa-
tion. [Ren et al., 2020b] designs a unified network compatible
with various supervision forms. P2BNet [Chen et al., 2022]
specifies that low-quality proposals limit the performance of
this task and proposes to generate proposals through a neigh-
bor sampling policy and designs a cascade MIL framework.

Weakly Supervised Instance Segmentation. Weakly su-
pervised instance segmentation is mainly performed by es-
timating instance-level pseudo masks and refining the esti-
mated masks by training a segmentation model. To obtain
the pseudo mask for each instance with only point-level in-
formation, previous approaches have either used off-the-shelf
proposal methods [Zhou et al., 2019] or generated instance-
level localization maps [Kim et al., 2022; Liao et al., 2023]
by refining the attention maps of CAM [Zhou et al., 2016] or
ViT [Dosovitskiy et al., 2020]. The performance of the cur-
rent methods is significantly constrained by the quality of the
attention map. [Liao et al., 2023] analyzes that only about
30% of the ViT attention maps can cover more than 50% of
the foreground objects, greatly limiting the performance.

Prompt engineering and Foundation Models. Prompt
engineering refers to the process of designing prompts that
enable the foundation model to adapt and generalize to differ-
ent tasks. Segment Anything Model (SAM) [Kirillov et al.,
2023], as a representative prompt-based foundation model,
is designed for image segmentation and has brought a new
trend in solving other downstream tasks. The research com-
munity has been actively engaged in exploring and pushing
the capability boundaries of SAM and applying it to various
tasks, e.g., Remote Sensing [Chen et al., 2023a], medical im-
age analysis [He et al., 2023], and weakly supervised seman-
tic segmentation [Chen et al., 2023b]. Inspired by these ap-
proaches, we apply foundation model to point-supervised de-
tection and segmentation and significantly facilitate the per-
formance of point-supervised tasks.

3 Method
3.1 Overview
Problem. A point annotation p can be represented as p =
(px, py, c), where (px, py) and c represent point location and

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

4054



Semantic Prototypes

Proposals

Group Sampling

Refined box 𝑏∗

Semantic-Explicit Prompt Generation 

Prompt flow
Proposal seed flow

Proposals

update

…

Prompt Refiner II

Emb Feats

Prompt Refiner I

Point-level 
labels SEPG

Iteration 1 Iteration T
… …

𝑃1 𝑃𝑇𝑆0 𝑆1 𝑆𝑇 Out
PGSR

Bags ℬ1

Bags ℬ2

group 𝐵∗

Proposal seed

𝑃𝑖𝑛𝑠
M

ask decoder

𝑃(𝐵; 𝑦𝑐)

𝑆(𝑏; 𝑦𝑐)

Image, 𝒑

Prompt Guided Spatial Refinement

𝑃𝑡

𝑆𝑡

Emb Feats𝜙pr𝑜𝑗(·)

𝜙𝑐𝑙𝑠(·)

Fc+R
elu

Roi-
Align scores

Prompt Refiner

…𝛷𝑖𝑚𝑔

Pre-extract

𝛷𝑝𝑚𝑡 …

SEPG PGSRSAM

𝐹𝑝𝑚𝑡

𝐹𝑖𝑚𝑔

feature map

Figure 2: Framework of P2P, which performs SEPG and PGSR iteratively to generate more accurate pseudo labels. Specifically, given an
image and point annotation, we first use SAM to generate proposal seeds as the initial input to SEPG. In SEPG, we use a group sampling
strategy and two joint confidence-based refiners to get the refined box b∗. Guided by b∗, PGSR further spatially refines the object region to
get more accurate masks and boxes under the given semantic and updates the proposal seeds.

object category, respectively. Point-supervised tasks aim to
train a point-to-label regressor using point annotations to pre-
dict pseudo-labels. Subsequently, a task-related sub-network
(e.g., a detector) is retrained in a fully-supervised manner for
inference. Thus, the core of this task lies in designing an
accurate point-to-label regressor, denoted as Φreg(·), which
transforms the point annotation into precise pseudo annota-
tions. To design a well-formed regressor, we introduce the
P2P framework, proposing to first transform point supervi-
sion into explicit visual prompts and then obtain pseudo-
labels guided by these prompts.

