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Abstract
Representing temporal-structured samples is essen-
tial for effective time series analysis tasks. So
far, recurrent networks, convolution networks and
transformer-style models have been successively
applied in temporal data representation, yielding
notable results. However, most existing methods
primarily focus on modeling and representing the
variation patterns within time series in the time
domain. As a highly abstracted information en-
tity, 1D time series couples various patterns such
as trends, seasonality, and dramatic changes (in-
stantaneous high dynamic), it is difficult to exploit
these highly coupled properties merely by analy-
sis tools on purely time domain. To this end, we
present Spectrogram Analysis and Representation
Network (SpecAR-Net). SpecAR-Net aims at
learning more comprehensive representations by
modeling raw time series in both time and fre-
quency domain, where an efficient joint extraction
of time-frequency features is achieved through a
group of learnable 2D multi-scale parallel complex
convolution blocks. Experimental results show that
the SpecAR-Net achieves excellent performance
on 5 major downstream tasks i.e., classification,
anomaly detection, imputation, long- and short-
term forecasting. Code and appendix are available
at https://github.com/Dongyi2go/SpecAR Net.

1 Introduction
With the advent of the era of “Internet of Things” and “Com-
prehensive Perception”, various sensors have been exten-
sively deployed and utilized, leading to an explosive growth
in the scale of time series [Cook et al., 2020]. Extracting
valuable information from massive time series has become in-
creasingly crucial. As a result, the time series analysis has at-
tracted a growing number of researchers. Currently, time se-
ries analysis has been widely applied in numerous fields, e.g.,
finance [Livieris et al., 2020], electricity [Cai et al., 2020],
transportation [Gasparin et al., 2021], and the healthcare sec-
tor [Stoean et al., 2020], etc.

Recently, deep learning is playing a crucial role in time se-
ries analysis. With the powerful feature representation capa-

bility, many deep time series learning methods have been pro-
posed and achieved great success in classification, anomaly
detection, short/long-term forecasting, etc. One typical cate-
gory of these methods is based on recurrent neural networks
(RNNs) [Wang et al., 2022; Yu et al., 2021], where the se-
quence modeling is completed by recursively encoding the
first-order dependency between the preceding and subsequent
elements. However, when modeling long-term sequences, it
is easy to encounter gradient vanishing and explosion prob-
lems, and it is also difficult to enjoy the advantages of paral-
lel processing [Hochreiter, 1998]. Another typical category
is the convolution-based methods [Aksan and Hilliges, 2019;
Thill et al., 2021], which can easily process sequential data
in parallel. However, limited by the computation mechanism
of shared convolutions in the local receptive fields, convo-
lution models are often insufficient to characterize the long-
term relationships. To overcome those shortcomings of re-
current and convolutional networks, the Self-Attention (SA)
based Transformer [Liu et al., 2022a; Liu et al., 2022b] has
been proposed. Transformer balances the long-term depen-
dency encoding capability and the benefits of parallel com-
puting, resulting in widely used backbone in various sequence
modeling tasks. However, time series is coupled with mul-
tiple patterns, and the temporal dependencies captured by
point-by-point representation and aggregation are often sub-
merged [Wu et al., 2021].

As a highly abstract information body, time series cou-
ple multiple components such as trend (overall envelope),
periodicity (multiple frequency components), mutagenicity
(high frequency components), etc. Considering such highly-
coupled property, it is almost impossible for pure-time-
domain learning models to achieve complete semantic repre-
sentation from time series. To overcome such limitation, in-
troducing frequency domain analysis into modern deep back-
bones is proven to be an effective technical approach, and
has become a current research trend. There are two no-
table works among these efforts, FEDformer [Zhou et al.,
2022] and TimesNet [Wu et al., 2023]. Motivated by the fact
that time series tend to have sparsity in frequency domain,
FEDformer uses a small mount of randomly selected fre-
quency components to reduce the complexity of time-domain
SA from O(N2) to O(N), resulting in a more agile model
than Informer (O(log(N)N)). In the meanwhile, FEDformer
keeps both low and high frequency components. By exploit-
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ing the posterior of Fourier transform, TimesNet constructs a
2D period-time space by folding the time series according to
the dominant periods and conducts multi-scale 2D convolu-
tion to capture the intra-period- and inter-period-dependency.

