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Abstract
The heavy ball momentum method is a commonly
used technique for accelerating training processes
in the machine learning community. However, em-
pirical evidence suggests that the convergence of
stochastic gradient descent (SGD) with heavy ball
may slow down when the momentum hyperparam-
eter approaches 1. Despite this observation, there
are no established theories or solutions to explain
and address this issue. In this study, we provide the
first theoretical result that elucidates why momen-
tum slows down SGD as it tends to 1. To better un-
derstand this inefficiency, we focus on the quadratic
convex objective in the analysis. Our findings show
that momentum accelerates SGD when the scal-
ing parameter is not very close to 1. Conversely,
when the scaling parameter approaches 1, momen-
tum impairs SGD and degrades its stability. Based
on the theoretical findings, we propose a descend-
ing warmup technique for the heavy ball momen-
tum, which exploits the advantages of the heavy
ball method and overcomes the inefficiency prob-
lem when the momentum tends to 1. Numerical re-
sults demonstrate the effectiveness of the proposed
SHB-DW algorithm.

1 Introduction
Training a given machine learning model y = g(x,w), pa-
rameterized by w, is typically formulated as solving the fol-
lowing empirical risk minimization (ERM) problem

min
w∈Rd

RS(w) :=
1

n

n∑
i=1

Ri(w) :=
1

n

n∑
i=1

L(g(xi,w); yi),

where L denotes the loss function, (xi, yi) represents the ith
data-label pair, and n is the size of the training dataset S. The
main workhorse for solving the ERM problem is stochastic
gradient descent (SGD) [Robbins and Monro, 1951], espe-
cially when the dimension of w is very high, and the num-
ber of training data n is large. Starting from an initial point
w1 ∈ Rd, SGD iterates as follows

wk+1 = wk − γgk,
∗Corresponding authors

Algorithm 1 Stochastic Heavy Ball (SHB)

Require: parameters γ > 0, 0 ≤ β < 1
Initialization: w0 = w1

for k = 1, 2, . . .
step 1: get gk being an unbiased sample of∇RS(w

k)
step 2: update wk according to (1)

end for

where gk is an unbiased estimate of the gradient (i.e.,
E[gk] = ∇RS(w

k)), and γ > 0 is the learning rate.
Accelerating SGD is crucial for machine learning, and

popular acceleration techniques for SGD include adaptive
learning rate [Kingma and Ba, 2015], momentum [Sutskever
et al., 2013], and variance reduction [Johnson and Zhang,
2013]. Among these techniques, one of the most widely
used momentum-based acceleration schemes is SGD with
heavy ball momentum [Polyak, 1964], also referred to as the
stochastic heavy-ball method (SHB) in the context of this pa-
per (see Algorithm 1). SHB leverages the memory along the
trajectory and enjoys the following simple expression

wk+1 = wk − γgk + β(wk −wk−1), k ≥ 1, (1)

where 0 ≤ β < 1 is a constant momentum parameter and w0

can be set the same as w1. When β = 0, SHB (1) reduces to
plain SGD, and the choice of the momentum parameter β in
SHB is crucial for accelerating SGD. It is worth noting that
SHB incurs negligible computational overhead compared to
SGD, making it very popular in deep learning.

Although the theoretical advantage of SHB over SGD re-
mains unclear, there is ample empirical evidence demonstrat-
ing the superiority of SHB with an appropriate β compared to
SGD. For instance, studies such as [Krizhevsky et al., 2009;
Sutskever et al., 2013; Keskar and Socher, 2017] have shown
the benefits of utilizing heavy ball momentum. However, we
have found that SHB may not always outperform SGD in
terms of both optimization and generalization when β is very
close to 1. In the subsequent sections, we will demonstrate
this phenomenon through several numerical examples.

