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Abstract

In recent years, Federated Learning (FL) has gar-
nered significant attention as a distributed machine
learning paradigm. To facilitate the implementation
of the “right to be forgotten,” the concept of feder-
ated machine unlearning (FMU) has also emerged.
However, current FMU approaches often involve
additional time-consuming steps and may not of-
fer comprehensive unlearning capabilities, which
renders them less practical in real FL scenarios.
In this paper, we introduce FedAU, an innovative
and efficient FMU framework aimed at overcom-
ing these limitations. Specifically, FedAU incor-
porates a lightweight auxiliary unlearning module
into the learning process and employs a straight-
forward linear operation to facilitate unlearning.
This approach eliminates the requirement for ex-
tra time-consuming steps, rendering it well-suited
for FL. Furthermore, FedAU exhibits remarkable
versatility. It not only enables multiple clients to
carry out unlearning tasks concurrently but also
supports unlearning at various levels of granularity,
including individual data samples, specific classes,
and even at the client level. We conducted exten-
sive experiments on MNIST, CIFAR10, and CI-
FAR100 datasets to evaluate the performance of
FedAU. The results demonstrate that FedAU effec-
tively achieves the desired unlearning effect while
maintaining model accuracy.

1 Introduction
Federated learning (FL) [Konečnỳ et al., 2015; McMahan
et al., 2017; Yang et al., 2019] is a promising distributed
machine learning paradigm that provides privacy-preserving
learning solutions. One essential requirement of FL is the
participants’ “right to be forgotten”, which has been stated ex-
plicitly in the European Union General Data Protection Reg-
ulation (GDPR)1 and the California Consumer Privacy Act
(CCPA) [Harding et al., 2019]. Federated Machine Unlearn-
ing (FMU) is proposed to give clients the right to remove the

1https://gdpr-info.eu/art-17-gdpr/

influence of a certain subset of their data from a trained fed-
erated learning (FL) model, while maintaining the accuracy
of the FL model on remaining data [Che et al., 2023].

Three representative existing FMU approaches have been
proposed. Firstly, One prevalent approach involves the re-
training or fine-tuning of the model from scratch using the
remaining data[Liu et al., 2022a; Liu et al., 2021; Su and Li,
2023; Zhang et al., 2023]. Secondly, another line of research
explores the utilization of Gradient Ascent on the unlearn-
ing data to effectively diminish its impact [Wu et al., 2022;
Graves et al., 2021]. Thirdly, [Wang et al., 2022] explored the
application of model pruning techniques. Specifically, they
selectively removed certain neurons from the model architec-
ture that exhibit a high correlation with the unlearning data.
In practice, there are two important ingredients required for
FMU [Zhang et al., 2023; Liu et al., 2023]:

• Reduced Unlearning Time: FL systems require FMU
methods that minimize the time required for unlearning
operations. This is crucial because normal clients par-
ticipating in FL cannot afford to wait for the unlearn-
ing client to complete the unlearning process. Even
for methods like gradient ascent [Wu et al., 2022;
Graves et al., 2021] and pruning [Wang et al., 2022],
there is still a need for a certain amount of time to im-
plement the unlearning operation.

• Broad Unlearning Capability: An effective FMU
method should have the capability to accommodate un-
learning requests from multiple clients in FL. This in-
cludes the ability to unlearn specific samples, classes, or
clients as requested by different clients participating in
the FL process.

However, existing methods do not consider these two im-
portant requirements simultaneously. In order to satisfy these
two requirements, we propose an efficient Federated Machine
Unlearning (FMU) framework called FedAU. FedAU incor-
porates an auxiliary unlearning module during the training
that facilitates the unlearning process. Our framework offers
three key advantages: Firstly, FedAU utilizes a simple lin-
ear operation to achieve unlearning, which avoids consuming
the waiting time for other normal clients during the feder-
ated learning process (see Sect. 3.2). Secondly, FedAU is a
general unlearning framework that allows multiple clients to
implement unlearning. It supports unlearning at the sample,
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class, and client levels, providing flexibility in managing pri-
vacy concerns (see Sect. 3.3). Thirdly, the proposed FedAU
demonstrates strong performance in terms of unlearning ef-
fectiveness and model accuracy. This is supported by both
theoretical analysis and experimental evaluations (see Sect.
3.4 and Sect. 4).
Contribution. The main contributions are summarized as
follows:

• We point out that existing methods for federated ma-
chine unlearning (FMU) is not feasible in practice, in
terms of unlearning time and unlearning capability.