In summary, both methods are eventually trying to achieve
better sequence representation by using a selected frequency
components, whether in a prior way [Zhou et al., 2022] or
a posterior (data-driven) way [Wu et al., 2023]. And from
the experimental results, the data-driven selection mecha-
nism can achieve better results. While none of these ap-
proaches discuss whether the patterns of chosen frequency
components over time, i.e., the joint characteristics of time-
frequency domain, are helpful to the downstream tasks. In
particular, TimesNet solely use the frequencies with high re-
sponse values via Fourier transform to select dominant peri-
odic components from time series. The subsequent modeling
process is still carried out in the time domain, utilizing the
data repeatedly guided by significant periods. There is no ex-
plicit learning mechanism to further capture/utilize the time-
varying properties of the frequency domain components with
strong responses. Motivated by this, this paper attempts to
investigate the effectiveness of time-frequency joint learning
mechanism for time series analysis tasks on the basis of sig-
nificant frequency domain component filtering. Then, a uni-
fied time-frequency spectrogram analysis and representation
network (SpecAR-Net) is presented.

Overall, this approach has the following benefits: firstly,
it overcomes the bottleneck of one-dimensional data repre-
sentation by decoupling the multiple components of time se-
ries in a higher-dimensional data space. Secondly, a con-
cise unified framework for learning cross-domain represen-
tation is constructed, which enables the joint analysis of time
and frequency domain features in time series. Technically,
to facilitate the universality of the proposed method, a plug-
and-play SpecAR-Block is designed, which is compatible
for most deep sequential models. The experimental results
demonstrate that SpecAR-Net achieves good performance in
five mainstream tasks, including classification, anomaly de-
tection, long-term forecasting, short-term forecasting and im-
putation. Our contributions are summarized in three folds:

i. A unified time-frequency joint representation frame-
work is proposed. The framework decouples the features
into three levels: global variation features (trend), lo-
cal variation features (periodicity), and transient change
features (mutagenicity), enabling more efficient deep se-
mantic feature extraction for time series.

ii. A plug-and-play time-series representation module,
SpecAR-Block is proposed, which is compatible with
various deep sequence modeling frameworks, e.g.,
RNNs, CNNs and Tranformers. By utilizing time fre-
quency transformation and 2D multi-scale parallel com-
plex convolutions, it can generate comprehensive se-
mantic representation for input sequence.

iii. A powerful deep sequential model with strong general-
ization ability is designed. SpecAR-Net has exhibited
strong performance across a range of widely-used time
series analysis tasks, e.g., anomaly detection, classifica-
tion, long/short-term forecasting and imputation.

2 Related Work
Pure time-domain modeling. In essence, SpecAR-Net is
a deep sequence modeling or encoding method. Initially,
most of these methods were based on multi-layer percep-
trons (MLP). For example, an extended MLP for predict-
ing exchange rate trends using interval time series is pre-
sented in [Maté and Jimeńez, 2021]. LightTS [Zhang et al.,
2022] introduced a fine-grained down-sampling strategy into
an MLP and achieved excellent performance in long-term
forecasting tasks. DLinear [Zeng, 2023] decomposed time se-
ries into trend and residual sequences and utilized two MLPs
to model these sequences for forecasting tasks.

Then, as a method tailored for time series modeling, RNN
was widely investigated. It utilizes a chain-like structure to
simulate the dynamic behavior of time series, which helps
extract temporal characteristics. Such as the long short-term
memory (LSTM) model used in [Hochreiter and Schmidhu-
ber, 1997]. And LSTNet proposed in [Lai et al., 2018b],
which utilizes both CNNs and RNNs to extract short-term
local dependencies between variables and explore long-term
patterns in time series trends, respectively. More recently,
LSSL [Albert Gu and Re., 2022] achieved effective modeling
of long time series by parameterizing the continuous-time,
recurrent, and convolutional views of the state space model.

Admittedly, RNNs are naturally suited for dealing with
time series. However the risk of gradient vanishing/explosion
and limitation of serial computing have obstacles for RNNs.
In this context, CNNs are also favored. For example, dilated
convolutions were utilized as an encoder to accept variable-
length inputs for time series modeling [Bai et al., 2018].
TCN [Franceschi et al., 2019] employs multiple 1D convo-
lutions to extract temporal information across different scales
of feature maps, demonstrating certain advantages in extract-
ing deep semantic features from time series. There’s also re-
search that indicates that CNNs exhibit superior performance
to RNNs in time series modeling [Chen and Shi, 2021].

