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Abstract
Offline Reinforcement Learning (RL) aims to learn
policies from pre-collected datasets that capture
only a subset of the environment’s dynamics. The
predominant approach has been to solve a con-
strained optimization formulation, which ensures
that the policy visits state-action pairs within the
support of the offline dataset. However, this ap-
proach has limited the ability to make decisions
when the agent faces unknown parts of the envi-
ronment at deployment time. To address the chal-
lenge of decision-making in out-of-support regions,
model-based Bayes-adaptive approaches have been
proposed by considering all dynamics models that
could potentially be the true environment. Since it
is generally infeasible to compute the posterior of
all dynamics models based on the offline dataset,
these approaches usually approximate the poste-
rior by using a finite ensemble of highly prob-
able dynamics models. Hence, the diversity of
these models is the key to obtaining good poli-
cies. In this work, we propose MoDAP (Model-
based Diverse Adaptive Policy Learning), an al-
gorithm to enable the adaptive policy to make in-
formed decisions in previously unexplored states.
MoDAP adopts an iterative strategy that simultane-
ously training the policy and dynamics models. The
policy optimization seeks to maximize expected re-
turns across dynamics models, while the dynamics
models are trained to promote policy diversification
through the proposed information-theoretic objec-
tive. We evaluate MoDAP through experiments on
the D4RL and NeoRL benchmarks, showcasing its
performance superiority over state-of-the-art algo-
rithms.

1 Introduction

Reinforcement Learning (RL) has emerged as a powerful ap-
proach for decision-making in complex real-world scenarios,
as evidenced by its successes in domains such as the games of
chess, shogi, and go [Silver et al., 2017], and real-time strat-
egy video games [OpenAI et al., 2019]. However, traditional

online RL methods involve exploratory interaction with the
environment, which makes them impractical, costly, and po-
tentially unsafe in various real-world applications.

Thereby, offline RL has recently garnered significant at-
tention [Fujimoto et al., 2019; Levine et al., 2020]. Offline
RL involves training a policy solely on a fixed dataset ob-
tained from the environment, without any additional interac-
tion with the environment. However, directly applying ex-
isting online RL algorithms [Mnih et al., 2013; Haarnoja et
al., 2018] to the offline setting often results in poor perfor-
mance due to the distribution shift between the learned pol-
icy and the data-collected policy. This distribution shift in-
troduces extrapolation errors in the value function estimation
for unseen actions. As a result, several model-free offline
RL algorithms [Fujimoto et al., 2019; Kumar et al., 2019;
Nair et al., 2021] have focused on solving the constrained
policy optimization problem, where the learned policy is en-
couraged to select actions from the dataset.

Alternately, there have been offline RL methods that adopt
model-based RL approaches, which demonstrate superior
generalizability by leveraging the learned dynamics model,
in the offline setting. However, these methods still suf-
fer from model overfitting issues and extrapolation errors
in regions that are not explored by the data-collected poli-
cies [Kidambi et al., 2020; Yu et al., 2021]. This is be-
cause the dynamics model is learned solely from the offline
dataset, which may not capture the full dynamics of the un-
derlying environment. To address these challenges, previous
works have proposed pessimistic framework [Yu et al., 2020;
Rigter et al., 2022]. For example, model-based offline policy
optimization (MOPO; [Yu et al., 2020]) incorporates penalty
terms to adjust the reward signals based on the degree of un-
certainty inherent in the model.

Yet, these pessimistic approaches in model-based offline
RL fall short in handling scenarios where the agent encoun-
ters out-of-support regions. Here, the Bayes-adaptive deci-
sion framework presents a valuable alternative method [Ross
et al., 2007; Ghavamzadeh et al., 2015]. One of the primary
benefits of the Bayesian method lies in its capacity to reason
over all potential models by calculating their posterior distri-
bution from the given dataset. A policy trained on this poste-
rior distribution can naturally adapt during online execution,
which may lead to enhanced performance in comparison to a
policy trained by the pessimistic approach. AVE-P [Ghosh et
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al., 2022] capitalizes on this advantage by training the adap-
tive policy through belief state tracking, using an ensemble
of value functions to interact indirectly with the models. In
a similar vein, MAPLE [Chen et al., 2021] employs a related
approach by explicitly constructing an ensemble of dynamics
models. This ensemble enables the generation of simulations
for trajectories, which are subsequently utilized to augment
the training of the adaptive policy.