• In this paper, we propose FedAU, a streamlined FMU
framework, that incorporates a lightweight auxiliary un-
learning module into the learning process and adopts a
linear operation to achieve unlearning.

• Extensive experiments and theoretical analysis demon-
strated that FedAU is highly effective in enabling un-
learning across various scenarios.

2 Relate Work
2.1 Federated Learning
Federated learning [Konečnỳ et al., 2015; McMahan et al.,
2017; Cheng et al., 2020] aims to build a machine learning
model based on datasets that are distributed across multiple
devices without sharing private data with the server and other
devices. The cornerstone of federated learning algorithms,
FedAvg, proposed by [McMahan et al., 2017], involves local
clients training models on their data and sending model up-
dates to a central server. The server then averages these up-
dates to improve a global model. Afterward, researchers have
proposed various optimization techniques [Deng et al., 2020;
Sun et al., 2022] to enhance FedAvg.

Given the privacy-centric nature of federated learning, a
plethora of research focuses on enhancing data privacy. Tech-
niques such as differential privacy [Dwork, 2006] and se-
cure multi-party computation [Goldreich, 1998] are often in-
tegrated into federated learning algorithms to protect client
data. Nevertheless, recent research has highlighted vulner-
abilities in federated learning to privacy breaches, notably
through model inversion attacks [Nasr et al., 2019] and mem-
bership inference attacks [He et al., 2019]. In this paper, we
focus on leveraging unlearning techniques to mitigate these
privacy risks in federated learning scenarios. Notably, we uti-
lize FedAvg as the default federated learning algorithm.

2.2 Machine Unlearning
Machine unlearning [Bourtoule et al., 2021; Mercuri et al.,
2022] involves removing the influence of specific training
data from a machine learning model, often for privacy, fair-
ness, or data quality reasons. It is a response to challenges
like the “right to be forgotten” in the context of data privacy
regulations. A pivotal advancement in machine unlearning is
the development of a unified PAC-Bayesian framework [Jose
and Simeone, 2021], which recasts variational unlearning and
forgetting Lagrangian as information risk minimization prob-
lems. Another significant development is the introduction of
cryptographic frameworks for verifiable machine unlearning

[Eisenhofer et al., 2022], which allows users to verify the re-
moval of their data.

The application of machine unlearning in federated learn-
ing environments presents unique challenges and opportu-
nities [Liu et al., 2022b]. Traditional methods, such as
retraining models on remaining data [Liu et al., 2022a;
Su and Li, 2023] or directly modifying the original model
[Liu et al., 2021; Halimi et al., 2022; Wu et al., 2022], are
often too time-intensive to be viable in the dynamic setting
of federated learning. Furthermore, the federated learning
paradigm involves multiple clients, each potentially request-
ing data unlearning. This scenario adds complexity, as current
methodologies rarely address the efficient unlearning of data
from numerous clients simultaneously. Additionally, while
some methods utilize noise addition for efficiency [Sekhari et
al., 2021; Zhang et al., 2023], this approach can compromise
the performance of models trained on the remaining data,
leading to a trade-off between efficiency and model accuracy.
In this paper, our goal is to develop a streamlined approach
to federated machine unlearning, adaptable across a range of
applications.

3 The Proposed Method
We introduce the FMU setting in Sect. 3.1, followed by elab-
oration on the proposed FMU framework, FedAU, in Sect.
3.2. Then we show the generality of FedAU in Sect. 3.3: 1)
it can be applied in unlearning sample, class, and client; 2)
it allows multiple clients to request to unlearn. Finally, we
provide a theoretical analysis of the influence of FedAU on
model accuracy and the unlearning effect. in Sec. 3.4.