In recent years, Transformers have shown remarkable per-
formance in the field of time series modeling [Nikita Kitaev
and Levskaya, 2020]. By utilizing SA mechanisms, these
methods possess inherent network architecture advantages in
capturing temporal dependencies in time series. As a result,
they have become popular approaches in the field of time se-
ries analysis. For instance, Informer [Zhou et al., 2021a] de-
sign ProbSparse SA mechanism and distillation operations to
reduce the compuation complexity and memory consumption
of the vanilla version. Inspired by the principle of exponen-
tial smoothing, ETSFormer [Woo et al., 2022] has been de-
vised to improve the accuracy of time series prediction by us-
ing novel Exponential Smoothing Attention (ESA) and Fre-
quency Attention (FA) mechanisms.

Frequency-guided modeling methods. These above
methods provide many valuable ideas and practical tools for
time series analysis. However, the modeling mechanisms
are purely time-domain, which are difficult to describe and
encode the highly coupled contents of the sequences, com-
prehensively. Considering such limitation, frequency infor-
mation were incorporated into the deep models, which have
achieved promising results, e.g., FEDformer [Zhou et al.,
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2022] and TimesNet [Wu et al., 2023].
In order to use frequency information efficiently, FED-

former proposes to randomly select the frequency compo-
nents, so that the following SA can automatically capture
the important components from a compact frequency do-
main subspace, which maintains both high and low frequency
components. Then the inverse Fourier transform is utilized
to continue the time-domain modeling. FEDformer demon-
strates the effectiveness of frequency component pre-filtering
in modern deep backbones. Along this trail, TimesNet uses
Fourier transform to locate the salient frequency components
in the input series. According to these salient components,
it reshapes the input as the time-period 2D representation,
which helps the convolutions obtain more effective represen-
tation. Following this frequency component filtering mech-
anism, this work attempts to further tap the potential of the
frequency-guided modeling in time series analysis. We pro-
pose to further enhance the expressive power of the backbone
models by exploiting the time-varying patterns of the selected
frequency components, which is ignored by existing methods.

3 Methodology
To establish a comprehensive unified representation for time
series, this paper proposes SpecAR-Net from the perspective
of joint time-frequency analysis. Firstly, Short Time Fourier
Transform (STFT) is used for the mapping from time domain
to time-frequency domain, resulting in a transform of data
structure from 1D to 2D data space. Then, a group of multi-
scale parallel complex convolution blocks, which efficiently
extracts and fuses time-frequency characteristics of the time
series. Through this process, we achieve a unified represen-
tation of the time series in both time and frequency domains.

3.1 SpecAR-Block
As shown in Fig. 1, the backbone of SpecAR-Net is com-
posed of several stacking SpecAR-Blocks. Concretely, given
one time series sample, X ∈ RT×N , where T and N is time
length and data dimension, respectively. A high-dimensional
mapping of X is performed at the very beginning as

X0 = Embed(X), (1)
where X0 ∈ RT×M is the encoded features generated by
the embedding layer Embed(·) : RN → RM , which consists
of three components: position embedding, global time stamp
embedding and scalar projection.

Then for the SpecAR-Net with L blocks, the l-th (l =
1, . . . , L) layer can be formalized as

Xl = SpecAR(Xl−1) +Xl−1, (2)
where SpecAR(·) : RT×M → RT×M denotes the SpecAR
time-frequency encoding process, the output Xl is calculated
by SpecAR along with a short-cut connection of l−1-th layer.

As can be seen from the detailed part of SpecAR-Block on
the below of Fig. 1, each block consists of three core modules:
time-frequency transformation, multi-scale complex convolu-
tions and feature aggregation. In specific, the time-frequency
transformation (TFT) is performed to convert the temporal in-
put features Xl−1 into time-frequency structured (i.e., spec-
trogram) complex tensor, Sl−1 ∈ CM×T×F , where F de-
notes the number of frequency bins. Then a group of parallel
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Figure 1: The overview of SpecAR-Net. SpecAR-Net is stacked
by SpecAR-Blocks in series. The time series is mapped to time-
frequency space through time-frequency transformation, then the
multi-scale complex convolutions is used to jointly extract time-
frequency variations and fuse by feature aggregation.