1.1 Numerical Tests: Inefficiency of Heavy Ball
In this section, we present several numerical results to show
that SHB may perform worse than the vanilla SGD when the
momentum parameter β in (1) gets very close to 1.
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MNIST Classification
We conduct experiments employing several machine learn-
ing models, including the ℓ2-regularized multi-class logistic
regression and a multi-layer perceptron (MLP) for MNIST
classification [LeCun and Cortes, 2010]. The dataset contains
60,000 and 10,000 grayscale images in the training and test
sets. Note that the ℓ2-regularized logistic regression model is
strongly convex, while the other is nonconvex. The training
batch size is set to 256 for all the following tasks.
ℓ2-regularized multi-class logistic regression. We apply
both SGD and SHB with a learning rate of 0.01 and use dif-
ferent momentum parameters β for SHB to train the multi-
class logistic regression classifier with ℓ2-regularization (set
as 0.01) on the weights (note that this regularization guaran-
tees the loss function to be strongly convex). We first run the
full batch gradient descent for 10,000 iterations with a learn-
ing rate of 0.01 to find the global minimum, denoted as w∗,
of the model. Figure 1 illustrates the behavior of the mini-
batch approximation of E[RS(w

k) − RS(w
∗)] (the expec-

tation is obtained via averaging over five independent runs)
with wk obtained from SGD or SHB with different β. It is
evident that SHB converges faster than SGD at the early train-
ing stage, particularly as β increases. However, a large value
of β, such as 0.9, increase oscillation and deteriorates gener-
alization. Figure 1 also shows the test loss (b) and accuracy
(c) of the model trained by different optimization algorithms
over iterations, affirming that the heavy ball momentum can
improve generalization.
Multi-layer perceptron (MLP). We next compare the perfor-
mance of SGD and SHB with different momentum hyperpa-
rameters β in training a MLP for MNIST classification. The
MLP architecture used in this study follows the same struc-
ture as described in [McMahan et al., 2017], consisting of
two hidden layers with 512 units, and each is activated using
ReLU. We run both SGD and SHB with different β for 60
epochs and employ a learning rate of 0.01. Figure 2 shows
that the heavy ball momentum can accelerate SGD and im-
prove its generalization for solving nonconvex optimization
problems, and a larger β tends to yield better performance
during the early training stage. However, SHB with a large
β, such as 0.99, performs significantly worse than SGD or
SHB with a smaller β in both optimization and generaliza-
tion. Specifically, the training loss and test accuracy of SHB
with β = 0.99 plateau at much worse results than that of SGD
and SHB with a smaller β.

CIFAR10 Classification
We further consider using the ResNet18 [He et al., 2016a]
model to classify the CIFAR10 [Krizhevsky et al., 2009]
dataset. This dataset consists of 50,000 and 10,000 colored
images in the training and test sets, respectively. We run both
SGD and SHB with different β for 90 epochs, and the batch
size is set to 256. For both algorithms, we use the same learn-
ing rate of 0.01. Figure 3 plots the training loss, test loss
and test accuracy versus iterations. These results confirm the
previous findings. Here, we notice that when β = 0.9, SHB
significantly outperforms SHB with a smaller β and SGD,
which resonates with the practical choice of momentum for
training ResNets [He et al., 2016a]. But if we use an even

bigger β, such as 0.99, SHB performs worse than SGD and
much worse than SHB with a smaller β.
Numerical Observations Summary: We summarize four
empirical findings from the above experiments:

• When β is very close to 1, SHB exhibits slower perfor-
mance compared to SGD after several iterations, and the
training curve of SHB becomes highly oscillatory.

• SHB still converges faster than SGD in the early training
stage, even when β is very close to 1.

• SHB with a larger β converges faster than SHB with a
smaller β, provided that β is not very close to 1.

• The test accuracy of the model trained by SHB with a β
that is very close to 1 is also worse than that trained with
a smaller β. That is, SHB with a β close to 1 generalizes
worse than SHB with a smaller β.

