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Abstract
The multi-modal classification methods based on
neural architecture search (MMC-NAS) can auto-
matically learn a satisfied classifier from a given
multi-modal search space. However, as the num-
ber of multi-modal features and fusion operators
increases, the complexity of search space has in-
creased dramatically. Rapidly identifying the sat-
isfied fusion model from this vast space is very
challenging. In this paper, we propose an ef-
ficient MMC-NAS method based on an idea of
shrink-and-expansion search space, called core-
structures-guided neural architecture search (CSG-
NAS). Specifically, an evolutionary algorithm is
first used to find core structures from a shrunk space
named as core structure search space determined by
high-quality features and fusion operators. Then a
local search algorithm is adopted to find the op-
timal MMC model from the expanded space de-
termined by the discovered core structures and the
rest features as well as fusion operators. Moreover,
a knowledge inheritance strategy is introduced to
further improve the overall performance and effi-
ciency of the entire search process. Finally, ex-
tensive experimental results demonstrate the effec-
tiveness of our CSG-NAS, attaining the superior-
ity of classification performance, training efficiency
and model complexity, compared to state-of-the-
art competitors on several benchmark multi-modal
tasks. The source code is available at https://github.
com/fupinhan123/CSG-NAS.

1 Introduction
A satisfied multi-modal classification (MMC) model is lo-
cated in the space determined by multiple features and fu-
sion operators [Liang et al., 2021; Liang et al., 2024; Yin
et al., 2022]. According to the professional knowledge, ex-
perts can directly provide a solution such as [Xu et al., 2024;
Han et al., 2023; Liang et al., 2022a; Guo et al., 2022]. Re-
cently, some exciting results indicate that search-based tech-
niques are able to obtain better solution than human design-
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Figure 1: Illustration of a 2D embedding of a high-dimensional
search space, where black dots represent some randomly sampled
multi-modal fusion structures from the entire fusion space, while
yellow triangles depict ones with the high accuracy obtained from a
pre-identified high-quality fusion space called core structures; white
arrows indicate the search direction and the white dashed circles rep-
resent high-quality subspaces.

ers. The random search strategy shown in Figure 1(a) may be
feasible for querying all fusion architectures in a small search
space. However, when the search space is larger, the strategy
becomes computationally impractical.

Later, researchers turned their attention to neural architec-
ture search (NAS), proposing various MMC based on NAS
methods (MMC-NAS) such as EDF [Liang et al., 2021], BM-
NAS [Yin et al., 2022] and DC-NAS [Liang et al., 2024]. As
illustrated in Figure 1(b), these methods first randomly initial-
ize some structures, and then use the directed search strate-
gies such as evolutionary algorithm, reinforcement learning
or gradient-based learning for the best multi-modal fusion
architecture search. The existing MMC-NAS methods have
achieved a significant success. However, the ever-expanding
number of multi-modal features and fusion operations has re-
sulted in an increasingly vast search space. Consequently, the
training and evaluation processes become time-consuming,
and the entire search process continues to face substantial
challenges in terms of optimization and efficiency.

To improve search performance and mitigate challenges
posed by large-scale search spaces, as illustrated in Figure
1(c), we propose a core-structures-guided multi-modal classi-
fication architecture search method (CSG-NAS). In compari-
son to existing methods, CSG-NAS rapidly narrows down the
entire search space to a high-quality subspace and searches
for the optimal fusion structure within this subspace. This
avoids evaluating numerous underperforming structures, di-
rectly improving the performance of MMC-NAS. The moti-
vation behind this method is that optimal multi-modal fusion

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3980

https://github.com/fupinhan123/CSG-NAS
https://github.com/fupinhan123/CSG-NAS


architectures often consist of structures composed of superior
features and fusion operators, which we refer to as core struc-
tures. By basing our search on these core structures, we can
quickly locate regions with optimal multi-modal fusion ar-
chitectures, thereby reducing the entire search space to a sub-
space with advanced performance. Subsequently, we conduct
local search within these core structures to find the optimal
multi-modal fusion architectures. To further improve search
efficiency, we introduce a knowledge inheritance strategy on
top of the evolutionary algorithm. In the crossbreeding and
mutation of offspring, many methods typically only consider
the encoding perspective, neglecting the weight parameters
learned by the parents. We leverage these weight parameters
to further improve the efficiency of the evolutionary process.