These prior works used to construct the set of dynam-
ics models with ensemble structures, facilitating the adaptive
policy learning in practical applications. However, when the
dynamics models are similar, they might not generate suffi-
ciently diverse behaviors within the out-of-support region.

The lack of diversity in behaviors can impose limitations
on the algorithm’s capacity for effective generalization, lead-
ing to sub-optimalitiy in real-world scenarios. In practice,
these methods often necessitate a considerable number of en-
semble members to achieve the desirable level of generaliza-
tion ability [Ghosh et al., 2022; Ghosh et al., 2021]. Con-
sequently, the establishment of a more diverse set of models
holds significant importance.

In this work, our goal is to enrich the diversity of the adap-
tive policy, all the while utilizing a limited number of models
within the model-based framework. To do that, we first dis-
cuss which dynamics models are considered to encourage the
diversification of the adaptive policy within an offline setting.
These dynamics models should adequately represent the sup-
port region of the offline dataset, and also manifest distinct
transitions in out-of-support regions. We particularly focus
on the optimal trajectories generated by the optimal policies
associated with different dynamics models. When certain op-
timal trajectories demonstrate similarities, it suggests that the
corresponding MDPs do not lead to significantly different
decision-making scenarios. Leveraging this insight, we in-
troduce an information-theoretic objective that seeks to max-
imize the mutual information between the optimal trajectory
and the identity of the underlying dynamics models.

We implement this idea and propose a Model-based Di-
verse Adaptive Policy Learning (MoDAP) algorithm for of-
fline RL. MoDAP is an iterative training approach involving
both the policy and dynamics models. We train the policy to
maximize its expected return across dynamics models while
concurrently training the dynamics models to facilitate pol-
icy diversification through the information-theoretic objec-
tive. We provide further details about MoDAP in Section 4.
Lastly, we evaluate MoDAP across a range of D4RL [Fu et
al., 2020] and NeoRL [Qin et al., 2022] datasets with a lim-
ited number of dynamics models, demonstrating its superior
and competitive performance. Further details regarding these
experiments are provided in Section 5.

2 Related Work
2.1 Offline RL
In model-free offline RL, the distribution shift between the
learned policy and the data-collected policy introduces ex-
trapolation errors [Kumar et al., 2019] in the estimation of
the value function for unseen actions in the dataset, present-
ing a challenge for naively adopting online algorithms. To

overcome this challenge, extensive research has been con-
ducted to formulate offline RL as a constrained optimiza-
tion problem [Kumar et al., 2019; Fujimoto et al., 2019;
Nair et al., 2021; Wang et al., 2020; Kostrikov et al.,
2021]. The common approaches [Fujimoto and Gu, 2021;
Fujimoto et al., 2019; Kumar et al., 2019] ensure that the op-
timized policy remains close to the behavior policy. Other
strategies involve estimating conservative Q-values [Kumar
et al., 2020a] by incorporating regularization terms that as-
sign lower values to unseen state-action pairs compared to
observed ones. EDAC [An et al., 2021], another notable tech-
nique, enforces the expected minimum action value through
the use of diversified Q-ensemble and clipped Q-learning.