Although SHB has been studied in various settings, we
noticed that the theoretical interpretations for the aforemen-
tioned numerical observations have not been established yet.
The focus of this paper is to provide theoretical interpreta-
tions for these empirical phenomena.

1.2 Contributions
In this paper, we aim to develop a theoretical understanding
of the empirical observations above. Our contribution lies
in theoretically analyzing the detriment effect of the heavy
ball momentum on SGD and proposing a more efficient heavy
ball momentum acceleration algorithm based on this finding.
Specifically, we summarize our main contributions into the
following fourfold.

• When β is close to 1, we have proven that the upper
bound complexity of SHB is dominated by a smaller
constant geometric factor compared to SGD in the early
iterations. This result elucidates why SHB outperforms
SGD in the initial training stage. For more detailed in-
formation, please refer to Section 3.1.

• We demonstrate why SHB can be slower than vanilla
SGD when β is very close to 1 after a certain number
of iterations. Specifically, we establish that SHB has
a larger lower bound in complexity for two consecu-
tive iterates compared to SGD. This lower bound helps
explain why SHB experiences slower convergence, re-
duced accuracy, and decreased stability when β ap-
proaches 1. Please refer to Section 3.2 for a more de-
tailed explanation.

• When β is not near 1, we provide a theoretical expla-
nation for why SHB with a larger value of β converges
faster than SHB with a smaller value of β. More detailed
information can be found in Section 3.3.

• Building upon previous understandings and insights of
momentum, we introduce a descending warmup method
for SHB. This technique accelerates convergence, en-
hances accuracy, and improves the stability of SHB. For
more detailed information, please refer to Section 4.
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Figure 1: Comparison between the training of ℓ2-regularized logistic regression for MNIST classification using SGD and SHB with different
β. Momentum can accelerate training and improves the generalization of the regularized logistic regression model. However, as β approaches
1, SHB performs worse than SGD and SHB with a smaller β. In particular, when β is close to 1, the training curve becomes highly oscillatory,
and the test accuracy also gets worse than the case when a smaller β is used.

0.0 0.5 1.0
Iteration (k) 1e4

10−1

100

Tr
ai

n 
Lo

ss

SHB(β=0.1)
SHB(β=0.5)
SHB(β=0.9)
SHB(β=0.99)
SGD

0.0 0.5 1.0
Iteration (k) 1e4

0.10

0.15

0.20

0.25

0.30
Te

st
 L

os
s

SHB(β=0.1)
SHB(β=0.5)
SHB(β=0.9)
SHB(β=0.99)
SGD

0.00 0.25 0.50 0.75 1.00 1.25
Iteration (k) 1e4

90

92

94

96

98

Te
st

 A
cc

ur
ac

y 
(%

)

SHB(β=0.1)
SHB(β=0.5)
SHB(β=0.9)
SHB(β=0.99)
SGD

Figure 2: Comparison between the training of MLP for MNIST classification using SGD and SHB with different β. Heavy-ball momentum
again can accelerate training and improve generalization, especially during the earlier training stage. However, SHB with a bigger β (β =
0.99) performs worse than SGD and SHB with smaller β values, exhibiting inferior performance in both optimization and generalization.
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Figure 3: Comparison between training of ResNet18 for CIFAR10 classification using SGD and SHB with different β. SGD with an appro-
priate momentum significantly accelerates the training process and improves test accuracy. Notably, when β is set to 0.9, SHB outperforms
SGD remarkably. However, if β is increased to 0.99, SHB performs worse than SGD.