Framework. We structure the P2P as an iterative refine-
ment process of the Semantic-Explicit Prompt Generation
(SEPG) stage and the Prompt Guided Spatial Refinement
(PGSR) stage. The two stages respectively serve the roles
of “point to prompt” and “prompt to pseudo-mask”. In P2P,
the point annotation p is first viewed as the prompt of SAM
to generate an initial mask for each object. The outer rectan-
gle of the mask is used as the proposal seed S0. Taking S0

as input, P2P initiates the first round of iteration. While pro-
posal seed may not be entirely accurate, it can still provide
valuable prior information on object size. Then, taking the
initial proposal seed S0 as input, the refined box is generated
by two prompt refiners under semantic supervision. Com-
pared to S0, the refined box covers the main semantic part of
the object and can be used as the subsequent prompt, referred
to as P 1. After, in PGSR, SAM is used to refine the spa-
tial regions guided by the semantic-explicit prompt P 1 and
generates the next round of proposal seed S1. Improved pro-

posal seed leads to better prompt, and better prompt, in turn,
contributes to better proposal seed. The two modules iter-
ate T times, ultimately yielding predicted pseudo-masks and
pseudo-boxes through PGSR. The overall pipeline of P2P is
depicted in Fig. 2.

3.2 Semantic-explicit Prompt Generation
We design a semantic prompt generator that takes semantic-
agnostic seeds as input and produces semantic-explicit
prompts. Our approach adopts a group-then-individual strat-
egy on two refiners, as illustrated in Fig. 2. Initially, feature
maps are extracted by ResNet-50 [He et al., 2016] backbone.
In Prompt Refiner I, we obtain a semantically accurate pro-
posal group B∗, followed by Prompt Refiner II, we further
refine the proposal group to obtain refined proposal b∗.

Seeds-based Group Sampling. Previous methods usu-
ally use neighbor sampling to build proposal bags that con-
tain hundreds of individual proposals that usually suffer from
low quality and lack of good priority. To mitigate that, we
introduce a group sampling strategy based on the initial pro-
posal seed S0. For the first phase, we create the proposal bag
B1 by progressively sampling n proposal groups {Bi}ni=1 for
each instance based on the proposal seed, i.e., B1 = {Bi}ni=1.
These distinct proposal groups are generated by scaling the
proposal seed at various scales. Each proposal group com-
prises m proposals with strong spatial correlation, denoted as
Bi = {bi,j}mj=1, where bi,j denotes the jth proposal of the
ith group and m signifies the number of proposals in Bi. The
motivation behind designing proposal groups is to reduce the
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solution space by selecting proposal group instead of indi-
vidual proposals. For the second phase, we construct the pro-
posal bag B2 by augmenting the group of proposals produced
in the first phase. We adopt a “proposal jittering” strategy
[Liao et al., 2022] to generate randomly jittered proposals in
four orientations.

Proposal-to-Prompt Semantic Lifting. Different from
classical MIL frameworks, we adopt a group-then-individual
strategy, i.e., selecting a group of proposals with strong spa-
tial correlation first and then further refining the proposals ac-
cording to the group in the second phase. We employ a more
stable feature prototype for computing group-based seman-
tic distribution. The refiners in P2P comprise a classification
head and an embedding head, which calculate classification
scores and feature embeddings, respectively.

In Prompt Refiner I, the problem lies in identifying a
semantic-accurate proposal group, which determines the di-
rection of model optimization. The basic MIL head or classi-
fication head is commonly employed as the refiner, but the in-
herent instability in its training process easily lead the model
towards sub-optimal solutions. To remedy the bias of pre-
dicted probabilities, we use a prototype representation to ob-
tain stable group-based semantic distributions of proposals.

