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Abstract
Multi-view clustering is a popular unsupervised
multi-view learning method. Real-world multi-
view data are often distributed across multiple enti-
ties, presenting a challenge for performing multi-
view clustering. Federated learning provides a
solution by enabling multiple entities to collab-
oratively train a global model. However, exist-
ing federated multi-view clustering methods usu-
ally conduct feature extraction and clustering in
separate steps, potentially leading to a degrada-
tion in clustering performance. To address this
issue and for the sake of efficiency, we propose
a novel Federated Multi-View Clustering method
with Integrated Matrix Factorization and K-Means
(FMVC-IMK), which integrates matrix factoriza-
tion and multi-view K-means into one step. Ad-
ditionally, an adaptive weight is employed to bal-
ance the influence of data from each view. FMVC-
IMK further incorporates a graph-based regularizer
to preserve the original data’s geometric structure
within the learned global clustering structure. We
also develop a federated optimization approach to
collaboratively learn a global clustering result with-
out sharing any original data. Experimental results
on multiple datasets demonstrate the effectiveness
of FMVC-IMK.

1 Introduction
Multi-view data [Wang et al., 2023] can provide a compre-
hensive description of an object from different perspectives,
such as modalities and features, where each view provides
consistent and complementary information [Xu et al., 2013].
For instance, human activities can be captured through cam-
eras, video recorders, and textual descriptions. Due to the
high expense of reliable label acquisition, multi-view cluster-
ing has emerged as a popular unsupervised learning method
within the field of multi-view learning [Sun et al., 2020]. Ex-
isting multi-view clustering methods can be roughly divided
into five categories [Yang and Wang, 2018]: Co-training style
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algorithms [Jiang et al., 2013], Multi-view graph clustering
[Huang et al., 2019; Wen et al., 2020], Multi-kernel learn-
ing [Tzortzis and Likas, 2012], Multi-view subspace cluster-
ing [Zheng et al., 2023], and Multi-task multi-view clustering
[Al-Stouhi and Reddy, 2014].

Although multi-view clustering methods have exhibited
promising performance, they are mainly designed for cen-
tralized scenarios where multi-view data is located in a sin-
gle party. In reality, however, multi-view data is often col-
lected and maintained by different entities [Chen et al., 2023;
Huang et al., 2020; Feng and Yu, 2020]. Due to data pri-
vacy concerns, these data holders are generally unwilling to
share their data with others directly. To address this chal-
lenge, federated learning was introduced, enabling collabo-
rative training of multi-view clustering models without the
need for direct data sharing [McMahan et al., 2017]. For ex-
ample, [Chen et al., 2023] proposed a federated deep multi-
view clustering method with global self-supervision, which
has demonstrated remarkable clustering performance. [Ren
et al., 2024] both consider unaligned and incomplete data in
federated multi-view clustering.

The utilization of deep federated models incurs signifi-
cant computation and communication costs, rendering them
unsuitable for scenarios that show a requirement for ef-
ficiency. Consequently, several heuristic federated multi-
view clustering methods have been developed based on non-
negative matrix factorization (NMF) [Huang et al., 2022]
and K-means. Owing to their simplicity and efficiency,
these methods can better satisfy the efficiency require-
ments in computation/communication-sensitive applications.
Nonetheless, it is widely recognized that both NMF and K-
means are unable to process linearly inseparable data and re-
tain the local geometric structure of the original data. For an-
other, existing heuristic federated multi-view clustering per-
forms feature extraction and clustering in two separate pro-
cedures [Huang et al., 2022; Hu et al., 2023], and hence, the
clustering results cannot guide the extraction process. These
limitations lead to the potential risk of performance degrada-
tion and greatly restrict their application.

To overcome these weaknesses, we develop an efficient
Federated Multi-View Clustering with Integrated Matrix
Factorization and K-Means (FMVC-IMK). It integrates K-
Means into Federated NMF, enabling itself to enhance the
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performance of each other for superior clustering results.
Besides, considering the heterogeneity of distributed data,

we introduce an adaptive update weight that can be locally
computed to quantify each client’s contribution to the global
model. To improve the performance on linearly inseparable
multi-view data, a graph-based regularizer is introduced to re-
tain the local geometric structure information. Finally, we de-
sign a federated optimization algorithm to optimize the model
without sharing any original multi-view data. To summarize,
the main contributions of the work are as follows:

• We propose a novel FMVC-IMK for federated multi-
view clustering. It performs federated multi-view NMF
and K-means in an integrated step by approximating the
coefficient matrix of NMF with the indicator matrix and
centroid matrix of K-means. Therefore, it can learn a
better clustering structure from multi-view data located
in different clients.