Our research has been validated on multiple multi-modal
datasets, showcasing optimal performance in terms of accu-
racy and efficiency. Specifically, our contributions include:

• The optimal MMC architecture is definitely located in
the subspace that is determined by high-quality features
and fusion operators. Based on the finding, we give the
definition of the core structures for the first time and pro-
pose a core-structures-guided multi-modal classification
architecture search method, which can rapidly identify
the optimal fusion architecture in a vast search space.

• The similar MMC architectures exhibit similar perfor-
mance. With this idea, we design an innovative adaptive
knowledge inheritance strategy for the evolutionary al-
gorithm, which facilitates the sharing and reutilization of
knowledge within the population, enhancing the learn-
ing capabilities.

• Extensive experimental comparisons across multiple
multi-modal tasks demonstrate that CSG-NAS achieves
competitive performance in terms of reduced search
time and model parameter count compared to state-of-
the-art multi-modal feature fusion methods.

2 Related Work
Multi-Modal Fusion: It fuses the relevant information from
different modalities, achieving better performance [Jiang et
al., 2024; Liang et al., 2022b].In context of deep neural net-
works, multi-modal fusion techniques are generally classified
into three types: early fusion, late fusion, and intermediate
layer fusion. Early fusion combines low-level features, late
fusion combines high-level features such as predictions from
the output layer of the network. Additionally, research on
intermediate feature fusion indicates its benefits for learning
gains and can enhance later fusion to improve performance.
Therefore, some studies propose fusion at multiple interme-
diate layers. For example, CentralNet [Vielzeuf et al., 2019]
and MMTM [Vaezi Joze et al., 2020] connect latent represen-
tations at each layer and pass them as auxiliary information
into deeper layers. However, such approaches significantly
increase the parameters of multi-modal fusion models.

Neural Architecture Search: NAS [Liu et al., 2019] has
been introduced to automate the design of neural models,
aiming to discover efficient architectures with competitive
performance. The initial approach [Zoph et al., 2018] iter-
atively generated and trained candidate architectures with a

reinforcement learning controller, but incurred high compu-
tational costs. Subsequent research adopted methods such as
genetic algorithms [Real et al., 2019], Bayesian optimization
[Mendoza et al., 2016], and predictors [Wei et al., 2023].The
introduction of supernetworks was a significant milestone; for
example, SMASH [Brock et al., 2018] utilized a one-shot
network, training multiple candidate architectures simulta-
neously through shared weights, significantly reducing train-
ing time. To address limitations in exploratory performance,
some methods like OFA [Cai et al., 2020] employed novel
path sampling and optimization techniques. Overall, one-shot
networks have proven to be efficient, achieving state-of-the-
art NAS performance.

NAS-based Multi-Modal Fusion: The integration of NAS
into multi-modal learning has attracted significant interest.
Evolutionary algorithms like EDF [Liang et al., 2021] and
DC-NAS [Liang et al., 2024] maintained a set of architectures
by generating new multi-modal fusion architectures through
genetic operations such as mutation and crossover. Sequen-
tial model-based optimization algorithms are used in MFAS
to search for given single-modal to multi-modal fusion ar-
chitectures. Differentiable methods such as MMIF [Peng et
al., 2020], 3D-CDC-NAS2 [Yu et al., 2021], and BM-NAS
[Yin et al., 2022] optimize shared weights and architectural
parameters to significantly reduce computational resource re-
quirements and improve its search efficiency. However, they
still require a considerable amount of time when dealing with
complex and extensive multi-modal fusion search spaces.

3 Methods
In this paper, we propose a core structures-guided neural ar-
chitecture search (CSG-NAS) for finding the optimal multi-
modal fusion architecture. CSG-NAS consists of two steps:
(1) core structure search (CSS) and (2) core structures-guided
optimal fusion architecture search. The main framework of
CSG-NAS is shown in Figure 2.

To avoid confusion, we provide precise definitions for cer-
tain terms here. A population consists of individuals, where
each individual corresponds to a MMC model encoded in
the form of a tree. All representations extracted from dif-
ferent modalities are collectively referred to as features. The
space composed of high-quality features and fusion operators
is termed the core structure search space, while the remaining
constitutes the non-core structure search space.