1.3 Related Work
We will briefly review some of the most relevant litera-
ture regarding the development of the heavy ball momen-
tum algorithm and its theoretical foundations. The heavy
ball momentum algorithm was initially proposed by Polyak
in 1964 [Polyak, 1964], and since then, its convergence prop-
erties have been extensively studied in both convex and non-
convex settings [Ochs et al., 2014; Ghadimi et al., 2015;
Yuan et al., 2016; Sun et al., 2019c]. In a notable paper by
Sun et al. [Sun et al., 2019a], it was proven that heavy ball

momentum can effectively escape saddle points with larger
learning rates compared to traditional gradient descent. SGD
with heavy ball momentum has become a widely used and
powerful algorithm for machine learning tasks [Krizhevsky
et al., 2009; Sutskever et al., 2013; Sun et al., 2021]. Recent
research efforts have focused on developing efficient heavy
ball-style algorithms for training machine learning models,
particularly in the field of deep learning [Yan et al., 2018;
Ma and Yarats, 2019; Sun et al., 2019b; Gitman et al., 2019;
Sun et al., 2020]. One notable extension of the heavy ball mo-
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mentum algorithm is Nesterov’s acceleration, which incorpo-
rates lookahead momentum scaled by an iteration-dependent
weight [Nesterov, 1983]. This variant has proven to be effi-
cient in accelerating gradient descent [Nesterov, 2005; Nes-
terov, 2013]. However, the stochastic version of Nesterov’s
acceleration [Wiegerinck et al., 1994] faces challenges such
as error accumulation and potential non-convergence [Ku-
lunchakov and Mairal, 2019; Vaswani et al., 2019; Aybat
et al., 2020; Wang et al., 2022]. [Kidambi et al., 2018;
Liu and Belkin, 2020; Ganesh et al., 2023] studied the in-
efficiency of SHB in specific cases, but failed to explain the
inefficiency phenomenon when the momentum parameter ap-
proaches 1. To assess the generalization error of empirical
risk minimization, [Bousquet and Elisseeff, 2002] introduced
the concept of uniform stability. Building upon this notion,
researchers such as [Ong, 2017; Chen et al., 2018] have fur-
ther investigated the bounds of generalization error for the
specific cases of SHB. Additionally, [Ramezani-Kebrya et
al., 2024] have established a generalization bound for SHB
in more general scenarios. These studies contribute to our
understanding of the performance of SHB and shed light on
its potential for generalization in machine learning tasks.

2 Preliminaries
2.1 Notation
We denote scalars and vectors by lowercase and bold low-
ercase letters, respectively, and denote matrices by upper-
case boldface or uppercase curly letters. For a vector x =
(x1, · · · , xd) ∈ Rd, we denote its ℓ2 norm by ∥x∥. The
transpose of a matrix A is denoted as A⊤, its spectral norm
and spectral radius are denoted as ∥A∥ and ρ(A), respec-
tively. λmax(A) and λmin(A) represent the largest and small-
est eigenvalues of matrix A, respectively, and the trace of a
matrix is denoted by Tr(·).

Given two sequences {am} and {bm}, we write am =
O(bm) if there exists a positive constant 0 < C < +∞ such
that am ≤ Cbm, and we write am = Θ(bm) if there exist
two positive constants C1 and C2 such that am ≤ C1bm and
bm ≤ C2am. We use am = Õ(bm) and am = Θ̃(bm) to hide
the logarithmic factor on top of O(·) and Θ(·), respectively.

For a function f(w) : Rd → R, we denote its gradient
and its Hessian as ∇f(w) and ∇2f(w), respectively. The
minimum value of f(w) is denoted as min f , and the mini-
mizer of f(w) is denoted as w∗. We use E[·] to denote the
expectation with respect to the underlying probability space.

2.2 Assumptions
Before presenting our theoretical results, we first collect sev-
eral necessary assumptions for the subsequent analysis.
Assumption 1. The stochastic gradient is an unbiased esti-
mate of the true gradient and has bounded variance, i.e.,

gk = ∇RS(w
k) + ek with E[ek] = 0,

and E∥ek∥2 ≤ σ2 for some σ > 0.
Assumption 1 is a widely accepted fundamental principle

in the stochastic optimization community. It is worth not-
ing that in the finite-sum minimization, the gradient is typi-
cally approximated using the mini-batch gradient, denoted as

gk =
(∑m

i=1∇L(g(xki ,w
k); yki)