• To retain the geometric structure in the original data,
we introduce a graph-based regularizer to constrain the
learned indicator to be consistent with the original data,
which helps enhance the clustering performance, partic-
ularly for data that exhibit non-linear separability

• We develop an optimization algorithm with adaptive
weights to cooperatively optimize the objective func-
tion among the server and multiple clients. The adap-
tive weights dynamically adjust the contribution of each
client’s locally trained model to the global model.

• We conduct extensive experiments on eight multi-view
datasets and compare FMVC-IMK with several meth-
ods. The experimental results demonstrate the effective-
ness and superiority of our method.

2 Related Work
2.1 Heuristic Multi-View Clustering
Heuristic multi-view clustering [Huang et al., 2021] shows
higher computational efficiency and demonstrates its signif-
icance in many computation-sensitive applications. NMF
becomes an effective method to build multi-view clustering
methods because they could well exploit the information of
different views. For example, [Liu et al., 2013] formulated a
multi-view clustering method via joint NMF to learn a com-
mon consensus; ONMF is an variant of NMF with orthogo-
nal constraints and [Liang et al., 2020] applied co-orthogonal
constraints on representation matrices and basis matrices to
further capture the diversity within views and learn the ap-
propriate basis matrices.

Apart from NMF, K-means is another popular method to
build multi-view clustering [Cai et al., 2013]. To handle
linearly inseparable data, [Gao et al., 2019b] introduced a
multi-manifold regularizer to learn the hypergraph weights.
Similarly, [Zhu et al., 2020] imposed the constraints on high-
level manifold consensus, aiming to capture deeper underly-
ing structures of the data. Besides, [Zheng et al., 2023] pro-
posed a novel one-pass method, which achieves better cluster-
ing performance than traditional NMF-based methods. How-
ever, all the methods mentioned above are designed for cen-

Figure 1: The framework of the proposed FMVC-IMK. G-R denotes
the graph regularizer.

tralized applications and cannot be directly utilized in feder-
ated scenarios.

2.2 Federated Multi-View Clustering

Federated learning, as a distributed machine learning
paradigm, aims to train models on multiple local clients
without transferring raw data or other sensitive data, which
can be roughly categorized into horizontal federated learning
(HFL) [Gao et al., 2019a; Zhao et al., 2021], Vertical fed-
erated learning (VFL) [Sun et al., 2021; Liu et al., 2020],
and Federated Transfer Learning (FTL) [Kevin et al., 2021;
Yang et al., 2020]. The federated learning is quickly extended
to federated multi-view learning [Che et al., 2022]. In terms
of federated multi-view clustering, [Chen et al., 2023] devel-
oped federated deep multi-view clustering with global self-
supervision. Effective as it is, the deep model it adopts is
computationally expensive and thereby cannot satisfy the ef-
ficiency requirements in some scenarios. Differently, [Huang
et al., 2022] built a federated multi-view clustering method
via NMF and K-means that helps reduce the computational
cost. [Hu et al., 2023] realized a federated multi-view fuzzy
C-means (FedMVFCM). Nevertheless, these methods still
confront the intrinsic weaknesses of NMF and K-means.

3 Method

3.1 Problem Statement

Suppose X = {X(1),X(2), · · ·,X(M)} denotes the multi-
view data, where M is the number of views and X(m) ∈
RN×d(m)

(m = 1, 2, ...,M) is the data matrix of the m-th
view; N is the number of samples and d(m) represents the
feature dimension. Suppose that in a federated setting, there
exists a centralized server S and M local clients, with each
client Cm holding the data X(m). Our design goal is to col-
laboratively learn a clustering model while considering the
privacy of client data.
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3.2 Objective Function
Given the X(m) of the m-th view, we can factorize it into two
matrices with lower dimensions via ONMF:

||X(m) −G(m)F(m)||2F
s.t. G(m),F(m) ≥ 0,F(m)F(m)T = I

(1)

where G(m) ∈ RN×c and F(m) ∈ Rc×d(m)

are the coefficient
matrix and the basis matrix of the m-th device, respectively.
Considering the m-view data held by the m-th local clients,
we have the following objective function for Federated multi-
view clustering:

min
G(m),F(m)