A memory buffer is established to keep a set of proto-
types V = {Vc}Cc=1 for each category, which preserves
the semantic-explicit features. These prototypes are up-
dated using the selected high-quality embedding features
from Prompt Refiner II in each iteration , via the Exponential
Moving Average (EMA) algorithm. After that, the group-
based instance-level probability distribution Pins(Bi; yc) of
each proposal group Bi can be measured by the similarity
between the feature embeddings of the proposal groups and
their corresponding semantic prototypes.

Pins(Bi; yc) =
exp(sim(Zi,Vc))∑
i exp(sim(Zi,Vc))

, (1)

where Zi indicates the feature embedding of the proposal
group Bi. It is calculated by averaging the feature embed-
dings of all the proposals in the group, as Zi =

1
|Bi|

∑
j zi,j ,

where zi,j indicates jth proposal in Bi, and |Bi| is the number
of proposals. sim(·, ·) denotes the cosine similarity metric,
utilized to quantify the similarity between the embedding fea-
tures and the semantic prototypes. Furthermore, we calculate
the group-based semantic-level probability Psem(Bi; yc) for
each proposal group Bi. It is computed by the score of the
proposal group, as

Psem(Bi; yc) =
exp{ 1

|Bi|
∑

bi,j∈Bi
O(bi,j ; y)}∑

i

∑
y exp{ 1

|Bi|
∑

bi,j∈Bi
O(bi,j ; yc)}

,

(2)
where O(bi,j ; yc) denotes the score of jth proposal in Bi.
Finally, we define a group-based joint probability distribu-
tion that combines the semantic level and the instance level,
termed P(Bi; yc) = Pins(Bi; yc) ∗ Psem(Bi; yc), which in-
dicates the semantic probability of proposal group Bi for a
given semantic label yc ∈ {y1, y2, ..., yC}.

In the learning procedure, based on the above definition,
P(Bi; yc) is applied to the refinement process, the corre-

sponding loss function of the first phase (termed L1) is de-
fined as:

L1 = −
C∑

c=1

yclog
∑
i

P(Bi; yc)

+ (1− yc)log(1−
∑
i

Psem(Bi; yc)). (3)

The proposal group that contains multiple semantic-
explicit proposals with the highest semantic confidence is se-
lected, termed B∗.

Prompt Refiner II performs further proposal refinement
as well as prototype update with a similar structure as the
first phase, i.e., comprising a classification head and an em-
bedding head. For further refinement, based on the proposal
group B∗, the proposal bag B2 is constructed as the input of
this phase. The proposals in B2 maintain strong spatial cor-
relation and have identified the main semantic regions. So
in this phase, we only employ the general classification head
with Sigmoid function to compute proposal score s(b; yc) and
adopt the focal loss for further refinement. (More details are
in the supplementary material.) The proposals with the top-k
highest scores are weighted to obtain the final refined box b∗.

For prototype update, we treat the proposal score of this
phase as an indicator. For example, for the proposal b ∈ B2,
the corresponding embedding feature and score are denoted
as z and s, respectively. During each training iteration, the
embedded features whose corresponding score s exceeds a
certain threshold τ are selected, as

vc =

{
z, s(b; yc) ≥ τ,

0, otherwise,
(4)

where vc denotes the local prototype of the current itera-
tion for category c. And then the global semantic prototypes
are updated with local prototypes via the EMA algorithm, as
Vc = α ∗ Vc + (1 − α) ∗ vc, where Vc denotes the semantic
prototype of category c, and α is momentum parameter and
empirically set to be 0.99. Consequently, we obtain a set of
prototypes V = {V1,V2, ...,VC} for all categories, which are
continuously updated during the training process.

Discussion. The design of prototypes allows the two re-
finers to mutually reinforce each other. We use the scores
from Prompt Refiner II as an indicator to update the seman-
tic prototypes with high-quality embeddings. High-quality
prototypes are then utilized in Prompt Refiner I to compute
instance probabilities, yielding high-quality proposals. When
these proposals are inputed into Prompt Refiner II, the qual-
ity of the semantic prototypes is further enhanced, leading to
a mutually improving process.