Moving to model-based approaches, these algorithms uti-
lize the learned dynamics model derived from the dataset
to simulate the policy. A significant challenge arises when
the policy takes actions that were absent from the training
dataset, leading to unseen action-state pairs. In such cases,
the estimated model may provide transition dynamics that
differ from the true environment, causing potential unrelia-
bility in the model’s predictions. To mitigate this issue, a
prevalent strategy in model-based offline approaches intro-
duces constructing a pessimistic MDP with a penalized re-
ward function. For instance, MOPO [Yu et al., 2020] intro-
duces model ensemble uncertainty into reward signal, while
MORel [Kidambi et al., 2020] utilizes the state-action detec-
tor to make penalized reward. Since these methods primarily
concentrate on decision-making within the known portion of
the MDP, they may have inherent limitations when the be-
havior policy is sub-optimal, as the constrained formulations
do not guarantee optimal performance [Chen et al., 2021;
Ghosh et al., 2022].

2.2 Bayesian RL and Offline Adaptive Policy
Bayesian RL has proven to be effective in striking a balance
between exploration and exploitation in online RL, result-
ing in sample efficiency and optimality [Ross et al., 2007;
Asmuth et al., 2009; Kolter and Ng, 2009; Poupart et al.,
2006]. To apply Bayesian principles to model-based offline
RL, we assume the set of dynamics models that involve the
true environment. The agent takes the action based on the
posterior distribution of the models, or a sufficient statistic
of interaction history, at deployment time, which naturally
makes the policy adaptive. An illustrative example of this ap-
proach is MAPLE [Chen et al., 2021], which employs a Re-
current Neural Network (RNN) policy to infer environmen-
tal contexts from historical information. Alternatively, in the
model-free approach, APE-V [Ghosh et al., 2022] takes an
indirect strategy by engaging with the value function of each
model, updating its belief state based on historical informa-
tion.

2.3 Diversity and RL
There exists various range of research that leverages the
concept of diversity in RL, often optimizing information-
theoretic objectives. In the domain of unsupervised skill dis-
covery, agents have to get valuable skills without explicit re-
ward signals. A prominent example is DIAYN [Eysenbach
et al., 2019], which attains diverse skills by maximizing the
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mutual information between states and skills. Additionally,
DADS [Liu et al., 2021] focuses on skill diversification by
maximizing mutual information between the subsequent state
and the skill, conditioned on the current state.

On the other hand, SMEARL [Kumar et al., 2020b] aims to
enhance adaptability to unseen tasks by generating a diverse
set of sub-optimal policies within the specific MDP. This is
achieved through the utilization of an augmented reward de-
rived from a diversification objective. Even though our work
also utilizes the information-theoretic objective, its purpose
and detailed algorithm are clearly different as we concentrate
on training a set of dynamics models to facilitate the diversi-
fication of adaptive policy.

3 Preliminaries
3.1 MDPs and Offline RL
We consider a Markov Decision Process (MDP) as a tuple
m = (S,A, Pm, r, ρ0, γ), where S is the state space,A is the
action space, Pm : S×A → ∆(S) is the state transition prob-
ability function, and r : S × A → R is the reward function,
ρ0 ∈ ∆(S) is the initial state distribution, and γ ∈ (0, 1] is
the discount factor. The objective of RL is to obtain a policy,
πm : S → ∆(A), that maximizes the discounted cumulative
reward:

J(πm) = Es0∼ρ0(·),at∼πm(·|st)
st+1∼Pm(·|st,at)

[
T−1∑
t=0

γtr(st, at)] (1)

The solution to the optimization problem defined by Eq. (1)
is denoted as π∗

m.
While the standard RL assumes online interaction with

the environment during training, offline RL does not allow
such interaction. Instead, we can only access a pre-collected
dataset that is gathered by (unknown) mixed behavior poli-
cies. Since the pre-collected dataset usually covers only a
subset of the states and actions, the goal of offline RL is to
find the best policy given the limited information available in
the dataset.

3.2 Model-based Offline RL Algorithm
Model-based Offline RL algorithms aim to train a policy by
leveraging a learned dynamics model Pϕ(s′|s, a). This model
is typically trained using maximum likelihood estimation
on the offline dataset, maxϕ E(s,a,s′)∼Doff [logPϕ(s

′|s, a)]. 1

Once the model is learned, it is utilized to simulate rollouts
of the policy, and the resulting rollout data is then used to
optimize the policy.