M∑
m=1

||X(m) −G(m)F(m)||2F

s.t. G(m),F(m) ≥ 0,F(m)F(m)T = I

(2)

Since it has been proved that K-means is a matrix factor-
ization problem [Bauckhage, 2015], by performing K-means
on the coefficient matrix G(m), we have:

min
H(m),W(m)

||G(m) −H(m)W(m)||2F (3)

where H(m) ∈ RN×k is the indicator matrix, of which the
i-th row H

(m)
i is a one-hot vector and H

(m)
i,j = 1 indicates

that it assigns i-th sample of the m-view to the j-th cluster.
By integrating (1) and (3), we have:

min
H(m),W(m),F(m)

||X(m) −H(m)W(m)F(m)||2F

s.t. F(m) ≥ 0,F(m)F(m)T = I

(4)

Similar to [Huang et al., 2022], we remove the non-
negative constraint of F(m) to expand the application scope
because the input data is also not constrained to be non-
negative. We set an adaptive updating weight α(m)(m =
1, 2, · · ·,M) for each local client based on their contribution
to the global model to adjust the impact of each view on the
clustering performance:

min
H(m),W(m),F(m)

M∑
m=1

α(m)||X(m) −H(m)W(m)F(m)||2F

s.t. F(m)F(m)T = I,

M∑
i=1

α(m) = 1

(5)

It should be noted that H(m)
i is a discrete one-hot vector

and thus difficult to optimize. Therefore, we introduce a reg-
ularization term ||H(m)TH(m) − I||2F to obtain a relaxed so-
lution. For another, since we aim to learn a global clustering
structure from multi-view data, we introduce a global indica-
tor matrix H and constrain it with H(1) = H(2) = · · · =
H(M) = H to enforce the model to learn a consistent cluster-
ing structure:

min
H(m),H

M∑
m=1

||H(m)TH− I||2F

s.t. H(1) = · · · = H(M) = H

(6)

Graph-Based Regularization: NMF-based methods usu-
ally cannot handle data that are not linearly separated. To
address this issue, we employ a graph-based regularization
term to retain the local geometric structure, such that similar
samples should be assigned to the same clusters:

1

2
min
H

M∑
m=1

N∑
i,j=1

||Hi −Hj ||22S
(m)
ij (7)

where S(m) is the similarity matrix of the m-th view and can
be locally calculated by m-th client as follows:

S
(m)
ij =

e−
∥x(m)

i
−x

(m)
j

∥2

2θ2 ,x
(m)
i ∈N (m)

p,j or x(m)
j ∈N (m)

p,i

0 , otherwise
(8)

where N (m)
p,i represents the p-nearest neighbors of x

(m)
i in

the m-th view. It has been proved in [Yang et al., 2022] that
(7) is equal to:

M∑
m=1

Tr(HTL(m)H) (9)

where L(m) = D(m) − S(m) is the Laplacian matrix; D(m)

is a diagonal matrix and D
(m)
ii =

∑N
j=1 S

(m)
ij .

Introducing the above two regularization terms into (5), we
get the final objective function:

min
H(m),W(m),F(m),H

M∑
m=1

α(m)||X(m) −H(m)W(m)F(m)||2F

+

M∑
m=1

(
µ

2
||H(m)TH− I||2F +

λ

2
Tr(HTL(m)H)

)

s.t. F(m)F(m)T = I,
M∑
i=1

α(m) = 1,

H(1) = · · · = H(M) = H
(10)

where µ and λ are penalty parameters.

3.3 Adaptive Update of α(m)

As aforementioned, we leverage α(m) to adjust the influence
of each client for better performance, which incurs a problem
of how to decide the value of α(m). By observing (10), we
find that updating α(m) is only related to the first term, i.e.,
(5). According to Theorem 1, the weight of each device can
be determined automatically.
Theorem 1. If the weight of each client is fixed, solving the
problem (5) is equivalent to solving the following problem

min
H(m),W(m),F(m)

M∑
m=1

√
||X(m) −H(m)W(m)F(m)||2F

s.t. F(m)F(m)T = I

(11)