3.3 Prompt Guided Spatial Refinement
In this stage, we leverage SAM to further refine the spatial
regions of objects. We use the pre-trained weights of SAM,
without modifying the original structures and fine-tuning its
parameters. Since SAM does not have the ability of seman-
tic understanding, the ability to get the desired output relies
on the accuracy of the semantic prompts. A single point is
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Method Backbone Sup. AP AP50 AP75 APs APm APl

Faster R-CNN [Ren et al., 2015] ResNet-50 F 37.4 58.1 40.4 21.2 41.0 48.1
RetinaNet [Lin et al., 2017] ResNet-50 F 36.5 55.4 39.1 20.4 40.3 48.1
Sparse R-CNN [Sun et al., 2021] ResNet-50 F 37.9 56.0 40.5 20.7 40.0 53.5
DINO [Zhang et al., 2022] ResNet-50 F 49.0 66.4 53.3 31.4 52.2 64.0
DINO [Zhang et al., 2022] Swin-L F 57.0 75.7 62.7 40.5 61.1 73.5
ICMWSD [Ren et al., 2020a] ResNet-50 I 12.6 26.1 - - - -
CASD [Huang et al., 2020] ResNet-50 I 13.9 27.8 - - - -
SPE [Liao et al., 2022] CaiT I 7.2 18.2 4.8 - - -
WSCL [Seo et al., 2022] ResNet-101 I 14.4 28.7 12.6 5.4 17.9 25.5
JLWSOD [Qi, 2023] ResNet-50 I 14.9 29.8 - - - -
UFO2 [Ren et al., 2020b] ResNet-50 P 13.2 28.9 - - - -
P2BNet-FR† [Chen et al., 2022] ResNet-50 P 22.1 47.3 - - - -
SAM-FR† [Kirillov et al., 2023] ResNet-50 P 27.3 45.3 28.5 18.0 30.7 34.4

P2P-FR† (Ours) ResNet-50 P 31.6 53.8 32.7 20.5 35.7 38.5
P2P-DINO† (Ours) ResNet-50 P 38.2 57.2 40.9 25.6 42.6 46.9
P2P-DINO† (Ours) Swin-L P 45.1 66.1 48.9 33.5 50.3 53.8

Table 1: Comparison of our P2P with other SOTA methods under different forms of supervision on COCO 2017 val set. Specifically, F , I,
and P indicate full, image-level, and point-level supervision respectively. FR indicates Faster RCNN. † denotes fully-supervised refinement.

semantic-ambiguous because there are semantic biases be-
tween part and the global of an object (e.g., clothes and per-
son). In contrast, refined boxes generated in the SEPG stage
cover the main semantic regions of objects and can be used
as semantic explicit prompts to guide SAM in generating spa-
tially refined regions.

SAM consists of three main components, a heavy image
encoder (Φimg), a light mask decoder (Φmask), and a prompt
encoder (Φpmt). In our approach, we input the predicted boxes
and the original point annotations as prompts into the prompt
encoder to extract prompt embeddings. We extract the im-
age embeddings in advance with the image encoder, and then
during model training, the prompt embeddings and the off-
the-shelf image embeddings are fed into the lightweight mask
decoder to get the refined mask M. The pre-extraction oper-
ation eliminates the computation of the heavyweight image
encoder and greatly reduces the time and computation con-
sumption. The overall process can be illustrated as follows:

Fimg = Φimg(I), Fpmt = Φpmt({Pbox, Ppoint}),
M = Φmask(Fimg, Fpmt),

(5)

where I indicates the original image, Fimg represents the im-
age features encoded by Φimg, Fpmt denotes prompt features
encoded by Φpmt, and {Pbox, Ppoint} indicates the box and
point prompts, respectively. With semantic-explicit prompts,
SAM can further refine the target region to cover more com-
plete objects and generate accurate masks.

3.4 Training and Evaluation
We follow the standard pipeline [Chen et al., 2022] of point
supervised tasks. During training, (i) a point-to-label regres-
sor (P2P) is trained to obtain pseudo-labels (boxes or masks).
(ii) After that, we retrain a task-related sub-network (e.g., a
detector or segmentation network) with the full supervision
of pseudo-labels. For evaluation, we only use the retrained
sub-network to obtain detection or segmentation results and
evaluate the detection or segmentation performance.