3.1 Retionality
Let S be the entire search space of multi-modal fusion, one
partitions it into the architecture set with better performance
S1 and the architecture set with worse performance S2 via
one partition strategy. Our goal is to focus on searching the
small portion of space (called the shrunk space in this pa-
per) where S1 resides and eliminate the space where S2 is
located. This can be achieved using a space shrunk method
that can remove architectures with relatively poorer perfor-
mance from the search space. There are two obvious advan-
tages when one search algorithm works on the shrunk search
space than S that 1) the shrunk search space with smaller car-
dinality leads to an improved training efficiency; 2) the higher
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Figure 2: The framework of CSG-NAS, where M1 and F 1 denote the high-quality feature set and fusion operator set, respectively.

proportion of optimal fusion architectures allows the search
algorithm to concentrate training and exploration in more fa-
vorable regions of the search space. This leads to a better
performance ranking. Therefore, our objective is to use the
algorithm to locate the space where S1 resides and allocate
computational resources to enhance the efficiency of the al-
gorithmic search, while disregarding the space where S2 is
situated. In this paper, we achieve this objective by propos-
ing the Core Structures Search algorithm (CSS) detailed in
Section 3.2.

3.2 CSS: Core Structure Search
By examining previously advanced multi-modal NAS meth-
ods such as MFAS [Perez Rua et al., 2019], EDF [Liang et al.,
2021], BM-NAS [Yin et al., 2022] and DC-NAS [Liang et al.,
2024], it is observed that the optimal multi-modal fusion ar-
chitectures often contain certain structures that consist of the
features and fusion operators with good performance, which
we refer to as core structures. Hence, it can be assumed that
the core structures are located in the subspace that is deter-
mined by the high-quality features and fusion operators. The
subspace is referred to as core structure search space.

Based on the assumption, we can narrow down the entire
search space to the core structure search space by evaluating
the performance of each feature and fusion operator at a rela-
tively low cost. Specifically, given n features denoted as M1,
M2, ..., Mn and a single-modal classifier f . And then we
obtain each feature Mi classification performance by pass-
ing it f , and select the first k1 higher-performance features
to the high-quality feature set M1. Given m fusion opera-
tors denoted as F1, F2, ..., Fm and a multi-modal classifier h.

And then, we obtain the classification performance of each
fusion operator Fi by replacing the fusion way of h with Fi,
and select the first k2 higher-performance fusion operators to
high-quality fusion operator set F 1.

The space composed of M1 and F 1 is termed the core
structure search space. Next, in the core structure search
space we employ the proposed enhanced evolutionary algo-
rithm ENAS1 for the search. The final result after ENAS1

iterations is referred to as the core structures. The detailed
process of the evolutionary algorithm can be found in Section
3.4. The remaining features and fusion operators are put into
two sets M2 and F 2, i.e., M2 = M−M1 and F 2 = F −F 1.
Both of them will be used in CSG-OFSS in Section 3.3.

3.3 CSG-OFSS: Core Structures-Guided Optimal
Fusion Architectures Search

Due to the fact that optimal multi-modal fusion architectures
often contain core structures, we can leverage the core struc-
tures obtained in the first-stage search to rapidly determine a
high-quality search sub-space containing the optimal multi-
modal fusion architecture. This subspace is comprised of the
neighborhood surrounding the core structures.

The core structures identified through the ENAS1 search
become the focus in this stage, where we concentrate on ex-
ploring the neighborhoods of these core structures to find the
optimal multi-modal fusion architecture. Initially, the neigh-
borhood of a core structure refers to the multi-modal fusion
architectures formed by continuously adding substructures
composed of the remaining features M2 and fusion operator
set F 2 to the core structures. To obtain the optimal multi-
modal fusion architecture, we employ ENAS2 to search the
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neighborhood of each core structure. Through the evolution-
ary algorithm, we can adaptively evaluate the fusion architec-
tures around each core structure, achieving the goal of search-
ing the neighborhood. The detailed process of the evolution-
ary algorithm can be found in Section 3.4.