)
/m, where m ≪ n rep-

resents the batch size (commonly referred to as mini-batch
SGD). This stochastic gradient is unbiased. However, relying
solely on this assumption is insufficient to provide a theoret-
ical explanation for all the experimental phenomena reported
in the introduction. Therefore, to further investigate and elu-
cidate these phenomena, additional assumptions need to be
employed.
Assumption 2. The noise ek satisfies some distribution E ,
whose covariance matrix

E[ek(ek)⊤] ≡ Σ ∈ Rd×d

is positive semi-definite and Tr(Σ) > 0.
In [Jastrzȩbski et al., 2018], the authors assume that the co-

variance matrix of the stochastic noise is constant, and they
provide an explanation for this assumption within the context
of mini-batch SGD. It is important to note that Assumption
2 indicates Assumption 1, but not vice versa. A specific case
of E in Assumption 2 is the normal Gaussian distribution,
such as gradient Langevin dynamics [Welling and Teh, 2011;
Stephan et al., 2017; Gitman et al., 2019], where Σ reduces
to the identity matrix. In our paper, there is no need to assume
a normal Gaussian distribution. Instead, we only require the
covariance matrix of the distribution to be positive and semi-
definite, which is a much weaker condition and holds for al-
most any distribution. The positivity of the trace of the co-
variance matrix ensures that E∥ek∥2 = Tr(Σ) > 0.

3 Heavy Ball Slows Down the Convergence of
SGD When β Is Close to 1

In this section, we analyze the convergence of SHB when RS

is quadratic and strongly convex, i.e.,∇2RS(w) ≡ A is pos-
itive definite.
Main Techniques. First, we briefly introduce the main
techniques that we used to establish the theoretical results of
this study. Specifically, we reformulate SHB as follows[
wk+1 −w∗

wk −w∗

]
= T

[
wk −w∗

wk−1 −w∗

]
− γ

[
gk −∇RS(w

k)
0

]
,

where

T :=

[
(1 + β)I− γA −βI

I 0

]
∈ R2d×2d, (2)

and I ∈ Rd×d is the identity matrix. Let

yk :=

[
wk −w∗

wk−1 −w∗

]
, and ek :=

[
gk −∇RS(w

k)
0

]
.

We then have yk+1 = T yk − γek, and the iteration can also
be formulated as the sum of a power series, given below

yk+1 = T ky1 − γ
k∑

i=1

T k−iei.

Since the noises are independent and have zero mean, taking
expectations on both sides of the equation yields

E∥yk+1∥2 = E∥T ky1∥2 + γ2
k∑

i=1

E∥T k−iei∥2. (3)
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Therefore, the problems under study turn to estimating the
lower and upper bounds of E∥T k−iei∥2. The bounded vari-
ance of the noise directly gives us

E∥T k−iei∥2 ≤ ∥T 2(k−i)∥σ2.

The remaining problem lies in providing upper bounds of
∥T k∥ for a fixed k ∈ Z+.
Lemma 1. Assuming that the matrix A ∈ Rd×d is symmetric
positive definite, and 0 < ν ≤ λmin(A). Let ϵ > 0 be small
enough and γ = Θ(ϵ), and 0 ≤ β = (1−√γν)2+ ϱ < 1 for
0 < ϱ≪ ϵ. We then have

∥T k∥ ≤ C1√
γν
· (1−√γν)k, (4)

where C1 > 0 is a constant independent of k and γ.
Here, the constant ϱ is introduced to ensure that T has dis-

tinct eigenvalues, making it similar to a diagonal matrix and
simplifying the analysis. Determining the lower bound re-
quires a non-trivial analysis, which relies on Assumption 2.
Assuming that Assumption 2 holds, we can derive the fol-
lowing result regarding the matrix T .
Lemma 2. Let E be the stationary distribution of stochastic
noise and ξ ∼ E ⊕ 0d. The momentum parameter satisfies
β = 1 − Θ(γτ ) with 1 ≤ τ ≤ 2. Under Assumption 2, we
can establish that

E∥T kξ∥2 ≥ C2 · (1−Θ(γτ ))2k, (5)
for some C2 > 0 which is only dependent on A.