Method Set Backbone Sup. AP50

Faster R-CNN∗ [2015] 07 ResNet-50 F 71.5
WSDDN [2016] 07 ResNet-50 I 39.3
OICR [2017] 07 ResNet-50 I 42.0
PCL [2018] 07 ResNet-50 I 45.8
MELM [2018] 07 ResNet-50 I 47.1
W2F† [2018] 07 ResNet-50 I 52.4
CASD [2020] 07 ResNet-50 I 56.8
SPE [2022] 0712 CaiT [2021] I 51.0
P2BNet-FR∗† [2022] 07 ResNet-50 P 48.3
SAM-FR† [2023] 07 ResNet-50 P 47.9

P2P-FR† (Ours) 07 ResNet-50 P 61.9

Table 2: The performance comparison of fully-supervised (F ),
image-supervised (I), and point-supervised (P) detectors on Pascal
VOC dataset. ∗ indicates our re-implemented results and † denotes
fully-supervised refinement.

4 Experiment
4.1 Experiment Settings
Datasets. We evaluate the proposed method on two bench-
marks: MS COCO 2017 [Lin et al., 2014] and Pascal VOC
2007 [Everingham et al., 2015]. MS COCO 2017 is a widely
used large-scale dataset that contains 115K images in the
train set and 5K images in val set, with 80 object categories
collected in natural scenes. In Pascal VOC 2007, there are
2501 and 2510 images in training and validation sets, respec-
tively, with 20 categories under common scenarios.

Evaluation Metrics. We use AP for MS COCO and VOC
to measure the performance of detection and segmentation.
And we report AP, AP50, AP75 for MS COCO and AP50 for
VOC. The mIoU and Correct Localization (CL) are also cal-
culated to directly measure the quality of the pseudo boxes.
Specifically, mIoU is calculated by the mean IoU between
predicted pseudo boxes and their corresponding ground-truth
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Method Backbone Sched. Sup. AP AP50 AP75 APs APm APl

Mask R-CNN [He et al., 2017] ResNet-50 1x F 34.7 55.7 37.2 18.3 37.4 47.2
Mask R-CNN [He et al., 2017] ViT-S 1x F 38.8 61.2 41.3 - - -
Mask2Former [Cheng et al., 2022] Swin-S 50e F 46.1 69.4 49.8 25.4 49.7 68.5
IRNet [Zhou et al., 2019] ResNet-50 1x I 6.1 11.7 5.5 - - -
BESTIE [Kim et al., 2022] HRNet-48 1x I 14.3 28.0 13.2 - - -
BoxInst [Tian et al., 2021] ResNet-101 3x B 33.2 56.5 33.6 16.2 35.3 45.1
DiscoBox [Lan et al., 2021] ResNet-50 3x B 32.0 53.6 32.6 11.7 33.7 48.4
WISE-Net [Laradji et al., 2020] ResNet-50 1x P 7.8 18.2 8.8 - - -
BESTIE † [Kim et al., 2022] HRNet-48 1x P 17.7 34.0 16.4 - - -
AttnShift† [Liao et al., 2023] ViT-S 1x P 21.2 42.0 19.4 - - -
SAM-MR† [Kirillov et al., 2023] ResNet-50 1x P 24.3 43.8 24.3 12.7 28.3 33.6

P2P-MR† (Ours) ResNet-50 1x P 26.4 48.6 26.2 13.6 30.6 36.6
P2P-MF† (Ours) Swin-S 50e P 34.9 58.9 36.1 19.9 40.7 52.3

Table 3: The segmentation performance of fully supervised F , box-supervised B, image-supervised I, and point-supervised P methods on
MS COCO 2017 val set. MR and MF indicate Mask RCNN and Mask2Former, respectively. † denotes fully-supervised refinement.