3.4 Search Strategy

Two armed evolutionary algorithms ENAS1 and ENAS2 with
our proposed adaptive knowledge inheritance (AKI) are used
as search strategy to core structures search and the optimal
multi-modal fusion architecture, respectively. AKI will be
detailed in Section 3.6.

Initially, we initialize a population from the core struc-
ture search space and iteratively discover the core structures
through the search process. Subsequently, evolutionary al-
gorithms are utilized to search within the neighborhoods of
these structures. Specifically, we treat the core structures
as a new population and focus on expanding individuals in
this population using mutation operations during the iterative
search process. This expansion is aimed at exploring the sur-
rounding neighborhoods. For instance, when an individual
undergoes a mutation operation, we generate a substructure
from the feature set M2 and the fusion operator set F 2, and
expand the individual through the addition operation of the
mutation, as illustrated in the lower right corner of Figure 2.
The key steps of CSG-NAS include population initialization,
fitness evaluation, offspring generation, and selection.

Population Initialization: Generate a population P con-
sisting of K individuals randomly from the core structure
search space.

Fitness Evaluation: Each individual is decoded into a
multi-modal classification model, with detailed decoding pro-
cesses outlined in Section 3.5. Subsequently, the model is
trained and evaluated using the corresponding dataset to ob-
tain the fitness value for each individual.

Crossover and Mutation: The entire algorithm is divided
into two stages: ENAS1 for CSS and ENAS2 for CSG-
OFSS. Each stage has different crossover and mutation rates
to meet its specific search objectives.

ENAS1: Crossover rate is r = r1, mutation rate is r = r2
In this stage, following the traditional EA principles, the
probability of crossover operation is significantly higher than
the probability of mutation operation. The objective is to
search for core structures, and the mutation operation gen-
erates a substructure from the core structure search space, re-
placing a specific substructure within the individual.

ENAS2: Crossover rate is r = r1/9, mutation rate is
r = 4r2. In contrast to the ENAS1, ENAS2 employs an ex-
tremely low crossover rate and a very high mutation rate. The
goal is to explore the neighborhood around core structures;
hence, the probability of mutation operation is high. The mu-
tation operation generates a substructure from the non-core
structure space and adds it to the individual, searching the
neighborhood around the core structures. The low crossover
rate aims to avoid disrupting the core structures themselves.

Selection: Binary tournament selection (BTS) [Liang et
al., 2021] is used.
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Figure 3: The difference between original crossover and our one

3.5 Encoding and Decoding of Multi-Modal
Classification Models

Each individual p within the population is encoded as a binary
tree, where the leaf nodes denote features, and the branch
nodes represent fusion operators. In this paper, fusion oper-
ators include concatenation, addition, multiplication, Maxi-
mize, and average. Detailed definitions can be found in work
[Liang et al., 2021]. For each individual, if the binary tree
contains k features, then it must contain k − 1 fusion oper-
ators. Each individual corresponds to a multi-modal classifi-
cation model. The binary tree can be decoded into a multi-
modal classification model through the following steps: 1)
Channel the modality features, represented by the leaf nodes
of the individual encoding tree, into fully connected layers
(FC) for feature alignment to facilitate feature fusion; 2) Con-
duct feature fusion based on the fusion operators represented
by the branch nodes; 3) Direct the fused features through FC
and Softmax layers for the final prediction output.

3.6 AKI: Adaptive Knowledge Inheritance
In traditional evolutionary NAS, offspring are typically gen-
erated through crossover and mutation of the encoding struc-
tures, without considering the weights learned by the parent
during training, as illustrated in Figure 3. However, in addi-
tion to the network structure, the initialization weights also
play a crucial role in the performance of convolutional neural
networks (CNNs). Well-known initialization methods, such
as Xavier initializer and Kaiming initializer, are often used
in neural architecture search methods. However, these initial-
ization methods do not fully leverage the knowledge acquired
from training CNNs.