With this in place, we can now present our main results.

3.1 Why Faster in the Early Training
Theorem 1. Consider a quadratic function RS with its Hes-
sian defined as ∇2RS(w) ≡ A. The sequence {wk}k≥0

is generated by (1). Assume that 0 < ν ≤ λmin(A) ≤
λmax(A) ≤ L and Assumption 1 holds. For any suffi-
ciently small ϵ > 0, let γ = Θ(ϵ) be chosen such that
0 ≤ β = (1−√γν)2 + ϱ < 1, where ϱ satisfies 0 < ϱ≪ ϵ.
Then the output of SHB satisfies

E∥wk−w∗∥2 ≤ 4C2
1∥w1−w∗∥2

γν
(1−√γν)2k +

√
γC2

1σ
2

ν3/2
.

Theorem 1 provides an upper bound when the momen-
tum hyperparameter β is close to 1, and it solely relies
on Assumption 1. In the early training stage, i.e., when
the error ϵ̂ is large, we can set ϵ̂ =

√
ϵ/ν

3
2 , then achiev-

ing E∥wK − w∗∥2 = O(ϵ̂) for a given K only requires
(1 − √γν)2K/γν = O(ϵ̂). Therefore, the worst-case bound
for K of SHB is given by

K = Õ
(

1√
ϵν

)
.

In comparison to SGD, which requires Õ(1/(ϵν)) iter-
ations to achieve the desired solution with error ϵ̂ in the
strongly convex case [Rakhlin et al., 2012], SHB signifi-
cantly accelerates the convergence of SGD in the early train-
ing stage. Consequently, when the desired error is on the
order of O(ϵ̂), SHB exhibits faster convergence than SGD.
Thus, even when the momentum hyperparameter β is close
to 1, SHB remains faster than SGD in the early training phase
for large desired errors.

Algorithm 2 Stochastic Heavy Ball with Descending
Warmup (SHB-DW)

Require: parameters γ > 0, 0 ≤ β < β < 1, 0 < α < 1

Initialization: w0 = w1, β = β
for k = 1, 2, . . .

step 1: update βk according to (7)
step 2: get gk being an unbiased sample of∇RS(w

k)
step 3: update wk as (1) with β ← βk

end for

3.2 Why Slower and Unstable after Enough
Iterations

Theorem 2. Let conditions of Theorem 1 and Assumption 2
hold, and β = 1 − Θ(γτ ) with 1 ≤ τ ≤ 2. Then the output
of SHB satisfies

E∥wk −w∗∥2 + E∥wk−1 −w∗∥2 = Θ(γ2−τ ) = Θ(ϵ2−τ ),

for any integer k ≥ 1.

If τ > 1, Theorem 2 indicates that no matter how many
iterations are done, SHB will never achieve an error of O(ϵ).
On the other hand, the SGD algorithm can reach an error of
O(ϵ) after O(1/(ϵν)) iterations with a suitable learning rate
γ = Θ(ϵ). This means that given enough iterations, SHB will
be slower than SGD.

Theorem 2 also provides an explanation for the instability
of the SHB curves. If E∥wK − w∗∥2 ≪ ϵ2−τ for some
K ∈ Z+, then

Θ(ϵ2−τ ) = E∥wK+1 −w∗∥2 ≫ E∥wK −w∗∥2.

3.3 Why SHB Converges Faster as β Increases
Provided That β Is Not Close to 1

Given a fixed positive number β0 such that 1 − β0 ≫ ϵ, we
study the convergence of the SHB algorithm. We first present
a lemma as follows.