GT

𝑆1

𝑆3

…

𝑆0

Figure 3: Visualization of the pseudo bounding boxes from different
iterations of P2P and Ground Truths (GT). (Best viewed in color.)

bounding boxes of all objects in the training set. CL, denot-
ing the correct localization rate, is computed as the ratio of
IoU between the prediction and the ground truth exceeding a
certain threshold. We report CL at thresholds of 0.5, 0.7, and
0.9 (termed CL@0.5, CL@0.7, and CL@0.9, respectively) to
assess the quality of pseudo boxes.

Implementation Details. For SEPG, it is trained with
SGD [Robbins and Monro, 1951] optimizer with batch size
16. The learning rate is initialized as 0.02. SEPG is trained
for 12 epochs at the first round of iteration then 6 epochs in
each subsequent round of iteration. For PGSR, we use the
pre-trained ViT-H version of SAM [Kirillov et al., 2023] and
freeze its weights during the training stage. Before train-
ing starts, we pre-extract the image embeddings offline. So
only the lightweight prompt encoder and mask decoder are
involved in the PGSR, which greatly reduces the time and
computational consumption of the training process.

Method SEPG PGSR Iter mIoU AP AP50 AP75

Baseline - - - 57.5 22.1 47.3 -

! 60.3 23.1 49.6 18.1
! ! 68.1 30.4 52.7 31.2Ours
! ! ! 69.7 31.5 53.1 32.9

Table 4: Effect of each component in P2P.

4.2 Performance and Comparison
P2P serves as a pseudo-boxes and -masks generator. By
retraining Faster RCNN (FR) and Mask RCNN (MR) with
pseudo-boxes and -masks in a fully supervised manner, we
report the detection and segmentation performance. Further-
more, we conduct comparative analyses by benchmarking our
method against fully supervised methods and with various
forms of weakly supervised methods.

Detection Performance. We conduct comparisons be-
tween our method and fully, image-, and point-supervised de-
tection methods using COCO and VOC datasets, as presented
in Tab. 1 and 2. On the COCO dataset, our method outper-
forms the SOTA P2BNet [Chen et al., 2022] by 9.5% (31.6%
vs 22.1%) and 6.5% (53.8% vs 47.3%) in terms of AP and
AP50, respectively, and achieves 84% of the fully supervised
Faster RCNN (FR). On the VOC dataset, our method achieves
86% of the performance of fully supervised FR. From Tab. 1,
we find that the image-supervised methods perform poorly on
the challenging COCO dataset, achieving only about 36% of
the fully-supervised baseline. This is notably lower than the
performance of the point-supervised method, highlighting the
favorable trade-off between labeling burden and performance
offered by the point-supervised approach. With the SOTA
DINO [Zhang et al., 2022] equipped with Swin-L [Liu et al.,
2021] backbone as the retrained detector, P2P-DINO even
exceeds the fully supervised baseline methods (e.g., Sparse
RCNN), further demonstrating the potential of our method.

Segmentation Performance. Tab. 3 gives the perfor-
mance of the segmentation methods on the COCO dataset
with different forms of supervision. Our P2P-MR reports a
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Method mIoU AP AP50 AP75

SEPG-base 56.6 21.1 44.9 17.1

SEPG-G 55.2 21.5 46.6 16.9
SEPG-G-SC 60.3 23.1 49.6 18.1

Table 5: Effect of different techniques in SEPG stage. SEPG-base
stands for seeds-based sampling, SEPG-G stands for group selec-
tion, and SEPG-G-SC stands for semantic confidence.

T mIoU CL@0.5 CL@0.7 CL@0.9
1 68.07 76.77 60.27 23.10
2 69.43 78.74 62.13 24.09
3 69.70 79.05 62.40 24.07
4 69.61 78.00 61.91 24.35

Table 6: Effect of different iteration T .

significant performance improvement of 5.2% AP over the
AttnShift [Liao et al., 2023] approach and outperforms the
image-supervised BESTIE [Kim et al., 2022] (with HRNet-
48 [Wang et al., 2020] as the backbone) by a large margin.
Additionally, it also outperforms SAM-MR (where SAM is
used as a pseudo-masks generator) by 2.1% AP and 4.8%
AP50. Furthermore, our method with only point supervision
achieves nearly 80% of the performance exhibited by both
baseline (Mask RCNN) and SOTA (Mask2Former [Cheng et
al., 2022]) fully supervised methods.