Based on the analysis, we introduce a novel breeding strat-
egy based on knowledge inheritance. Its core idea is that sim-
ilar structures often demonstrate comparable performance. In
other words, the more similarity exists between the structure
of offspring and parent, the closer their performance tends to
be. This perspective has been validated in numerous stud-
ies. Consequently, we determine whether to inherit knowl-
edge from the parent by calculating the similarity between
offspring and parent, specifically the weight knowledge ac-
quired by the parent during training. When the similarity sur-
passes a threshold s, it needs to inherit the parent’s knowl-
edge, thereby facilitating the learning process of the off-
spring. This approach allows some offspring to avoid training
from scratch and instead fine-tune on the weights learned by
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the parent, leading to significant performance improvements
and enhancing the efficiency of the entire search process.

To quantify the similarity between parent and offspring,
the concept of tree edit distance [Gopal et al., 2023] is in-
troduced, representing the minimum number of changes of
transforming one individual into another. The calculation is
specifically performed using a dynamic programming algo-
rithm. This strategy aims to improve learning performance
and efficiency by sharing and reusing the weights learned by
the parent. During the breeding process, in addition to manip-
ulating the network structure, this strategy also transfers the
weights learned by the parent to the offspring, which helps
the offspring network to converge and learn faster while fully
utilizing valuable information obtained in the parent network.

4 Experiments
4.1 Multi-Modal Datasets
Our method is implemented using TensorFlow 2.0.3. The
computational environment consists of Ubuntu 16.04.4,
512GB DDR4 RDIMM, 2X 40-Core Intel Xeon CPU E5-
2698 v4 @ 2.20GHz, and NVIDIA Tesla P100. The used
GPU configuration in this paper is the same as the MFAS.

We validated five popular multi-modal datasets: (1)
ChemBook-10k (CB) [Liang et al., 2021] dataset, designed
for chemical structure image recognition in patent retrieval
studies, which contains 100,000 chemical structure images
distributed into 10,000 categories. (2) NUS-WIDE-128
(NUS) [Tang et al., 2017] dataset, which contains 43,800 im-
ages divided into 128 categories. We chose a subset of 10
categories totalling 23,438 images from this dataset. (3) MM-
IMDB [Arevalo et al., 2017] dataset for the multi-label film
genre classification task, which contains a total of 23 cate-
gories. The dataset is divided into a training set of 15,552
films, a validation set of 2,608 films, and a test set of 7,799
films. (4) NTU RGB-D [Shahroudy et al., 2016] dataset for
multimodal action recognition task containing 60 categories.
The training, validation and test sets include 23,760, 2,519
and 16,558 samples, respectively. (5) EgoGesture [Zhang
et al., 2018] dataset for multimodal gesture recognition task
containing 83 categories. The training set of this dataset in-
cludes 14,416 samples, the validation set includes 4,768 sam-
ples, and the test set includes 4,977 samples.

4.2 Comparison Methods
To validate the effectiveness and efficiency of the CSG-
NAS, we compared it with several state-of-the-art algorithms.
These peer competitors can be broadly categorized based on
whether the architecture is manually designed. The first cate-
gory is MMC whose fusion architectures are designed by hu-
man experts, including MBL [Kim et al., 2017], MFB [Yu et
al., 2018], TFN [Zadeh et al., 2017], LMF [Liu et al., 2018],
PTP [Hou et al., 2019], TMC [Han et al., 2023], TMOA [Liu
et al., 2022], AWDR [Yang et al., 2019], RAMC [Jiang et al.,
2022], Maxout MLP [Goodfellow et al., 2013] , VGG Trans-
fer [Simonyan and Zisserman, 2015], GMU [Arevalo et al.,
2017], CentralNet [Vielzeuf et al., 2019], Inflated ResNet-
50 [Baradel et al., 2018], Co-occurrence [Li et al., 2018],
MMTM [Vaezi Joze et al., 2020], VGG-16 + LSTM [Yang
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Figure 4: The accuracies of single feature and fusion operation

and Tian, 2014], C3D + LSTM + RSTTM [Molchanov et
al., 2016], I3D [Carreira and Zisserman, 2017], ResNext-101
[Köpüklü et al., 2019], and MTUT [Gupta et al., 2019]. The
second category is NAS-based MMC methods including EDF
[Liang et al., 2021], MFAS [Perez Rua et al., 2019], BM-
NAS [Yin et al., 2022], 3D-CDC-NAS2 [Yu et al., 2021] and
DC-NAS [Liang et al., 2024].