Instead of focusing on building a single MDP, we want to
work with a set of MDPs, each element representing an MDP
with transition dynamics consistent with the dataset but dif-
ferent underlying transition dynamics in other regions of the
state-action space. These MDPs comprise an ensemble of
hypotheses about the true environment, and act as simulation
environments to train the adaptive policy. The policy learns
to switch from one MDP to another based on the iteraction,

1Since the transition and reward function are unknown, they are
usually trained together, maxϕ E(s,a,r,s′)∼Doff [logPϕ(r, s

′|s, a)].

making it adaptive and hence generalize better, compared to
learning from a single MDP.

One thing we need to notice is that the generalization ca-
pacity of the adaptive policy is significantly influenced by
the characteristic of the MDPs within the ensemble. For in-
stance, the performance of the approach is particularly sensi-
tive to the number of ensemble models used. When work-
ing with a limited number of models, the policy’s perfor-
mance tends to be poor, conversely, as the ensemble size
increases, the policy’s effectiveness improves significantly.
However, having a larger number of ensemble models for
learning well-generalized policies might not always be feasi-
ble due to the practical constraint of computational resources.
MAPLE [Chen et al., 2021], despite its objective of im-
proving decision-making in out-of-support regions through
enhanced generalizability, adopts a pessimistic approach to
work with a limited number of models. It involves uncer-
tainty over the MDPs as a penalty term in the reward signal.
Thus, the challenge lies in the construction of a set of MDPs
that remains manageable in size while effectively enhancing
policy learning and generalization.

In this work, we propose a novel method to construct an
effective yet small number of MDPs in the set for training
the adaptive policy and the value function. Similar to es-
tablished methodologies, our approach employs model-based
policy optimization (MBPO) [Jiang et al., 2020], utilizing a
standard actor-critic RL algorithm. To generate synthetic data
for training, MBPO conducts k-step rollouts originating from
states s ∈ Doff, subsequently adding this data to the DPϕ

.
During policy training, minibatches of data are sampled from
the combined dataset Doff ∪DPϕ

. Each data point within this
batch is drawn from either of the real data D with a proba-
bility f or the synthetic data DPϕ

with a probability 1 − f .
Although our methodology shares similarities with MBPO
regarding the generation and usage of synthetic datasets for
training, it distinguishes itself in the utilization of history for
value function and policy, as described in the next section.

4 Method
Before introducing our method, we begin with discussing the
dynamics models that are essential for effective learning of
the adaptive policy in offline RL.

Which models do we need? To facilitate a clear under-
standing of our method, we consider a scenario where the
MDPs share the same state space, action space, and reward
function, but differ in their transition functions Pm with the
subscript/identity m ∈ [n] being the index of MDPs.2 In-
stead of directly focusing on different transition dynamics
{Pm}nm=1, we narrow our focus to the optimal trajectories,
denoted as {τπ∗

m}nm=1, which are generated by executing
the corresponding optimal policies {π∗

m}nm=1 for each MDP.
When certain optimal trajectories exhibit similarities, it in-
dicates that the corresponding MDPs do not yield distinct

2This assumption does not compromise the generality of our
method, as it can be applied when the reward is MDP-dependent
while the state space, action space, and transition function are
shared.
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decision-making scenarios. The presence of such dynamics
models within the set is inefficient and restricts the diversity
for effective policy adaptation and generalization. To address
this, we emphasize the importance of constructing a set of
MDPs in which each MDP exhibits significant differentiation
from the others.

4.1 Promoting Diversity in Dynamics Models
To achieve this goal, we employ an information-theoretic ap-
proach that aims to maximize the Mutual Information (MI)

I(τπ
∗
M ;M) = H(τπ

∗
M )−H(τπ

∗
M |M)

= E
[
log

p(τπ
∗
M |M)

p(τπ
∗
M )

]
,

(2)

where M and τπ
∗
M represent the random variables associ-

ated with the MDP’s identity and its corresponding optimal
trajectory, respectively. The equation quantifies the informa-
tion gain concerning the optimal trajectory when the MDP is
known, measuring trajectory-aware diversity.