4.3 Ablation Study
We conduct analyses of the impact of key components of our
method on the COCO dataset.

Effect of each component in P2P. As shown in Tab. 4,
P2BNet is used as the baseline, and the key components in-
clude (i) SEPG: The group sampling reduces the solution
space, and more accurate pseudo-labels are obtained with
the two semantic confidence-guided refiners. It contributes
to a mIoU improvement by more than 3 points. (ii) PGSR:
SAM leverages semantic-explicit prompts for spatial refine-
ment, leading to a substantial enhancement in the quality of
pseudo-labels, with an improvement of about 8 points. (iii)
Employing an Iterative strategy where the two models mutu-
ally enhance each other, we observe a notable 12% improve-
ment in performance compared to the baseline model.

Effect of different techniques in SEPG. We validate dif-
ferent techniques in SEPG and the results are presented in
Tab. 5. The baseline model is designed by adopting the seeds-
based sampling strategy followed by cascaded MIL refine-
ment, referred to “SEPG-base”, achieving 21.3 AP and 44.9
AP50. Then, we adopt group refinement, i.e., selecting groups
first and then individual proposals. When using the MIL re-
finement head, referred to as “SEPG-G”, AP reaches 21.5, as
shown in the second row of Tab. 5. Further improvement is
achieved with our designed semantic confidence refinement
head, denoted as “SEPG-G-SC”, resulting in a mIoU of 60.3
and an AP of 23.1, as shown in the fourth row of Table 5.

Effect of iterative training. We examine the impact of
training iterations T . Tab. 6 reports the performance of P2P
with different iteration numbers. We observe that the value

Method mIoU CL@0.5 CL@0.7 CL@0.9
P2BNet 57.5 65.9 35.7 9.3

SAM 58.25 60.32 47.32 21.27

P2P (Ours) 69.70 79.05 62.40 24.07

Table 7: Detailed comparison of the quality of pseudo labels.

Method Backbone Epoch Params (MB)
Total Learnable

P2BNet ResNet-50 12 41.6 41.6
SEPG (Ours) ResNet-50 12 + 6× (T − 1) 47.6 47.6
PGSR (Ours) - - 4.1 0

P2P (Total) 51.7 47.6

Table 8: Comparison of memory cost.

of mIoU is consistently improved as T increases, reaching a
peak when T = 3, followed by a stabilization around the
peak. Notably, the highest performance surpasses that of
T = 1 by nearly 2% across all metrics, showing the effec-
tiveness of iterative training in elevating the quality of pre-
dictions. Some representative visualizations of different iter-
ations are presented in Fig. 3.

Comparison of the quality of pseudo labels. As shown
in Tab. 7, we conducted a more detailed comparison of the
quality of pseudo-labels generated by P2BNet and single-
point prompted SAM. Our approach achieved significant im-
provements, outperforming SAM by 11.45 and 18.73 points
on mIoU and CL@0.5, respectively. This indicates that our
method effectively enhances the quality of pseudo labels.

Comparison of memory cost. Tab. 8 illustrates the com-
parison of memory consumption between P2BNet and our
P2P in the training stage. Thanks to our pre-extraction op-
eration, even with the large foundation model, the number of
parameters in the actual training process is still comparable,
just about 10M higher than P2BNet.

5 Conclusion
In this paper, we introduce a point-supervised object de-
tection and segmentation framework, called P2P, which
transforms weak point-level annotations into explicit visual
prompts, and guides the foundation model to produce the de-
sired output by improving the semantic representation of the
prompts. P2P performs as an iterative procedure that includes
two stages: SEPG and PGSR. The SEPG performs semantic
confidence lifting of the proposals through group sampling
and semantic prototypes. The PGSR stage leverages SAM to
output refined masks, which in turn are transformed into new
proposal seeds. Finally, accurate pseudo masks and boxes are
obtained in the iteration of SEPG and PGSR. Extensive ex-
periments validate the effectiveness of our method.
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