3.1 Setting
Consider a Horizontal Federated Learning setting consist-
ing of K clients who collaboratively train a FL model ω =
(E,W ) (Feature extractor E and Classifier W ) to optimize
the following objective:

min
ω

K∑
k=1

nk∑
i=1

ℓ(FE,W (xk,i), yk,i)

n1 + · · ·+ nK
, (1)

where ℓ is the loss, e.g., the cross-entropy loss and Dk =
{(xk,i, yk,i)}nk

i=1 is the dataset with size nk owned by client
k. Client k0 requests to withdraw their consent for the uti-
lization of its data, resulting in the need for the server to re-
move the influence of the data contributed by clients k0 from
the trained model. Moreover, if multiple clients request to
unlearn simultaneously, we define the set of these multiple
clients to be C.

We note three distinct cases within the Federated Model
Unlearning (FMU) framework

1. Unlearning samples: In this case, the goal is to elimi-
nate the knowledge acquired from a subset of client data,
thereby excluding it from the global model.

2. Unlearning class: This case involves excluding a spe-
cific class from the model’s generalization boundary, ef-
fectively removing it from the model’s predictions.

3. Unlearning client: Here, the objective is to completely
erase the data of a particular client, denoted as Du

k0
=
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Figure 1: Left: the scenario of federated machine unlearning; Right: the overview of the proposed FedAU consisted of three mod-
ules/operations (blue: learning module, green: auxiliary unlearning module and red: linear operation).

Dk0
, ensuring that the model is no longer influenced by

any data from that client. The detailed experiment to
analyze the unlearning effect for the the number of un-
learning samples |Du

k0
| is illustrated in Appendix C.

3.2 FedAU
As shown in the right of Figure 1, our main approach involves
the incorporation of an auxiliary unlearning module W a dur-
ing the training process of the dataset. When a client requests
to unlearn specific information, a straightforward linear op-
eration, such as a weighted average, can be taken between
the learning module W l and the auxiliary unlearning module
W a to produce the final unlearning model Ŵ . More details
are provided below.

Learning Module
Consider the task of supervised classification using Deep
Neural Networks (DNNs). Let Y = {1, ..., C} denote the
label space, where C represents the total number of classes.
The learning module aims to optimize the following objec-
tive:

E,W l = argmin
E,W

K∑
k=1

∑
(xk,i,yk,i)∈Dk

ℓ(FE,W (xk,i), yk,i)

n1 + · · ·+ nK
.

(2)
Here, ℓ represents the loss function, such as the cross-entropy
loss, and Dk = {(xk,i, yk,i)}nk

i=1 represents the dataset of
client k with a size of nk.

Auxiliary Unlearning Module
We design an auxiliary unlearning module W a that is learned
by clients C who request to unlearn their data. The goal of the
auxiliary unlearning module is to learn a special model W a

k0

for the designed data D
′

k0
of client k0 as:

W a
k0

= argmin
W

∑
(xk0,i,yk0,i)∈D′

k0

ℓ(FE,W (xk0,i), yk0,i)

|D′
k0
|

. (3)

Then we can implement the simple linear operation between
W l and W a

k0
in the following section to obtain the unlearning

model Ŵ , which can remove the influence of the unlearning
data Du

k0
. The auxiliary unlearning module has two charac-

teristics: 1) it is trained during the learning process and effi-
ciently converge with the several training epoch when initial-
izing as W l; 2) multiple unlearning clients C can train their
own auxiliary unlearning privately or collaboratively to deal
with different condition (see unlearning sample in Sec. 3.3).

Linear Operation on W l and W a

The unlearning model Ŵ needs to satisfy two requirements
for unlearning data Du and remaining data Dr = D − Du.
The first requirement is that unlearning doesn’t influence the
model accuracy of the remaining data Dr. Specifically, the
logit output of Ŵ represents the same to the W l w.r.t the re-
maining data Dr, i.e.,

argmax
i

F i
E,W l(x) = argmax

i
F i
E,Ŵ

(x), x ∈ Dr, (R1)

where FE,W (x) is the logit output with size C by the trained
model on the input x and F i

E,W (x) is the ith logit. The sec-
ond requirement is that the model after unlearning behaves
wrongly the unlearning data Du such as [Chen et al., 2023].
Specifically, it requires the logit output of Ŵ shows the dif-
ference to the unlearning data Du, i.e.,

argmax
i

F i
E,Ŵ

(x) ̸= y, x ∈ Du, (R2)

where y is true label of x. In other words, this requirement
indicates that the model after unlearning doesn’t memorize
the unlearning data Du.
Remark 1. Some methods [Graves et al., 2021] aims to
achieve the requirement (R2) by finetuning the trained model
with randomly labeled forgetting data, but this will also shift
the boundary of the remaining class randomly, leading to the
degeneration of utility the on remaining data.