multi-scale 2D complex convolutions is used to encode the
complex tensor. This process can be formalized as follows:

Sl−1 = TFT(Xl−1),

S(l−1)† = MS-Conv†(Sl−1).
(3)

Where TFT(·) : RT → RT×F denotes a dimension/channel-
parallel time-frequency operator, which can be fulfilled by
STFT (by default in this paper) or Wavelet Transform (WT).
And MS-Conv†(·) denotes the parallel-computed complex
convolutions with different dilation rates (sampling rates) in
time-frequency receptive field of Sl−1. Assume we have K
different convolution blocks, then the output tensor will be in
the form of S(l−1)† ∈ CM×T×F×K . More details of TFT(·)
and MS-Conv†(·) are in Sec. 3.2 and 3.3.

Finally, for the feature aggregation stage, a block-wise av-
erage pooling is first conducted to compress the stacked fea-
ture tensor, S(l−1)† obtained from MS-Conv†(·). Then a lin-
ear projection is used to transform the complex compressed
features as real ones. This stage can be formalized as

Xl† = Linear

{
Re

[
AvgBlk

(
S(l−1)†

)]
,

Im
[
AvgBlk

(
S(l−1)†

)]}
.

(4)

Where, AvgBlk(·) : CK → C denotes the block-wise aver-
age pooling, Re/Im[·] is the element-wise real/complex part
extractor, and Linear(·) denotes the complex-to-real linear
projection. To further utilize the advantage of the skip con-
nection, the fused time-frequency features, Xl† ∈ RM×T×F

will be average-pooled along the frequency domain and trans-
posed to get the shape-compatible output tensor in RT×M .

3.2 Time-Frequency Transformation
In order to decouple and analyze the periodic characteristics
of time series while maintaining its temporal structure, we in-
corporate TFT in our SpecAR-Block. TFT can be fulfilled by
the classic STFT or WT, which facilitates more efficient joint
extraction of time-frequency features using 2D convolutions
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Figure 2: Time-frequency transform. STFT is used to map the time
series from the time domain into the time-frequency domain, result-
ing in a transform of data structure from 1D to 2D data space, and
obtain time-frequency variations by 2D kernels.

in subsequent learning stages. Following simplicity design
principle, we use STFT by default. Fig. 2 illustrates the pro-
cess of TFT for a given time series sample in an intuitive way.

Following the symbol definition above, for each channel of
the given input sequence Xl ∈ RT×M for l + 1-th SpecAR-
Block, the TFT calculation is formalized as

Sl
m[t, f ] =

t+n∑
τ=t−n

Xl
m[τ ]h(τ − t)e−j2πfτ , (5)

where Sl
m ∈ CT×F is the discrete STFT results, i.e., spec-

trogram of m-th channel input sequence Xl
m ∈ RT×1. Both

window size and number of sample points for FFT are 2n+1,
the hop length is set as 1, so that the input and output can have
the same time length. The commonly used Hamming window
function h(t) = 0.54 − 0.46 cos

(
πt
n

)
is employed to modu-

late the input sequence. Moreover, it is also used Hanning
window, Rectangular window and Blackman window, etc.

After applying the TFT to the time series, the highly cou-
pled pure time domain data is expanded into a time-frequency
representation. This transformation will enable the subse-
quent feature learning part to more intuitively analyze the pe-
riodic components of the input sequence and their respective
evolution trends on the time-frequency distribution. How-
ever, it should be noted that the spectrogram actually carries
not only the amplitude but also the phase information in each
time-frequency unit, these are retained in the complex num-
bers. Hence, to fully utilize those contents, special treatment
should be taken into consideration in the subsequent learning
stage, which is discussed in the following section. Beyond
that, as a crucial role in accurately representing frequency-
domain features, window length determines the frequency
resolution of the resulting spectrogram. Therefore, the effect
of window length is also investigated in the experiments.

3.3 Multi-Scale Complex Convolutions
To make full use of the information in the spectrogram rep-
resentation, i.e., the phase and the amplitude, the complex
convolutions are utilized in SpecAR-Net. In addition, multi-
scale kernels for parallel convolutions are introduced to alle-
viate the contradiction of time-frequency resolution of TFT.