4.3 Performance Comparison
Results on CB and NUS. To mitigate the randomness in-
troduced by data splitting and network initialization, each
dataset is divided into training and testing sets via 5-fold
cross-validation.

From Figure 4, the performance of each feature and fusion
operation can be observed. Following the aforementioned al-
gorithm, we first select high-quality features and fusion oper-
ations to form the core structure search space. For example,
for the CB dataset, we chose features M1, M3, M4, M7, M8,
and fusion operations F1, F2, F5. For the NUS dataset, we
selected features M2, M4, M6, and fusion operations F1, F2,
F5. We then search for the core structures and, based on the
core structures, use a local algorithm to search for the optimal
multi-modal fusion architecture.

To thoroughly demonstrate the advancement of MMC-
NAS, our experimental settings follow the EDF [Liang et al.,
2021]. We compared MMC-NAS with some advanced multi-
modal fusion operators and existing advanced multi-modal
fusion methods. From the results in Table 1, we can con-
clude that, compared to advanced fusion operators, our use
of basic fusion operators with our search strategy achieves
a significant lead. Among multi-modal methods, except for
EDF and DC-NAS, all others are non-NAS methods. It is ev-
ident that the performance of MMC-NAS methods is superior
to manual selection. Due to our ability to rapidly locate core
structures, locally search for optimal fusion architectures, and
utilize a knowledge inheritance mechanism, our performance
surpasses EDF and DC-NAS.

Results on MM-IMDB. To ensure a fair comparison with
other explicit multi-modal fusion methods, we adopted the
same neural network backbone models as BM-NAS and DC-
NAS to extract various modality features, with the weighted
F1 score as the evaluation metric. The parameters are set as
follows: the population size N is 20, the number of popula-
tion iterations T is 8, the dimension of the fusion vector FD
is 128, and modality features are repeatable. According to
Table 2, the weighted F1 score of CSG-NAS is better than the
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Method CB NUS
Advanced fusion operators

MBL 82.38±0.32 70.60±0.29
MFB 87.94±0.32 71.34±0.40
TFN 73.45±0.30 63.66±1.22
LMF 82.81±0.18 71.74±0.70
PTP 85.08±0.11 71.83±0.50

Multi-modal methods
TMC 77.88±0.20 72.73±0.30
TMOA 86.81±0.09 72.60±0.48
EmbraceNet 85.85±0.09 72.43±0.38
AWDR 86.66±0.16 72.44±0.66
RAMC 85.36±0.46 72.51±0.67
EDF 88.46±0.27 73.67±0.64
DC-NAS 88.52±0.13 74.20±0.32
CSG-NAS(ours) 89.20±0.06 74.52±0.40

Table 1: The accuracy on the CB and NUS dataset are reported

Method Modality F1-W(%)
Unimodal methods

Maxout MLP (ICML13) Text 57.54
VGG Transfer (ICLR15) Image 49.21

Multi-modal methods
Two-stream (NIPS14) Image + Text 60.81
GMU (ICLR17) Image + Text 61.70
CentralNet (ECCV18) Image + Text 62.23
MFAS (CVPR19) Image + Text 62.50
BM-NAS (AAAI22) Image + Text 62.92±0.03
DC-NAS (AAAI24) Image + Text 63.70±0.11
CSG-NAS (ours) Image + Text 64.12±0.12

Table 2: Multi-label genre classification results on MM-IMDB
dataset. Weighted F1 (F1-W) is reported.

existing multi-modal classification methods, surpassing the
state-of-the-art MFAS, BM-NAS, and DC-NAS by 1.96%,
1.22%, and 0.42%, respectively.

Results on NTU RGB-D. Followed the data preprocess-
ing pipelines of BM-NAS and DC-NAS to ensure the fairness
of the experimental results. Specifically, Inflated ResNet-50
[Baradel et al., 2018] and Co-occurrence [Li et al., 2018] are
adopted as the feature extractor for the skeleton and video
modality, respectively, extracting eight features denoted as
skeletoni and videoi, where i = 1, 2, 3, 4. Moreover, the
population size is 28, iteration times is 8, fusion modality di-
mension is 64, and modalities are not reused. In Table 3, our
method achieved a cross-subject accuracy of 91.12%, outper-
forming recent methods using video and skeleton modalities.
By examining the optimal architectures obtained by MFAS,
BM-NAS and DC-NAS, it can be seen that they both contain
high-quality features, such as skeleton4 and video4, validat-
ing the necessity of searching from the core structure space.