To make the simple linear operation as described by Eq. (6)
and concurrently to satisfy the aforementioned two require-
ments ((R1) and (R2)), we leverage the linear property of a
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fully connected layer to achieve this:

Ŵ = W l
⊕

W a. (6)

The following proposition illustrates that the change in logits
is proportional to the change in weights if the network is fully
connected layer:
Proposition 1. Consider two fully connected layers project-
ing the input x ∈ Rm2 to the logit l ∈ Rm1 as: l1 =
w1x+b1, l2 = w2x+b2, then the linear operation of weights
w1, b1 and w2, b2 has the same influence on logits l1 and l2.

Therefore, by utilizing this property, the model change can
effectively reflect the change in logits, thereby satisfying the
aforementioned requirements. The specific design of this lin-
ear operation for unlearning samples and classes are intro-
duced in the following section.
Remark 2. There is no need to train Auxiliary unlearning
module at the beginning of learning. As indicated in Ap-
pendix C, the training of the AU only necessitates a few
epochs. Consequently, clients can proactively train the AU
module several epochs in advance of the unlearning request
rather than at the beginning of learning.

Feature

𝑤𝑤𝑎𝑎𝑤𝑤𝑙𝑙 �𝑤𝑤+ =α (1 − α)

Unlearn Samples

(a) Unlearning Sample

=

Feature

𝑤𝑤𝑙𝑙 𝑤𝑤𝑎𝑎 �𝑤𝑤− 𝛽𝛽

Unlearn Class

(b) Unlearning Class

Figure 2: Illustration of the proposed FedAU when unlearning sam-
ple and class. After the module W l undergoes linear operation with
the auxiliary unlearning module W a, the unlearned part of the orig-
inal feature will be classified into other random classes.

3.3 Generality of FedAU
We provide the details of FedAU on how to unlearn the sam-
ple and class in this part (see Alg. 1 and Alg. 2).

Unlearning Sample in FL
We firstly consider the scenario that only one client k0 at-
tempts to unlearn some samples Du

k0
= {(xu

k0,i
, yuk0,i

)}mi=1,
the core steps are as followings:

• Client k0 designs an the auxiliary dataset D′

k0
= Du′

k0
∪

Dr′

k0
. Specifically,Du′

k0
is based onDu

k0
by modifying the

label yuk,i with yu
′

k,i ∼ U(1, C) and Dr′

k0
= Dr

k0
, where

U(1, C) represents the discrete uniform distribution on
value 1, · · · , yuk0,i

− 1, yuk0,i
+ 1, · · · , C (see blue line

3-9 of Algo. 1).

• Then client k0 learns the auxiliary unlearning module
W a

k0
according to the D′

k0
during the learning stage (see

green line 10-15 of Algo. 1).

• Finally, when the unlearning request is proposed, the un-
learning model Ŵ can be obtained as:

Ŵ = αW l + (1− α)W a
k0
, (7)

where α is a small positive coefficient (see red line 21 of
Algo. 1).

As shown in Fig. 2(a), the the class of remaining data is not
influenced by the addition operation since the remaining and
auxiliary dataset have the same class. Moreover, the class of
unlearning data is mainly influenced by the auxiliary dataset
if (1 − α) tends to 1. Therefore, Linear operation of Eq. (7)
satisfies requirements (R1) and (R2), which is also illustrated
in Theorem 1.

Unlearning Class in FL
Consider the scenario that only one client k0 attempts to un-
learn class c data as Du

k0
= {(xu

k0,i
, c)}mi=1, there are the fol-

lowing three steps in FedAU:

• Client k0 designs an the auxiliary dataset D′

k0
= Du′

k0
∪

Dr′

k0
. Specifically,Dr′

k0
is based onDr

k0
by modifying the

label yrk0,i
with label c andDu′

k0
= Du

k0
(see blue line 3-9

of Algo. 1);

• Then client k0 learns the auxiliary unlearning module
W a

k0
according to the D′

k0
during the learning stage (see

green line 10-15 of Algo. 1).