Proof. Taking Γ and Λ as the Lagrange multiplier and the
proxy for the constraint to F(m), respectively, the Lagrange
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function is as follows:
M∑

m=1

||X(m) −H(m)W(m)F(m)||F + Γ(Λ,F(m)) (12)

We then take the partial derivative of (12) with respect to
(w.r.t.) F(m):

∂
∑M

m=1 ||X(m) −H(m)W(m)F(m)||F
∂F(m)

+
Γ(Λ,F(m))

∂F(m)

=
∂||X(m) −H(m)W(m)F(m)||F

∂F(m)
+

Γ(Λ,F(m))

∂F(m)

(13)
Introducing Γ and Λ to (5), we get the Lagrange function:

M∑
m=1

α(m)||X(m) −H(m)W(m)F(m)||2F +Γ(Λ,F(m)) (14)

Similarly, taking the partial derivative of (14) w.r.t. F(m):
M∑

m=1

∂α(m)||X(m) −H(m)W(m)F(m)||2F
∂F(m)

+
Γ(Λ,F(m))

∂F(m)

= α(m) ∂||X(m) −H(m)W(m)F(m)||2F
∂F(m)

+
Γ(Λ,F(m))

∂F(m)

(15)

If we fix all the weight α(m) to the same, (5) is equivalent to
(11). So the corresponding partial derivatives (13) and (15)
should be equal. By solving this equation, we have:

α(m) =
1

2||X(m) −H(m)W(m)F(m)||F
(16)

Thus, α(m) adaptively updates according to (16).

3.4 Optimization Algorithm
(10) can be easily optimized in centralized scenarios, but it
becomes challenging in federated settings because data with
different views is held by different clients. Therefore, we de-
velop a collaborative optimization algorithm to learn the op-
timal solution of (10). We first obtain the following observa-
tions from (10):

• There are four parameters to be optimized: H(m),
W(m), F(m), and H;

• The update of H must be conducted centrally because it
is only related to parameter H(m) and does not involve
local data on the client;

• F(m), W(m), and α(m) can be updated locally on each
client because it is related to local private data;

• The update of H(m) is related to centralized parameters
H, local parameters F(m) and H(m), and most impor-
tantly, it is related to local private data X(m), its up-
date can only be performed locally. Therefore, it is
the only parameter that needs to be transferred between
each local client and the centralized server. Moreover,
since H(m) is the cluster assignment of samples on each
client, it will not result in any data leakage, which fulfills
the privacy requirements of federated learning.

Based on the observations, the federated optimization algo-
rithm is as follows:

(1) Solving H with fixed H(m), W(m), F(m) by S: In this
case, solving H in function (10) is equivalent to solving the
following objective with a fixed H(m):

min
H

M∑
m=1

(
µ

2
||H(m)TH− I||2F +

λ

2
Tr(HTL(m)H)

)
s.t. H(1) = · · · = H(M) = H

(17)
To solve (17), we introduce a new term in the function derived
from the constraint and Augmented Lagrangian function of
(17) concerning H:

LH = min
H

M∑
m=1

(
µ

2
||H(m)TH− I||2F +

ρ

2
||H−H(m)||2F

+
〈
Φ(m),H(m) −H

〉
+

λ

2
Tr(HTL(m)H)

)
(18)

where Φ(m) is the Lagrangian multiplier of client Cm, ρ is the
penalty parameter, and ⟨·, ·⟩ is the inner product operation.
We take the partial derivative of LH w.r.t. H and set it to 0,
we have:

∂LH

∂H
= µ

M∑
m=1

(
H(m)H(m)TH−H(m) − Φ(m)

+ ρ(H−H(m)) + λL(m)H
)
= 0

(19)

By solving (19), we can get
H = A−1B (20)

where

A =

M∑
m=1

(
µH(m)H(m)T + λL(m)

)
+MρI

B = (ρ+ µ)
M∑
i=1

H(m) +
M∑
i=1

Φ(m)

(21)

Clearly, the optimization of H can be performed centrally
with H(m) from all clients.
(2) Solving F(m) with fixed H(m), W(m), and H by Cm:
Because the second term of (10) is independent of F(m), we
only focus on the first term and the function becomes:

min
F(m)

M∑
m=1

α(m)||X(m) −H(m)W(m)F(m)||2F

s.t. F(m)F(m)T = I,
M∑
i=1

α(m) = 1

(22)

By taking its partial derivative w.r.t. F(m) and set it to 0:

∂
∑M

m=1 α
(m)||X(m) −H(m)W(m)F(m)||2F

∂F(m)
= 0 (23)

By simple algebra, we obtain its solution as follows:

F(m) = Z(m)−1
W(m)TH(m)TX(m) (24)

where Z(m) = W(m)TH(m)TH(m)W(m).
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(3) Solving W(m) with fixed H(m) and F(m), H by Cm:
Similar to F(m), by taking partial derivatives w.r.t. W(m)

and setting it to 0, we can obtain the solution of W(m):

W(m) = (H(m)TH(m))
−1

H(m)TX(m)F(m)T (F(m)F(m)T )
(25)

(4) Solving H(m) with fixed F(m), W(m), and H by Cm:
To solve H(m), we follow the work [Smith et al., 2018] and
similar to the update of H, we introduce a new term trans-
formed from the constraint and Augmented Lagrangian func-
tion of (10) w.r.t. H(m), then we get:

LH(m) =
M∑

m=1

(
α(m)||X(m) −H(m)W(m)F(m)||2F

+
µ

2
||H(m)TH− I||2F +

〈
Φ(m),H(m) −H

〉
+

ρ

2
||H−H(m)||2F

) (26)

If we have ∆H(m), then H(m) ←− H(m)+∆H(m).The prob-
lem is changed to solving ∆H(m) on Cm. We define the m-th
sub-problem on m-th client to solve ∆H(m):

min
∆H(m)

Gσ1,σ2
m (∆H(m);H(m),W(m),F(m),H)

= F1(∆H(m);H(m),W(m),F(m))

+
µ

2
F2(∆H(m);H(m),H) + gm(H(m) +∆H(m))

(27)

where

F1(∆H(m);H(m),W(m),F(m))

=
1

M
α(m)||X(m) −H(m)W(m)F(m)||2F

−2
N∑
i=1

α(m)x
(m)
i −F(m)TW(m)T∆h

(m)
i

T

+2
N∑
i=1

α(m)h
(m)
i W(m)F(m)F(m)TW(m)T∆h

(m)
i

T

+
σ1

2
||∆H(m)W(m)F(m)||2F

F2(∆H(m);H(m),H) =
1

M
||H(m)TH− I||2F

− 2
N∑
i=1

(H
(m)
i HT − Ii)H∆h

(m)
i

T
+

σ2

2
||∆H(m)TH||2F

gm(H(m)) =
〈
Φ(m),H(m) −H

〉
+

ρ

2
||H−H(m)||2F

(28)

By solving the above sub-problem locally according to
[Smith et al., 2018], we can update H(m) on m-th client lo-
cally by H(m) ←− H(m)+β∆H(m) as long as the m-th client
has parameter H.

3.5 Communication Rounds
As shown in Fig. 1, FMVC-IMK requires transmitting some
parameters to support collaborative and privacy-preserving

Algorithm 1 FMVC-IMK

Input: The data X = {X(1),X(2), ...,X(M)} in M local
clients; the number of cluster k;
Penalty parameter µ, λ, ρ, θ
Output: Global cluster result H

1: Each client Cm initializes W(m), F(m), H(m), and
α(m)= 1

M ;
2: S aggregates L(m) into

∑M
m=1 L

(m) via PHE;
3: while not converged do
4: for m = 1 to M do
5: ▷ on m-th client Cm

6: Update F(m) according to (24)
7: Update W(m) according to (25)
8: Get ∆H(m) by solving (27), and update H(m) by

H(m) ←− H(m) + β∆H(m)

9: Update α(m) according to (16)
10: Send H(m) to S
11: end for
12: ▷ on the Server S
13: Update H according to (20)
14: Resend H to all clients
15: end while
16: return H

model training. To better illustrate how FMVC-IMK works,
we herein provide a brief introduction to its workflow.

In the initialization stage, each client Cm locally computes
the similarity matrix S(m) and generates the Laplacian ma-
trix L(m). Then, C(m) transmits L(m) to server S, which
aggregates all the L(m) to obtain

∑M
m=1 L

(m). Consider-
ing that L(m) may reveal local data distribution of Cm, we
adopt partially homomorphic encryption(PHE) to ensure that
S can only obtain the aggregated result rather than the con-
crete L(m). Since PHE achieves better efficiency and this
process is only executed once at the beginning, it will not in-
troduce much computation and communication overhead.