Lemma 3. Let A ∈ Rd×d be a symmetric positive definite
matrix. Assume that ϵ > 0 is small enough and γ = Θ(ϵ).
Let 0 ≤ β ≤ β0 < 1 and 1− β0 ≫ ϵ, we can establish that

∥T k∥ ≤ C4 · (1−
γν

1− β
+ C3ϵ

2)k, (6)

where constants C3, C4 > 0 are independent of k and γ.

With Lemma 3, we can prove the convergence of SHB.

Theorem 3. Let RS be a quadratic function (∇2RS(w) ≡
A), and {wk}k≥0 be the sequence generated by (1). Assum-
ing that 0 < ν ≤ λmin(A) ≤ λmax(A) ≤ L and Assumption
1 holds. Given any ϵ > 0 small enough, let γ = Θ(ϵ) such
that 0 ≤ β ≤ β0 < 1 and 1 − β0 ≫ ϵ. Then to achieve
E∥wK −w∗∥2 ≤ ϵ, the worst-case iteration complexity is

K = Õ(1− β

ϵν
).

Theorem 3 provides an explanation for why SHB can enjoy
faster speed when β increases but not close to 1. As β ∈
[0, β0], the worst-case complexity decreases if β increases.
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Figure 4: Comparison between training of the ℓ2-regularized logistic regression for MNIST classification using SGD, Adam, SHB with
different β, and SHB-DW. SHB-DW not only converge faster but also improves generalization.
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Figure 5: Comparison between training of MLP for MNIST classification using SGD, Adam, SHB with different β, and SHB-DW. SHB-DW
converges faster than SHB in the earlier stage and generalizes as well as SHB with β = 0.9.
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Figure 6: Comparison between training of ResNet18 for CIFAR10 classification using SGD, Adam, SHB with different β, and SHB-DW.
Again, SHB-DW converges faster in the early stages compared to Adam and SGD, while also demonstrating similar generalization capabilities
to SHB with β = 0.9.

4 Descending Warmup

Our results above demonstrate that SHB with a large β accel-
erates convergence during the early training stage but causes
instability and reduces accuracy after sufficient iterations.
Based on this insight, we propose an initialization method
that employs a large momentum hyperparameter β0 := β ∈
(0, 1), which is then reduced to a fixed number β ∈ [0, 1)
according to the following rule

βk+1 =

{
max{α ∗ βk, β}, if 0 < β < 1,

max{α ∗ βk − 10−6, β}, if β = 0,
(7)

where 0 < α < 1 is the descending factor. It is straightfor-
ward to see that {βk}k≥0 will be unchanged and remains as
β after the following number of iterations

K(β, β, α) :=

{
ln(β/β)/ ln 1

α , if β ̸= 0,

ln(106β)/ ln 1
α , if β = 0.

Therefore, (7) is actually a warmup process, and called De-
scending Warmup (DW) in this study. We formulate SHB
with DW (SHB-DW) in Algorithm 2. In the early iterations
of SHB-DW, relatively large momentum hyperparameters are
utilized to achieve fast convergence, while smaller momen-
tum hyperparameters are employed in the subsequent itera-
tions to produce stable and accurate solutions.
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Model
Algorithm SGD Adam SHB(β = 0.9) SHB-DW

ResNet18 92.66± 0.41 91.08± 0.17 93.26± 0.41 93.38± 0.52

ResNet34 92.18± 0.61 91.49± 0.17 92.95± 0.52 93.22± 0.41

Table 1: Test accuracy (%) of ResNet18 and ResNet34 for CIFAR10 classification, where the models are trained by SGD, Adam, SHB and
SHB-DW algorithms. Each experiment was repeated five times for different seeds.

Let the sequence {wk}k≥0 be generated by the SHB-DW
algorithm. Since the iterates of SHB-DW after K(β, β, α) it-
erations can be regarded as SHB with an initialization set as
wK(β,β,α), the stationary analysis of SHB-DW is then triv-
ial and will not be repeated. To get the fine-grained con-
vergence result for SHB-DW, we just need to bound ∥w∗ −
wK(β,β,α)+1∥ under the iteration-dependent momentum hy-
perparameters.