In order to avoid introducing more learning parameters, we
use different dilation rates to achieve multi-scale feature ex-
traction. Then the small network is designed to be constructed

with K complex convolution blocks with different dilation
rates but the same kernel size, 3 × 3. Given the input time-
frequency tensor of l-th SpecAR-Block, Sl ∈ CM×T×F , The
forward computation process can be roughly expressed as

Sl† = Stack
(
{Conv†

k

(
Sl; d[k]

)
}Kk=1

)
. (6)

Where Conv†
k (·; d[k]) : CM → CM denotes the k-th convo-

lution block with dilation rate of d[k] = 2k + 1. The specific
calculation process for each Conv†

k is as follows: assuming
a complex convolution kernel w = (a+ j ⊙ b) , and a com-
plex input tensor h = (c + j ⊙ d), the complex convolution
process, denoted as follows:

w ∗ h = (a+ j ⊙ b) ∗ (c+ j ⊙ d)

= (a ∗ c− b ∗ d) + j ⊙ (a ∗ d+ b ∗ c). (7)

Finally, the ouput tensors of all the complex convolution
blocks will be stacked together in block-wise to form the
multi-scale feature tensor Sl† ∈ CM×T×F×K .

3.4 Temporal Order Preserving
To capture the global trend patterns of the input time series,
the temporal order preserving (TOP) constraint is incorpo-
rated into our SpecAR-Net. This constraint is achieved by
adding an order regression loss term on the basis of the orig-
inal prediction loss. In practice, we use a temporal-shared
learning function to construct such TOP loss term.

Given the final embeddings of SpecAR-Net, X∗ ∈ RT×M

for an input sequence. The learning function Φ(·; u) :
RM → R will encode each X∗[t] as follows:

Φ (X∗[t]; u) 7→ t. (8)

Where u is the temporal-shared learning parameters and t =
1, . . . , T is the time index of X∗[t]. Based on this order re-
gression mechanism, the TOP loss term for the current input
sequence can be formalized as

LTOP =
λ

2

T∑
t=1

∥Φ (X∗[t]; u)− t∥22 +R(u). (9)

Where LTOP denotes the TOP loss term, λ is the order regres-
sion penalty factor. And R(u) is the regularization term for
loss LTOP, which can be written as the L1 or L2 norm of u,
and we choose L2 in practice, i.e., R(u) = 1

2∥u∥
2
2. The loss

can be expressed as the weighted summation of LTOP and the
original loss for the current learning task, e.g., mean square
error for forecasting or cross-entropy for classification.

4 Experiments
To verify the effectiveness and superiority of SpecAR-Net,
a comprehensive set of experiments is conducted over 5
mainstream tasks, i.e., classification, anomaly detection,
long-term forecasting, short-term forecasting and imputa-
tion. The benchmark datasets and corresponding experimen-
tal configurations are shown in Tab. 1. The backbones of
the compared state-of-the-art (SoTA) models including RNNs
(LSTM, LSTNet, LSSL), CNNs (TCN, TimesNet), MLPs
(LightTS, DLinear) and Transformers (Autoformer [Wu et
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Figure 3: The classification task. The results are averaged from 10
subsets of UEA. See Table 5 in Appendix for full results.

al., 2021], FEDformer, Informer, Reformer [Nikita Kitaev
and Levskaya, 2020], Pyraformer [Liu et al., 2022a], ETS-
former, Non-stationary Transformer [Liu et al., 2022b]). Fur-
thermore, for specific tasks, cutting-edge models are also
mentioned in the SoTA comparison this experiment. Specif-
ically, N-HiTS [Challu et al., 2023] and N-BEATS [Ore-
shkin et al., 2019] are compared in short-term forecasting.
Transformer [Xu et al., 2022] is selected for comparison in
anomaly detection. For classification, Rocket [Dempster et
al., 2020] and Flowformer [Wu et al., 2022] are compared.

4.1 Results on Mainstream Tasks
Compared to other baseline methods, SpecAR-Net has
achieved the best performance across all 5 tasks, as shown in
Tab. 2 (where red and blue font denotes the best and second-
best results, respectively. ∗ in the Transformers indicates the
name of ∗former.). Additionally, the results further validate
the good generalization ability of SpecAR-Net, which can be
regarded as a unified framework in time series analysis.