• Finally, when the unlearning request is proposed, the un-
learning model Ŵ can be obtained as:

Ŵ = W l − βW a
k0
, (8)

where β is a large coefficient (see red line 21 of Algo.
1).

In Fig. 2(b), it can be observed that the subtraction opera-
tion does not affect the class of the remaining data. This is
because the remaining dataset and the auxiliary dataset have
different classes, resulting in the class of the subtrahend be-
ing preserved. Additionally, the unlearning data and auxiliary
data share the same class (represented by the black point), al-
lowing the class to be removed when the subtraction is per-
formed. Therefore, the linear operation defined by Equation
(8) satisfies the requirements (R1) and (R2), as also illustrated
in Theorem 1.

Remark 3. We provide the analysis on how the value of α in-
fluence the performance of the remaining data and unlearn-
ing data in Sect. 4.3.
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Algorithm 1 Unlearning Sample in FL ( Learning Module ,

Auxiliary Unlearning Module and Linear Operation )

Input: Communication rounds T , Client number K, dataset
Dk0 (remaining data Dr

k0
and unlearning data Du

k0
) for un-

learning client k0.
1: Initialize the feature extractor E, unlearning learning

module W l and auxiliary unlearning module W a
k0

2: for t = 1, 2, . . . , T do
3: ▷ Clients perform:
4: for Client k in {1, . . . ,K} do
5: Set Ek = E, W l

k = W l;
6: Compute the learning loss ℓ̃ = ℓ(Dk;Ek,W

l
k);

7: W l
k ←−W l

k − η∇W l
k
ℓ̃;

8: Ek ←− Ek − η∇Ek
ℓ̃;

9: end for
10: Let W a

k0
= W a;

11: Set Du
k0

= (xu
k0,i

, yu
′

k0,i
∼ U(1, C));

12: Set Dr′

k0
= Dr

k0
;

13: Set D′

k0
= Du′

k0
∪ Dr′

k0
;

14: Compute the learning loss ℓ̃ = ℓ(D′

k0
;Ek0 ,W

a
k0
);

15: W a
k0
←−W a

k0
− η∇W a

k0
ℓ̃;

16: Upload the W l
k and Ek to the server;

17: ▷ The server performs:
18: The server aggregates E and W l as: W l = 1

K (W l
1 +

· · ·+W l
K);E = 1

K (E1 + · · ·+ EK);
19: The server distributes E and W l to all clients.
20: end for

21:

The server implements unlearning process:

Ŵ = αW l + (1− α)W a
k0

22: return E, Ŵ

Unlearning a Client in FL
Unlearning a client represents an extreme case of unlearn-
ing samples, allowing us to leverage strategies used for un-
learning samples. The key difference is that in the case of
unlearning a client k0, there is no remaining data from that
client (|Dr

k0
| = 0). As a result, the auxiliary unlearning mod-

ule W a
k0

cannot learn from the data of other clients. To ad-
dress this, we propose an improved updating strategy for the
auxiliary unlearning module, which involves combining the
knowledge learned from Du′

k0
and the original model W l for

each epoch. Further details can be found in the Appendix B.

Unlearning for Multiple Clients
The proposed FedAU can also be applied into satisfying un-
learning request for multiple clients without consuming extra
time. Specifically, for unlearning class, each client in C pri-
vately learn the W a

k , k ∈ C with the goal of optimizing Eq.
(3). Then all clients obtain the unlearning model Ŵ as:

Ŵ = W l −
∑
k∈C

βkW
a
k .