Results on EgoGesture. The settings of the BM-NAS
method are followed where ResNeXt-101 [Köpüklü et al.,
2019] as the backbone network for RGB and depth video
modalities. CSG-NAS is compared with various single-
modal and multi-modal methods. The experimental settings

Method Modality Acc (%)
Unimodal methods

Inflated ResNet-50 (CVPR18) Video 83.91
Co-occurence (IJCAI18) Pose 85.24

Multi-modal methods
Two-stream (NIPS14) Video + Pose 88.60
GMU (ICLR17) Video + Pose 85.80
MMTM (CVPR20) Video + Pose 88.92
CentralNet (ECCV18) Video + Pose 89.36
MFAS (CVPR19) Video + Pose 89.50±0.60
BM-NAS (AAAI22) Video + Pose 90.48±0.24
DC-NAS (AAAI24) Video + Pose 90.85±0.05
CSG-NAS (ours) Video + Pose 91.12±0.03

Table 3: Action recognition results on NTU RGB-D dataset

Method Modality Acc (%)
Unimodal methods

ResNext-101 (FG19) RGB 93.75
VGG-16 + LSTM (CVPR14) Depth 77.70
C3D + LSTM + RSTTM Depth 90.60
I3D (CVPR17) Depth 89.47
ResNeXt-101 (FG19) Depth 94.03

Multi-modal methods
VGG-16 + LSTM (CVPR17) RGB + Depth 81.40
C3D + LSTM + RSTTM RGB + Depth 92.20
I3D (CVPR17) RGB + Depth 92.78
MMTM (CVPR20) RGB + Depth 93.51
MTUT (3DV19) RGB + Depth 93.87
3D-CDC-NAS2 (TIP21) RGB + Depth 94.38
BM-NAS (AAAI22) RGB + Depth 94.96±0.07
DC-NAS (AAAI24) RGB + Depth 95.22±0.05
CSG-NAS (ours) RGB + Depth 95.25±0.04

Table 4: Gesture recognition results on EgoGesture dataset

for CSG-NAS included a population size of 28, 10 itera-
tions, no modal reuse, and a fusion dimension of 32. Ta-
ble 4 presents the experimental results on the EgoGesture
dataset. Compared to other unimodal/multimodal methods,
CSG-NAS achieves state-of-the-art fusion performance, indi-
cating that CSG-NAS can effectively enhance gesture recog-
nition performance on the EgoGesture dataset.

4.4 Search Efficiency Comparison
The goal of this section is to compare CSG-NAS with sev-
eral powerful MMC baseline methods, including MFAS,
EDF, BM-NAS, DC-NAS, and MMTM, focusing primarily
on search efficiency and performance to demonstrate its ad-
vanced capabilities. The research results are comprehensively
summarized in Table 5. From the table, it can be observed
that on five complex datasets, CSG-NAS finds the optimal fu-
sion architecture in the shortest time. For example, on NUS
and CB, we outperform EDF and DC-NAS in terms of per-
formance and achieve nearly four times the efficiency of the
EDF method and twice that of the state-of-the-art DC-NAS
method. On NTU RGB-D and EgoGesture, we achieve sig-
nificant advantages in both performance and efficiency, with
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Method Dataset Parameters Time CP (%)
EDF NUS 0.31M 11.43 73.67

DC-NAS NUS 0.53M 4.61 74.20
CSG-NAS(ours) NUS 0.37M 2.71 74.52

EDF CB 2.28M 78.01 88.48
DC-NAS CB 2.41M 61.88 88.45

CSG-NAS(ours) CB 2.47M 24.68 89.20
BM-NAS MM-IMDB 0.65M 1.24 62.94
DC-NAS MM-IMDB 0.42M 1.19 63.70

CSG-NAS(ours) MM-IMDB 0.56M 0.98 64.12
MMTM NTU 8.61M - 88.92
MFAS NTU 2.16M 603.64 89.50

BM-NAS NTU 0.98M 53.68 90.48
DC-NAS NTU 0.26M 13.63 90.85

CSG-NAS(ours) NTU 0.19M 5.19 91.12
BM-NAS Ego 0.61M 20.67 94.96
DC-NAS Ego 0.19M 4.57 95.22

CSG-NAS(ours) Ego 0.20M 3.27 95.25

Table 5: Comparison of model size, time (GPU hours) and classifi-
cation performance (CP) of generalized multi-modal NAS methods.