Classification (CLA) task can intuitively show the perfor-
mance of our method in terms of high-level semantic repre-
sentation of time series. The data used in this experiment is
sourced from the UAE dataset (10 subsets) [Bagnall et al.,
2018], comprising ten sub-datasets that encompass practical
tasks such as gesture recognition, action recognition, audio
recognition, and medical diagnosis. As shown in Fig. 3,
SpecAR-Net has achieved remarkable results in classifica-
tion task, with an average classification accuracy of 74.7%,
surpassing other SoTA methods such as TimesNet (73.6%)
and Flowformer (73%). It is worth noting that, compared
to SpecAR-Net, TimesNet exhibits lower classification accu-
racy on most datasets, with an average accuracy reduction of
1.1%. Feature extraction can be conducted simultaneously in
both time- and frequency-domains by SpecAR-Net, facilitat-
ing the capture of higher-level semantic representations.

Anomaly Detection (AD) plays a vital role in ensuring the
orderly and secure operation of industrial production. How-
ever, anomaly detection often requires capturing exceptional
signal within big data, which can easily get overwhelmed,
making the detection task highly challenging. To fully val-
idate the performance is such task, 5 widely-used datasets
are employed, i.e., SMD [Su et al., 2019], MSL and SMAP
[Hundman et al., 2018], SWaT [Mathur and Tippenhauer,

2016], and PSM [Abdulaal et al., 2021]. These datasets cover
various real-world industrial applications, including service
monitoring, spatial and earth sensing, and water treatment.
The results are presented in Tab. 3. It is evident that our
method achieved the optimal performance in the anomaly
detection task, outperforming other comparative methods.
The advanced Transformer-based approaches, FEDformer
and Autoformer, have also both achieved good performance
(84.97% and 84.26%). Frequency-domain information is in-
troduced into the attention mechanism of both models, further
highlighting the effectiveness of such information in time se-
ries representation. Comparatively, our method enables the
joint extraction of deep-level time-frequency features from
both the time- and frequency-domains, thereby facilitating
the capture of abnormal patterns existing in time series.

Forecasting. In the long-term forecasting (LF) task, a set
of benchmark datasets were utilized, including ETT [Zhou et
al., 2021b], Electricity, Traffic, Weather, ExchangeRate [Lai
et al., 2018a] and ILI (see download links in Appendix),
which cover the application demands of 5 major real-world
scenarios. Each dataset contains a segment of continuous
time series, and sample data are obtained from these datasets
using a sliding window approach. In the experiments, the in-
put past length was set to 96, with ILL for 36. The prediction
lengths is [96, 192, 336, 720], with ILI for [24, 36, 48, 60]. In
the short-term forecasting (SF) task, we utilized the M4
dataset [Makridakis et al., 2018], which comprises 100,000
time series . These data were collected at different sampling
rates, including yearly, quarterly, monthly, weekly, daily, and
hourly intervals, covering a wide range of domains such as
finance, industry, and demographics. For our experiments,
the prediction sequence lengths is [6, 8, 13, 16, 24, 48]. Espe-
cially, all the results are averaged from four different predic-
tion lengths for long-term forecasting, the results of short-
term forecasting tasks are calculated as weighted averages
from multiple datasets with varying sample intervals. The
experiments are conducted in two rounds in total. In the first
round, MSE is used as loss function, and it achieved good
results in both short-term and long-term forecasting tasks, al-
though it did not reach the optimal level. See Tab.7 and 9 in
Appendix for more details. In the second round, SpecAR-Net
was conducted by introducing a order-preserving into the loss
function. As shown in Tab. 4 and 5, our method achieves the
best performance in both long- and short-term forecasting,
indicating a positive role of the “order” information in time
series forecasting. The order-preserving is equivalent to us-
ing the “order” information as prior knowledge to constrain
the learning process of the model and compensate for the lost
“order” information during feature extraction, ensuring that
the model output possess a certain degree of sequentiality.
Meanwhile, it also shows that our method is highly scalable.

Imputation (IMP) task relies on historical data to recover
the missing data. This technique serves as the foundation of
big data analytics, ensuring the temporal and spatial integrity
of time series, thus supporting various subsequent tasks such
as forecasting, classification, and anomaly detection. This ex-
periment was conducted on 6 benchmark datasets, including
ETT (4 subsets), Electricity and Weather. Random mask-
ing with masking rates of [12.5%, 25%, 37.5%, 50%] was
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No. Tasks Datasets Metrics Series Length

1 Forecasting
Long-term: ETT(4subsets), ILI,
Weather, Exchange, Electricity MSE, MAE 6∼720

(ILI:24∼60)
Short-term:M4(6 subsets) SMAPE, MASE, OWA 6∼48

2 Imputation ETT, Electricity, Weather MSE, MAE 96
3 Classification UEA(10 subsets) Accuracy 29∼1751
4 Anomaly Detection SMD, MSL, SMAP, SWaT, PSM Precision, Recall, F1-Socre 100

Table 1: The experiments configurations.