Algorithm 2 Unlearning Class in FL ( Learning Module ,

Auxiliary Unlearning Module and Linear Operation )

Input: Communication rounds T , Dk0 including remaining
data Dr

k0
and unlearning data Du

k0
(the label of Du

k0
is c) for

unlearning client k0.
1: Initialize the feature extractor E, unlearning learning

module W l and auxiliary unlearning module W a
k0

2: for t = 1, 2, . . . , T do
3: ▷ Clients perform:
4: for Client k in {1, . . . ,K} do
5: Set Ek = E, W l

k = W l;
6: Compute the learning loss ℓ̃ = ℓ(Dk;Ek,W

l
k);

7: W l
k ←−W l

k − η∇W l
k
ℓ̃;

8: Ek ←− Ek − η∇Ek
ℓ̃;

9: end for
10: Let W a

k0
= W a;

11: Set Du′

k0
= Du

k0
;

12: Set Dr′

k0
= (xr

k0,i
, c);

13: Set D′

k0
= Du′

k0
∪ Dr′

k0
;

14: Compute the learning loss ℓ̃ = ℓ(D′

k0
;Ek0 ,W

a
k0
, );

15: W a
k0
←−W a

k0
− η∇Wa

k0
ℓ̃;

16: Upload the W l
k and Ek to the server;

17: ▷ The server performs:
18: The server aggregates E and W l as: W l = 1

K (W l
1 +

· · ·+W l
K);E = 1

K (E1 + · · ·+ EK);
19: The server distributes E and W l to all clients.
20: end for

21:

The server implements unlearning process:

Ŵ = W l − βW a
k0

22: return E, Ŵ

The detailed algorithm and results shown in Appendix B.
For unlearning sample, multiple clients C collaboratively

learn the W a that aiming to optimize:

W a = argmin
W

∑
k∈C

∑
(xk,i,yk,i)∈D′

k

ℓ(FE,W (xk,i), yk,i)∑
k∈C nk

(9)

Then all clients obtain the unlearning model Ŵ as:

Ŵ = αW l + (1− α)W a

The detailed algorithm and results shown in Appendix B.
Remark 4. In multiple client scenarios, the reason for
the difference between unlearning samples and unlearning
classes lies in the nature of the linear operations involved.
When unlearning a class, the linear operation used is sub-
traction, which allows for the removal of multiple classes by
subtracting W a

k for each client k ∈ C individually. On the
contrary, when unlearning samples, the operation is addi-
tion, where all W a

k for each client k ∈ C are added together.
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This addition operation can potentially affect the unlearning
effect because it is uncertain whether W a

k1
of client k1 can

effectively unlearn the unlearning samples Du
k2

of client k2.

3.4 Theoretical Analysis
The following theorem demonstrates the proposed Algorithm
1 and 2 satisfy Requirement R1 and R2 (see proof in Ap-
pendix D).
Theorem 1. For client k0 aims to remove Du

k0
from the Dk0 ,

and letDr
k0

= Dk0−Du
k0

. There exist α and β such that both
unlearning Algorithm 1 and 2 satisfy the requirement (R1)
and (R2), i.e.,

argmax
i

F i
W l(x) = argmax

i
F i
Ŵ
(x), x ∈ Dr

k0
,

argmax
i

F i
Ŵ
(x) ̸= y, (x, y) ∈ Du

k0
,

(10)

Theorem 1 establishes the effectiveness of FedAU when
a single client requests unlearning. Furthermore, we present
a comprehensive theoretical analysis of the effectiveness of
FedAU in scenarios where multiple clients request unlearn-
ing.

4 Experiment
4.1 Experimental Setting
Models & Datasets & Setting. We conduct experiments
on three datasets: MNIST [LeCun et al., 2010], CIFAR10
and CIAFR100 [Krizhevsky et al., 2014]. We adopt LeNet
[LeCun et al., 1998] for conducting experiments on MNIST
and adopt AlexNet [Krizhevsky et al., 2012] on CIFAR10 and
ResNet18 [He et al., 2016] on CIFAR100.

We simulate a HFL scenario consisting 10 clients under
IID and Non-IID setting [Li et al., 2022] (following the
Dirichlet distribution, dir(γ)). For unlearning samples, we
employed the backdoor technique to generate the unlearn-
ing samples [Gao et al., 2022]. The proportion of unlearn-
ing samples was set to 5%, 10%, and 20% of the dataset.
For unlearning a client, we considered scenarios where the
data from the unlearning client accounted for 20%, 50%, and
100% of the data from the other clients. In addition, we con-
ducted experiments involving unlearning for multiple clients.
We varied the number of unlearning clients, exploring scenar-
ios with 3, 5, 8, and 10 unlearning clients. Furthermore, we

treated the last layer of the model as the auxiliary unlearning
module. An ablation study on the position of the auxiliary
unlearning module is provided in the Appendix B.