In the optimization stage, Cm locally updates F(m) and
W(m) with (24) and (25), respectively. Then, Cm gets the
∆H(m) and updated α(m) with (27) and(16) and updated
H(m) ←− H(m) + β∆H(m). The updated H(m) is transmit-
ted to S, who subsequently leverage (20) to update H with
all the H(m) collected. This process repeats until the model
converges. Finally, we summarize the workflow in Alg. 1.

3.6 Complexity Analysis
The computational cost of our method consists of two parts:
the client side and the global server side. Suppose N , E, C,
and d(m) denote the sample number, iteration number, cluster
number, and data dimension of m-th view, and assume C ≪
N and C ≪ d(m).

For client Cm, the complexity of initialization, Laplacian
matrix construction, and model update is O

(
d(m) +N

)
,

O
(
N2
)
, and O

(
N2d(m)E

)
;

For the global server S, the complexity of model aggrega-
tion process is O

(
N2E

)
.
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Datasets 3-sources BBCSport ORL Sonar

Metrics ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

DiMSC 70.81 63.81 76.13 82.17 64.07 82.17 79.00 91.34 82.42 56.41 1.63 56.41
MvLRSSC 54.67 44.92 63.31 63.37 40.92 65.07 64.31 80.62 68.11 50.48 0.01 53.37
RMSL 34.91 14.43 42.60 76.63 72.36 76.63 86.00 94.48 89.75 50.48 1.76 53.37
GMC 69.23 62.16 74.56 80.70 76.00 79.43 63.25 85.71 71.50 50.48 4.50 53.37
MvDGNMF 66.27 48.77 70.41 85.11 70.07 85.11 71.50 84.23 76.75 63.94 6.00 63.94
UDBGL 34.91 5.60 35.50 36.40 2.43 36.58 59.25 77.36 62.50 57.21 1.61 57.21
FastMICE 55.62 50.25 71.01 43.93 11.16 45.40 78.75 90.46 82.25 58.17 3.23 58.17
FedMVL 56.21 45.88 68.05 62.13 42.28 71.14 51.50 69.47 56.75 64.90 8.71 64.90
FMVC-IMK 78.70 70.50 84.62 90.26 74.95 90.26 93.25 89.66 93.05 74.52 18.03 74.52

Table 1: Clustering performance comparison in terms of ACC(%), NMI(%), and PUR(%) on 3-sources, BBCSport, ORL and Sonar datasets.

Datasets Yale Vehicle Sensor HAR RGB-D

Metrics ACC NMI PUR ACC NMI PUR ACC NMI PUR ACC NMI PUR

DiMSC 48.28 51.85 49.09 76.06 29.47 76.06 51.79 32.14 25.69 40.72 32.57 50.10
MvLRSSC 45.85 50.16 46.97 56.78 6.12 56.78 49.38 53.56 53.40 43.95 37.29 43.29
RMSL 67.27 74.02 68.48 68.07 12.34 68.07 48.64 52.99 55.38 13.80 3.06 26.43
GMC 54.55 62.44 54.55 64.68 19.55 64.68 48.04 57.40 48.60 40.23 33.06 46.51
MvDGNMF 47.27 52.24 50.91 52.63 0.20 52.63 46.36 35.21 46.36 26.57 0.78 26.98
UDBGL 52.73 65.94 54.55 51.26 0.05 51.26 47.78 46.20 50.45 43.89 35.96 53.55
FastMICE 62.42 57.01 65.46 51.49 0.09 51.69 56.79 49.58 56.79 41.81 32.61 49.53
FedMVL 46.67 51.50 47.27 74.03 17.39 74.03 53.68 54.70 43.71 32.51 23.65 45.89
FMVC-IMK 78.79 77.90 79.39 83.06 33.24 83.06 69.36 59.42 69.36 46.42 39.85 58.04

Table 2: Clustering performance comparison in terms of ACC(%), NMI(%), and PUR(%) on Yale, Vehicle Sensor, HAR, and RGB-D datasets.

4 Experiment

4.1 Experiment Settings

We compare our method with eight multi-view clustering
methods on eight multi-view datasets. For the federating set-
tings, our experiment includes a server and multiple clients,
and each client holds the data with one view.