Models SpecAR-Net
(ours)

TimesNet
(2023)

Dlinear
(2023)

ETS∗
(2022)

LightTS
(2022)

Stationary
(2022)

FED∗
(2022)

In∗
(2021)

Auto∗
(2021)

CLA(Accuracy) 74.7 73.6 67.50 71.0 70.4 72.7 70.7 72.1 71.1
AD(F1-Scores) 86.45 86.34 82.46 82.87 84.23 82.08 84.97 78.83 84.26

SF(OWA) 0.850 0.851 1.051 1.172 1.051 0.930 0.918 1.230 0.939
LF(MSE)(ILL) 2.051 2.139 2.616 2.497 7.382 2.077 2.847 5.137 3.006

IMP(MSE)(ETTh1) 0.071 0.078 0.201 0.202 0.284 0.094 0.117 0.161 0.103

Table 2: The comparison of model performance.

Models SpecAR-Net
(ours)

TimesNet
(ResNeXt)

TimesNet
(Inception)

ETS∗
(2022)

LightTS
(2022)

Stationary
(2022a)

FED∗
(2022)

Dlinear
(2023)

Auto∗
(2021)

In∗
(2021)

SMD 86.55 85.81 85.12 83.13 82.53 84.62 85.08 77.10 85.11 81.65
MSL 81.72 85.15 84.18 85.03 78.95 77.5 78.57 84.88 79.05 84.06

SMAP 73.28 71.52 70.85 69.50 69.21 71.09 70.76 69.26 71.12 69.92
SWaT 93.42 91.74 92.10 84.91 93.33 79.88 93.19 87.52 92.74 81.43
PSM 97.28 97.47 95.21 91.76 97.15 97.29 97.23 93.55 93.29 77.10

Avg F1 86.45 86.34 85.49 82.87 84.23 82.08 84.97 82.46 84.26 78.83

Table 3: Anomaly detection performance, where F1-score (as %) was calculated for each dataset. See Table 6 in Appendix for full results.

Models SpecAR-Net
(ours)

TimesNet
(2023)

N-HiTS
(2022)

N-BEATS
(2019)

ETS∗
(2022)

LightTS
(2022)

Dlinear
(2023)

FED∗
(2022)

Stationary
(2022a)

Auto∗
(2021)

SMAPE 11.844 11.829 11.927 11.851 14.718 13.525 13.639 12.840 12.780 12.909
MASE 1.582 1.585 1.613 1.599 2.408 2.111 2.095 1.701 1.756 1.771
OWA 0.850 0.851 0.861 0.855 1.172 1.051 1.051 0.918 0.930 0.939

Table 4: Short-term forecasting task (order-preserving). See Table 8 in Appendix for the full results.

used to simulate missing values. The experiment was con-
ducted in two rounds. The first round of the experiment
was conducted without order-preserving. And SpecAR-Net
exhibits consistent performance with TimesNet, which is
the best-performing method among the comparison methods.
See Tab.11 in Appendix for more details. Tab. 6 presents
the experimental results (average from 4 different mask ra-
tios) after incorporating order-preserving, where SpecAR-
Net achieves the best performance. This indicates that the
monotonicity constraint is beneficial for capturing the global
trend patterns in time series. Moreover, it also suggests that
SpecAR-Net possesses strong capabilities in extracting time-
and frequency-varying patterns.

4.2 Detailed Analysis
Model Complexity & Performance. To further analyze the
performance of SpecAR-Net in the representation of time se-
ries, we selected comparable models with better performance
in classification and forecasting tasks for model complexity
analysis. Results in Fig. 4.2 show that better performance

can be obtained by our method in the condition of less learn-
able parameters. This further illustrates the superiority of the
proposed time-frequency joint learning mechanism.