The Baseline FMU Methods. We compare six FMU meth-
ods, including Retraining/finetuning-based: Retraining, Fed-
Eraser [Liu et al., 2021], Fedrecovery [Zhang et al., 2023],
gradient ascent-based: Amnesiac [Graves et al., 2021],
Pruning-based: Class-dis [Wang et al., 2022] and the pro-
posed FedAU to evaluate the effectiveness.

Evaluation Metrics. We performed backdoor detection
and membership inference attack (MIA) [Gao et al., 2022;
Graves et al., 2021] on the unlearned model to see if the in-
fluence of the targeted client was really removed by the pro-
posed unlearning algorithm. The less the backdoor detection
rate, and attack accuracy metric, the more effective the FMU
methods are (Due to page limit, please refer the results of the
recall in Appendix C). Moreover, the unlearning time cost
and model performance of the remaining data is also utilized
to evaluate all FMU methods. We refer all details about the
experimental setting on Appendix A.

4.2 Overall Evaluation
Evaluation of Unlearning Effect
To ensure an effective unlearning method, it is crucial for the
unlearned model to retain minimal information about the for-
gotten data. In Tab. 1, we present a comparison of accu-
racy of unlearning data achieved by various unlearning meth-
ods on the MNIST and CIFAR10 datasets. Our observations
are as follows: 1) Amnesiac unlearning [Graves et al., 2021]
demonstrate strong performance in unlearning samples and
clients, but exhibit lower effectiveness in unlearning classes
(e.g., achieving a 20% increase in the accuracy of unlearning
data compared to the retraining method); 2) Class-dis [Wang
et al., 2022] excel in unlearning classes, but are not suitable
for unlearning samples and entire classes; 3) Our proposed
method, FedAU, closely approximates the performance of re-
training methods for unlearning samples, classes, and clients.
For instance, the accuracy of unlearning data of FedAU is less
than 1% compared to retraining methods.

Evaluation of Utility
In Table 1, we evaluate the utility of the remaining data by
measuring the remaining accuracy. The results indicate: 1)

FedAvg Retraining Amnesiac Class-disc FedEraser FedAUDataset

(%)

UL

Method Rm-Acc Ul/Rm-Acc Ul/Rm-Acc Ul/Rm-Acc Ul/Rm-Acc Ul/Rm-Acc

Samples 87.77 ± 0.21 1.90 ± 0.20 87.36 ± 0.23 4.8 ± 0.99 85.91 ± 0.14 — — — — 0.35 ± 0.07 86.24± 0.16

Classes 87.50 ± 0.05 0.00 ± 0.00 87.45 ± 0.28 26.15 ± 2.76 74.93 ± 3.38 0.00 ± 0.00 79.42 ± 1.25 — — 0.01 ± 0.01 87.71 ± 0.33
CIFAR10

AlexNet
Clients 87.49 ± 0.10 1.80 ± 0.16 87.33 ± 0.19 6.05 ± 0.35 75.34 ± 1.44 — — 9.32 ± 0.11 84.60 ± 0.74 0.52 ± 0.06 86.83 ± 0.31

Samples 99.44 ± 0.02 0.44 ± 0.13 99.46 ± 0.04 1.65 ± 0.07 98.87 ± 0.21 — — — — 0.62 ± 0.23 99.36 ± 0.01

Classes 99.50 ± 0.04 0.00 ± 0.00 99.54 ± 0.02 53.78 ± 6.06 57.95 ± 3.15 0.00 ± 0.00 99.13 ± 0.16 — — 0.00 ± 0.00 99.63 ± 0.01
MNIST

LeNet
Clients 99.28 ± 0.06 0.77 ± 0.27 98.69 ± 0.04 0.53 ± 0.28 97.89 ± 0.47 — — 8.05 ± 0.50 99.33 ± 0.21 0.66 ± 0.10 99.08 ± 0.12

Table 1: The comparison with current methods, including FedAvg, Retraining, Amnesiac unlearning [Graves et al., 2021], Class-dis [Wang
et al., 2022] and Federaser [Liu et al., 2021] and FedAU in different federated machine unlearning scenarios.
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Samples Class Client

Retraining ∼ 103 ∼ 103 ∼ 103

Amnesiac [Graves et al., 2021] ∼ 100 ∼ 100 ∼ 100

FedEraser [Liu et al., 2021] / / ∼ 103

Class-dis [Wang et al., 2022] / ∼ 102 /

FedRecovery [Zhang et al., 2023] / ∼ 100 /

FedAU (Ours) ∼ 10−3 ∼ 10−3 ∼ 10−3

Table 2: Unlearning time cost (s) for different FMU methods under
different federated machine unlearning scenarios.