5 Numerical Experiments
5.1 Descending Warmup Improves SHB in

Optimization and Generalization
In this section, we replicate the experiments conducted in
Section 1.1 using the proposed SHB-DW algorithm. Our the-
oretical findings indicate that a larger momentum parameter
can be employed to speed up the training process in the early
stages, and subsequently, a β value not close to 1 is required
to ensure optimal performance. By default, we set the initial
momentum hyperparameter β0 to 0.999 for warmup and de-
crease it by a factor of α = 0.999 after each iteration. For the
ℓ2-regularized multi-class logistic regression task, the lower
bound of the momentum hyperparameter β for SHB-DW is
set to 0.1. While for the other two tasks, Figures 2 and 3 show
that SHB achieves favorable results with β = 0.9. Therefore,
we set β of SHB-DW to 0.9 for the two tasks. Additionally,
we compare the widely used Adam algorithm [Kingma and
Ba, 2015]. Since Adam requires a relatively small learning
rate to fully utilize its performance [Kingma and Ba, 2015],
we set the learning rate of this algorithm to 0.0001, while
keeping all other parameters unchanged. In Figures 4, 5, and
6, the performance of SGD, Adam, SHB (β = 0.9, 0.99), and
SHB-DW is compared in the three benchmark experiments
described in Section 1.1. These results confirm the superior-
ity of SHB-DW: the decreasing warmup approach accelerates
training in the early stages, and compensates for the perfor-
mance degradation caused by the use of a large β.

5.2 SHB-DW for Deep Learning
To further validate the effectiveness of the descending
warmup technique in training deep neural networks, we con-
duct more detailed experiments on CIFAR10 using ResNet18
and ResNet34 [He et al., 2016b]. We compare four optimiza-
tion algorithms, SGD, Adam, SHB, and SHB-DW. The mo-
mentum parameter β for SHB is set to 0.9, a commonly uti-
lized value in practice [He et al., 2016a], and the settings for
SHB-DW remained the same as in Section 5.1. The algo-
rithms are run for 200 epochs with a batch size of 256. The
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Figure 7: Test accuracy of ResNet34 for CIFAR10 classification us-
ing SGD, Adam, SHB with β = 0.9, and SHB-DW.

initial learning rate for Adam is set to 0.001, while the oth-
ers are set to 0.1. All algorithms use a decreasing learning
rate strategy, i.e., decreasing by a factor of 10 at the 60th,
120th and 180th epochs, respectively. Table 1 presents the
test accuracy of the two models trained by the four differ-
ent optimizers, and the training process is illustrated in Fig-
ure 7 (ResNet34). Compared with other optimization algo-
rithms, SHB-DW exhibits greater stability and efficiency, out-
performing SGD, Adam, and SHB in test accuracy.

6 Concluding Remarks
In this paper, we have provided an explanation for the dete-
rioration of convergence speed in the heavy ball momentum
when the hyperparameter β approaches 1. Our analysis is
based on novel reformulations of the heavy ball algorithm,
allowing us to utilize non-Lyapunov analysis to establish the
lower bound of SHB. To the best of our knowledge, our re-
sults are the first to explain how a hyperparameter close to 1
in heavy ball momentum can negatively impact convergence
and lead to instability in SHB.

There are several potential directions for future research:
1) Can we extend our analysis to Nesterov’s momentum, an-
other widely utilized technique in deep neural network train-
ing? 2) Can we generalize our analysis to Nesterov’s accel-
eration with restart, which has been empirically observed to
significantly enhance the performance of SGD [Wang et al.,
2022]? 3) Can we establish similar theoretical results for
heavy ball momentum when combined with adaptive learn-
ing rate algorithms, such as Adam?
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