Effects of TF Resolution. The window length directly af-
fects the time- and frequency-resolution of STFT, which re-
flect the richness of information in the time and frequency
domains, which has a significant impact on extracting time-
frequency variation. Therefore, in this experiment, differ-
ent window lengths of [4, 8, 16, 24, 48, 96, 192, 336] were se-
lected to investigate their effects on the model performance.
Fig. 5 demonstrates that SpecAR-Net achieves optimal per-
formance when the prediction lengths are [96, 192, 336, 720],
corresponding to window lengths with [4, 24, 192, 192]. This
finding indicates that the requirements for time-frequency
resolution vary across different temporal analysis tasks, sug-
gesting a varying dependency on both time- and frequency-
features. According to the Heisenberg uncertainty princi-
ple [Mallet and others, 1999], it is impossible for the time-
and frequency-resolution to simultaneously reach their op-
timal values. In order to ensure that our model has good
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Models SpecAR-Net
(ours)

TimesNet
(2023)

ETS∗
(2022)

LightTS
(2022)

Dlinear
(2023)

FED∗
(2022)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETTm1 0.398 0.407 0.400 0.406 0.429 0.425 0.435 0.437 0.403 0.407 0.448 0.452
ETTm2 0.291 0.332 0.291 0.333 0.293 0.342 0.409 0.436 0.35 0.401 0.305 0.349
ETTh1 0.458 0.455 0.458 0.450 0.542 0.510 0.491 0.479 0.456 0.452 0.440 0.460
ETTh2 0.416 0.427 0.414 0.427 0.439 0.452 0.602 0.543 0.559 0.515 0.437 0.449

Eelctricity 0.192 0.294 0.192 0.295 0.208 0.323 0.229 0.329 0.212 0.300 0.214 0.327
Traffic 0.625 0.335 0.620 0.336 0.621 0.396 0.622 0.392 0.625 0.383 0.610 0.376

Weather 0.257 0.284 0.259 0.287 0.271 0.334 0.261 0.312 0.265 0.317 0.309 0.360
ExchangeRate 0.384 0.425 0.416 0.443 0.410 0.427 0.385 0.447 0.354 0.414 0.519 0.500

ILL 2.051 0.903 2.139 0.931 2.497 1.004 7.382 2.003 2.616 1.090 2.847 1.144

Table 5: Long-term forecasting task (order-preserving). See Table 10 in Appendix for the full results.

Models SpecAR-Net
(ours)

TimesNet
(2023)

ETS.
(2022)

LightTS
(2022)

DLinear
(2023)

FED∗
(2022)

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ETTm1 0.026 0.105 0.027 0.107 0.120 0.253 0.104 0.218 0.093 0.206 0.062 0.177
ETTm2 0.021 0.087 0.022 0.089 0.208 0.327 0.046 0.151 0.096 0.208 0.101 0.215
ETTh1 0.071 0.178 0.078 0.187 0.202 0.329 0.284 0.373 0.201 0.306 0.117 0.246
ETTh2 0.046 0.141 0.049 0.146 0.367 0.436 0.119 0.250 0.142 0.259 0.163 0.279

Electricity 0.092 0.210 0.092 0.210 0.214 0.339 0.131 0.262 0.132 0.260 0.130 0.259
Weather 0.031 0.057 0.030 0.054 0.076 0.171 0.055 0.117 0.052 0.110 0.099 0.203

Table 6: Imputation tasks(order-preserving). See Table 12 in Appendix for the full results.
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Figure 4: Model parameter scale in classification and forecasting
tasks. Classification uses UAE dataset (10 subsets).

time series representation capability while maintaining a suit-
able computational complexity, window lengths are set as
[8, 16, 24] in this paper.

5 Conclusions
SpecAR-Net can be used as a universal foundational model
for time-frequency representation and analysis of time se-
ries. Through the time-frequency transformation, SpecAR-
Net overcomes the limitations of semantic representation in
1D time series caused by the coupling of multiple compo-
nents such as trending, periodicity, and abruptness. This
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pred_len:336
pred_len:720

Figure 5: Effect of window length. The results are obtained by con-
ducting four different prediction tasks on ExchangeRate.

facilitates the simultaneous extraction and fusion of time-
frequency variation patterns from a 2D space. Experimental
results demonstrate that SpecAR-Net achieves optimal per-
formance in 5 tasks, including classification, anomaly detec-
tion, imputation, long- and short-term forecasting.
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