The Amnesiac unlearning method [Graves et al., 2021] and
the Federaser method [Liu et al., 2021] are both affected in
terms of remaining accuracy. For instance, the drop in re-
maining accuracy for the unlearning class in CIFAR10 using
the Amnesiac unlearning method is more than 10% compared
to the retraining method; 2) Our proposed method, FedAU,
effectively maintains the remaining accuracy with a minimal
drop. Specifically, on CIFAR10, the drop in remaining accu-
racy is less than 1.5%, and on MNIST, it is only 0.2%.

Evaluation of Time Cost
Finally, we report the time consumed by each FMU (Fine-
tuning Model Update) method to demonstrate the associated
time costs (see details and more comparison on space con-
sumption in Appendix C). The main results on the CIFAR10
dataset are presented in Tab. 2. From these results, we can
draw two conclusions:

1. Among all the schemes, the Retraining scheme and
schemes involving fine-tuning operations consume con-
siderably more time compared to other methods;

2. Although the Amnesiac and FedRecovery scheme re-
quires a relatively small amount of time for unlearn-
ing, they still several orders of magnitude slower than
FedAU;

3. FedAU results in minimal additional training time, e.g,
additional 2s for AlexNet-CIFAR10. This is because the
AU module is lightweight such that training AU once
consumes little time and training AU successfully only
requires several epochs (see Appendix C).

4.3 Ablation Study
This section introduces the ablation study on the some im-
portant factors: the number of unlearning clients, the Non-
IID extent and the coefficient (α, β) of FedAU. More ablation
study on the proportion of unlearning samples, and impact of
Coefficient α and β see in Appendix C.

Unlearning for Multiple Clients
In the scenario where multiple clients request to unlearn,
we allocate each client to unlearn 10% of their respective
datasets. The results in Figure 3 depict the accuracy of un-
learning and remaining data as the number of unlearning
clients varies. The graph demonstrates that as the number
of unlearning clients increases, the accuracy of the unlearn-
ing and remaining datasets achieved by our proposed method,

FedAU, approaches that of the retraining method. This ob-
servation highlights the generality and effectiveness of our
method in the multiple client unlearning scenario.

Figure 3: The accuracy of FedAU and retraining methods on CI-
FAR10 with different number of unlearning clients.

Impact of Non-IID Extent
In our study, we examined the impact of the Non-IID ex-
tent on the performance of the proposed FedAU (Federated
Adaptive Unlearning) and retraining methods. To quantify
the Non-IID extent, we used the Dir(γ) distribution, where
smaller values of γ indicate more heterogeneous data.

Fig. 4 illustrates the results of our experiments. We ob-
served that the proposed FedAU method achieved a signifi-
cant unlearning effect, as evidenced by the accuracy on the
unlearning samples being less than 0.1% when γ = 1 . Ad-
ditionally, the FedAU method successfully maintained the
model accuracy on the remaining data, with a drop of less
than 2% compared to the retraining method.

Figure 4: The impact of Non-IID on CIFAR10 for the proposed
FedAU and Retraining methods.

5 Conclusion
In response to the limitations associated with unlearning in
Federated Learning (FL), we have introduced FedAU, an in-
novative and efficient Federated Machine Unlearning (FMU)
framework. Briefly, FedAU integrates a lightweight auxil-
iary unlearning module into the learning process, employing
a straightforward linear operation to streamline unlearning
without the need for additional time-consuming steps. More-
over, FedAU empowers multiple clients to simultaneously
perform unlearning tasks and supports unlearning at various
levels of granularity, ranging from individual data samples to
specific classes and even client-level unlearning. We hope
that its versatility and performance can make it a promising
tool for future developments in the field.
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