Datasets: We evaluate our method on eight public multi-
view datasets: (1)3-sources is a three-view text dataset
sourced from three reputable news outlets: BBC, Reuters, and
the Guardian with 169 samples. (2)BBCSport [Greene and
Cunningham, 2006] is a two-view dataset consisting of 544
samples of five categories sourced from BBC Sport; (3)ORL
[Samaria and Harter, 1994] is a three-view dataset of 400 fa-
cial images, categorized into 40 classes. (4)Sonar [Sejnowski
and Gorman, ] includes three views and extracts its multi-
view features from 208 patterns(samples). Then the 60 fea-
tures are divided into three views equally. (5)Yale is a two-
view dataset of 165 facial images of 11 people. (6)Vehicle
Sensor [Duarte and Hu, 2004] is a four-view dataset whose
features are gathered from distributed sensors. (7)Human
Activity Recognition(HAR) [Reyes-Ortiz and Parra, 2012]
is a four-view dataset with 10299 samples that documents six
daily activities; (8)SentencesNYU v2(RGB-D) [Silberman et
al., 2012] includes images and descriptionsof indoor scenes .
We process this dataset following [Trosten et al., 2021].

Compared Methods: We compared FMVC-IMK with:
(1)DiMSC [Cao et al., 2015];(2)MvLRSSC [Brbić and Ko-
priva, 2018];(3)RMSL [Li et al., 2019];(4)GMC [Wang et
al., 2019];(5)MvDGNMF [Li et al., 2020];(6)UDBGL[Fang
et al., 2023];(7)FastMICE[Huang et al., 2023] (8)FedMVL
[Huang et al., 2022].(1)-(7) are centralized methods, and (8)
is federated method.

4.2 Experiment Results and Analysis
Table 1 and Table 2 illustrate the experimental results, from
which we can observe that our method achieves better clus-
tering than FedMVL because FMVC-IMK integrates NMF
and K-means into a single step and leverages a graph-based
regularizer to retain geometric structure information of the
original data. Even compared with centralized multi-view
clustering methods, our method shows comparative perfor-
mance and achieves the best performance on most datasets.
Especially, on the Sonar dataset, FMVC-IMK obtains 74.52%
ACC, 18.03% NMI, and 74.52% PUR, achieving 9.62%,
9.32%, and 9.62% higher than the sub-optimal method. This
demonstrates the superiority of FMVC-IMK.

Convergence analysis: We record the value of the objec-
tive function at each iteration on four datasets to verify the
convergence property, as shown in Fig. 2. It can be seen that
the objective value decreases rapidly and converges within
100 iterations on all four datasets. ACC increases rapidly, but
the whole process fluctuates. The reason is that the global
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Variants TS-FMVC-IMK w/o G-R FMVC-IMK w/o G-R FMVC-IMK

Dataset ACC NMI PUR ACC NMI PUR ACC NMI PUR

3-sources 56.21 45.88 68.05 73.96 66.52 81.07 78.70 70.50 84.62
BBCSport 62.13 42.28 71.14 88.42 73.86 88.48 90.26 74.95 90.26
ORL 51.50 69.47 56.75 91.23 87.63 93.26 93.25 89.66 93.05
Sonar 64.90 8.71 64.90 72.60 15.08 72.60 74.52 18.03 18.03
Yale 46.67 51.50 47.27 74.33 75.49 75.15 78.79 77.90 79.39
Vehicle Sensor 74.03 17.39 74.03 81.43 32.33 81.43 83.06 33.24 83.06
HAR 53.68 54.70 43.71 68.56 57.49 68.56 69.36 59.42 69.36
RGB-D 32.51 23.65 45.89 45.62 38.14 56.45 46.42 39.85 58.04

Table 3: Results of ablation studies on eight multi-view datasets.

Figure 2: The convergence curves of FMVC-IMK on BBCSport,
Vehicle Sensor, 3-sources, and Yale.

Figure 3: ACC w.r.t. λ and µ on 3-sources, RGBD, Sonar, and Yale.

cluster assignment is obtained by aggregating all local cluster
assignments in each iteration, which inevitably affects ACC.
Nevertheless, ACC still converges within 100 iterations.