Version CS KI Time Acc (%)
CSG-NAS1 False False 67.96±5.65 88.45±0.22
CSG-NAS2 True False 36.75±1.09 88.57±0.03
CSG-NAS True True 24.68±3.41 89.20±0.06

Table 6: Ablation study of CSG-NAS

the time consumption for searching the optimal fusion model
reduced by almost ten times compared to the state-of-the-art
BM-NAS and twice that of DC-NAS. This is attributed to
our core structures-guided neural architecture search method,
which significantly narrows down the search space, effec-
tively avoiding the evaluation of a large number of poorly
performing models, and focusing on assessing models with
superior performance.

4.5 Ablation Study
To provide a more in-depth analysis for the proposed CSG-
NAS, we conducted ablation experiments on the CB dataset.

Effectiveness of Core Structures (CS) and Knowledge
Inheritance (KI): To delve into the impact of CS and KI
on CSG-NAS, we conducted a performance analysis in three
scenarios of CSG-NAS. From Table 6, we can draw the fol-
lowing conclusions: Compared to searching the entire space,
using core structures to guide neural architecture search al-
lows achieving the same performance level in a shorter time.
Looking at the standard deviations of CSG-NAS1 and CSG-
NAS2, CSG-NAS2 exhibits higher stability, indicating con-
sistent discovery of the optimal fusion architecture. On the
other hand, CSG-NAS1 shows larger fluctuations and may
occasionally converge to suboptimal solutions. The results
clearly demonstrate that the use of knowledge inheritance ar-
chitectures can effectively enhance search efficiency and im-
prove performance. For instance, the time was reduced from
36 hours to 25 hours and the performance increased from
88.57% to 89.20%.
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Figure 5: Comparison between core structures selection strategies

Cases Inheritance conditions Acc (%)
1 Not inheriting 88.56
2 All inheriting 89.07
3 Random inheriting 88.78
4 Inheritance with s < 0.5 88.64
5 Inheritance with s > 0.5 89.33

Table 7: Effect of Inheritance Architectures on CSG-NAS

Analysis of Core Structures Selection Strategies: To in-
vestigate the impact of core structures selection on subse-
quent search, four experiments were conducted. The first
one experiments involved searching for core structures us-
ing high-quality features and fusion operators, while the next
three experiments randomly selected features and fusion op-
erators for core structures search. The experimental results
in Figure 5 clearly indicate that searching for core structures
using high-quality features and fusion operations leads to sig-
nificantly superior outcomes compared to the case of ran-
domly selecting features and fusion operations.

Knowledge Inheritance: To investigate the impact of
knowledge inheritance on CSG-NAS, we conducted five ex-
periments including no inheritance, complete inheritance,
random inheritance, and inheritance occurs based on empir-
ical observation when similarity is greater than 0.5 and less
than 0.5. The results in Table 7 show that inheriting from off-
spring with a similarity greater than 0.5 leads to optimal per-
formance. This indicates that determining knowledge inher-
itance based on the similarity between parent and offspring
has a significant positive impact on CSG-NAS.

5 Conclusion

This paper has investigated a rapid and adaptive method for
searching multi-modal fusion architectures, utilizing a core
structure to swiftly narrow down the entire search space to a
compact subset with state-of-the-art performance. The core
structures have been employed for local search in its vicinity
to identify the optimal multi-modal fusion architecture. Ad-
ditionally, a novel knowledge inheritance strategy has been
proposed to further enhance performance. Extensive exper-
iments have validated CSG-NAS’s advantages. The use of
CSG-NAS holds the promise of significantly alleviating the
challenges posed by vast multi-modal fusion search spaces
and remarkably improved search efficiency.
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Manuel Montes-y Gómez, and FabioA. González.
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