Parameter Analysis: (10) indicates that our objective
function involves two hyperparameters: λ and µ, and Fig.3
depicts the ACC when λ and µ take values on the interval
of [0.0001, 0.001, 0.01, 0.1, 1, 10] on four datasets. We can
observe that: (1) When λ is too small, the accuracy is low be-
cause the local geometric structure is not well retained. How-
ever, when λ is too large, the accuracy is low due to the ex-
cessive influence of the local geometric structure; (2) Smaller
µ reduces accuracy because it hinders learning a consistent
cluster assignment, but bigger µ also reduces accuracy be-
cause local data heterogeneity is ignored. Proper values of λ
and µ help improve the cluster performance of FMVC-IMK.

Ablation Experiments : We conduct the ablation studies
and summarize them in Table 3. We test the performance of
FMVC-IMK in three cases: (1)two-step FMVC-IMK without
Graph Regularizer(case 1); (2)FMVC-IMK without Graph
Regularizer(case 2); (3)the complete FMVC-IMK (case 3).
From Table 3, the ACC, NMI, and PUR on BBCSport in
case 2 outperforms that in case 1 by 26.29%, 31.58%, and
17.34%, which means that integrating NMF and K-means ef-
fectively improves the clustering performance. Besides, on
the same dataset, the three metrics in case 3 are increased by
4.74%, 3.98%, and 3.55% when compared with case 2, in-
dicating the graph regularizer helps to improve the clustering
performance by enforcing the clustering to be consistent with
the original data.

5 Conclusion
The paper presents a novel federated multi-view clustering
method named FMVC-IMK to solve the multi-view cluster-
ing problem in the federated setting. By integrating matrix
factorization and K-means clustering into a single step and in-
troducing graph-based regularization, FMVC-IMK enhances
clustering performance and preserves data privacy simulta-
neously. Additionally, we introduce an adaptive weight for
all clients and establish the update strategy. Furthermore, we
design a collaborative optimization algorithm to facilitate the
application of our method in federated scenarios. Extensive
experiments demonstrate the superiority of FMVC-IMK.
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Multi-view low-rank sparse subspace clustering. Pattern
Recognition, 73:247–258, 2018.

[Cai et al., 2013] Xiao Cai, Feiping Nie, and Heng Huang.
Multi-view k-means clustering on big data. In Twenty-
Third International Joint conference on artificial intelli-
gence, 2013.

[Cao et al., 2015] Xiaochun Cao, Changqing Zhang, Huazhu
Fu, Si Liu, and Hua Zhang. Diversity-induced multi-view
subspace clustering. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages
586–594, 2015.

[Che et al., 2022] Sicong Che, Zhaoming Kong, Hao Peng,
Lichao Sun, Alex Leow, Yong Chen, and Lifang He. Fed-
erated multi-view learning for private medical data inte-
gration and analysis. ACM Transactions on Intelligent Sys-
tems and Technology (TIST), 13(4):1–23, 2022.

[Chen et al., 2023] Xinyue Chen, Jie Xu, Yazhou Ren, Xi-
aorong Pu, Ce Zhu, Xiaofeng Zhu, Zhifeng Hao, and Li-
fang He. Federated deep multi-view clustering with global
self-supervision. In Proceedings of the 31st ACM Interna-
tional Conference on Multimedia, pages 3498–3506, 2023.

[Duarte and Hu, 2004] Marco F Duarte and Yu Hen Hu. Ve-
hicle classification in distributed sensor networks. Journal
of Parallel and Distributed Computing, 64(7):826–838,
2004.

[Fang et al., 2023] Si-Guo Fang, Dong Huang, Xiao-Sha
Cai, Chang-Dong Wang, Chaobo He, and Yong Tang. Ef-
ficient multi-view clustering via unified and discrete bi-
partite graph learning. IEEE Transactions on Neural Net-
works and Learning Systems, 2023.

[Feng and Yu, 2020] Siwei Feng and Han Yu. Multi-
participant multi-class vertical federated learning. arXiv
preprint arXiv:2001.11154, 2020.

[Gao et al., 2019a] Dashan Gao, Ce Ju, Xiguang Wei, Yang
Liu, Tianjian Chen, and Qiang Yang. Hhhfl: Hierarchical
heterogeneous horizontal federated learning for electroen-
cephalography. arXiv preprint arXiv:1909.05784, 2019.

[Gao et al., 2019b] Shengxiang Gao, Zhengtao Yu, Taisong
Jin, and Ming Yin. Multi-view low-rank matrix factoriza-
tion using multiple manifold regularization. Neurocomput-
ing, 335:143–152, 2019.

[Greene and Cunningham, 2006] Derek Greene and Pádraig
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