To optimize Eq. (2), we decompose p(τπ
∗
M |m) as follows:

p(τπ
∗
M |m) = p(s0)

T−1∏
t=0

π∗
M (at|st)Pm(st+1|st, at) (3)

where π∗
M is the optimal policy in the MDP M . Since M

is a discrete random variable, we can compute the marginal
p(τπ

∗
M ) as

∑
m p(m)p(τπ

∗
M |m) where p(m) is prior.

From Eq. (2), maximizing this objective equates to increas-
ing the entropy of optimal trajectories (H(τπ∗

M )) while mak-
ingM informative about the corresponding optimal trajectory
(−H(τπ∗

M |M)). It promotes the diversity of policy behaviors
among MDPs. We provide the detailed theoretical interpreta-
tion of Eq. (2) in Appendix A.

Adaptive policy. Instead of learning independent optimal
policies {π∗

m} of each MDPs, our approach aims to train a
single, adaptive policy π that covers all MDPs. Specifically,
it maps history ht = {s0:t−1, a1:t−1, r1:t−1}, a sequence of
observed transitions up to timestep t − 1, to action at. We
approximate the optimal policy π∗

m with this history-based
policy, π. It notes that as π interacts with the environment at
test time, it can identify the underlying transition dynamics
by tracking the history. Over time, it becomes gradually the
optimal policy. As a consequence of this approach, we maxi-
mize I(τπ;M) instead of Eq. (2), where τπ is the trajectory
obtained from the adaptive policy π over MDPs.
Overall objective. We aim to determine the set of estimated
dynamics models {Pϕm

}nm=1 given a fixed adaptive policy π.
To achieve this, we solve the following optimization objective
for each model m:
LMI(ϕm) = Eτ∼π,Pϕm

[log p(τ)− log p(τ |m)] ∀m (4)

where p(τ |m) = p(s0)
∏T−1
t=0 π(at|st, ht)Pϕm

(st+1|, st, at).
The set of dynamics models {Pϕm}nm=1 should be capable

of modeling the transitions observed in the offline dataset,
also. It becomes necessary to include MLE term as usual to
ensure proper model training:

LMLE(ϕm) = E{s,a,s′}∼D[− logPϕm
(s′|s, a)] ∀m (5)

Algorithm 1 MoDAP

Require: the parameters θ, ψ of the policy πθ and GRUψ ,
the offline dataset Doff and constant, λ

1: {Pϕi
}ni=1, r̂ ← the set of dynamics models and reward

function from Doff
2: for iter = 0, 1, 2... do
3: Randomly sample s, z from Doff
4: Set s0, z0 ← s, z
5: Randomly select dynamics model from {Pϕi

}ni=1
6: for t = 0, 1, 2, ..., k − 1 do
7: Sample at ∼ πθ(at|st, zt)
8: Rollout one step
9: st+1 ∼ Pϕi(· | st, at), rt+1 ← r̂(st, at)

10: zt+1 ← GRUψ(st+1, at, zt)
11: Add {st, zt, at, rt, st+1, zt+1} to DPϕ

12: end for
13: // Policy Update //
14: Update πθ, GRUψ by SAC with DPϕ

∪ Doff
15: // Model Update //
16: Estimate LMI for the generated k-step trajectory
17: Update {Pϕi

}ni=1 by maximizing λLMI + LMLE
18: end for

4.2 MoDAP
To train the adaptive policy, we utilize a recurrent neural net-
work (RNN), which is known for its effectiveness in incorpo-
rating historical information in meta RL [Duan et al., 2017;
Chen et al., 2021]. Specifically, we use GRU [Chung et
al., 2014] to encode ht into the hidden state zt such that
zt = GRU(ht). The policy takes action based on both the
current state st and the hidden state zt. Overall, we optimize
the adaptive policy πθ to maximize the expected returns over
the MDPs:

Em∼p(·)[J(πθ)] (6)

and we assume that p(·) is a uniform distribution.
We now present our algorithm, MoDAP (Model-based Di-

verse Adaptive Policy Learning) in Algorithm 2. Before
training the adaptive policy, the dynamics models and reward
function are pre-trained using MLE on offline dataset Doff.
Notably, r̂ is defined as the mean value over the ensemble’s
output. Due to the finite number of models in the ensem-
ble, planning during a long-horizon results in the generation
of unrealistic trajectories in the training dataset for policy,
leading to performance degradation. To mitigate this issue,
we adopt a fixed-horizon rollout approach for planning. We
start planning from an arbitrary time-step t within the offline
dataset, collecting trajectories for a fixed horizon of length k,
and gathering the dataset required for training the policy.

To provide further detail, our approach involves the fol-
lowing steps during each iteration: In each iteration, we uni-
formly choose a dynamics model from our ensemble since
we assume a uniform prior distribuiton p(m). We employ the
selected dynamics model and the adaptive policy to gener-
ate trajectories. These trajectories are added to the synthetic
dataset DPϕ. For each step in the trajectory, we obtain the
next state st using the chosen dynamics model. The reward
r is determined using a shared reward function r̂(s, a). We
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Model-free Model-based
Task Name

BC CQL APE-V EDAC MOPO COMBO MAPLE RAMBO MoDAP

halfcheetah-medium-expert 44.0 95.0 101.4 106.3 90.8 90.0 63.5 95.4 103.4±4.3
halfcheetah-medium-replay 37.6 45.3 64.6 61.3 68.1 55.1 59.0 68.7 67.3±3.4
halfcheetah-medium 43.2 46.9 48.3 69.1 73.0 54.2 50.4 77.9 77.3±1.1
halfcheetah-random 2.2 31.3 29.9 28.4 38.5 38.8 38.4 39.5 36.5±1.8

walker2d-medium-expert 90.1 109.1 110.0 114.7 112.9 103.3 73.8 56.7 112.2±2.8
walker2d-medium-replay 20.3 76.8 82.9 87.1 85.6 56.0 76.7 89.2 88.4±4.2
walker2d-medium 70.9 79.5 90.3 92.5 79.2 81.9 56.3 84.9 81.1±6.5
walker2d-random 1.3 5.4 15.5 16.6 3.0 7.0 21.7 0.0 23.1±1.6

hopper-medium-expert 53.9 96.9 105.7 110.7 81.6 111.1 42.5 88.2 94.5±7.8
hopper-medium-replay 16.6 86.3 98.5 101.0 103.5 89.5 87.5 99.5 94.2±4.8
hopper-medium 54.1 61.9 - 101.6 62.5 97.2 21.1 87.0 106.6±1.9
hopper-random 3.7 5.3 31.3 25.3 3.0 17.9 10.6 25.4 8.9±1.1

Table 1: Results on MuJoCo D4RL benchmark. Normalized scores are calculated as (score - random policy score) / (expert policy score -
random policy score), with the standard deviation indicated by ±. The score of our algorithm is averaged over 4 random seeds.

learn the policy using SAC [Haarnoja et al., 2018] on the
combined dataset Doff ∪ DPϕ

. We estimate the objective de-
fined in Eq. (4) by rolling out trajectories with k steps rather
than rolling out till the end. In our training process, we apply
gradient updates to the dynamics models, aiming to minimize
both Eq. (4) and the regularization term presented in Eq. (5).
For a more comprehensive understanding of our algorithm’s
architecture and implementation, refer to the details provided
in Appendix B.

5 Experiments
In this section, we focus on the following questions: (1) How
is the performance of our method compared to that of previ-
ous approaches in the standard offline RL benchmark tasks,
(2) To what extent is the performance improved when utiliz-
ing a limited number of dynamics models, as opposed to the
scenario where the dynamics models are not re-trained, and
(3) How the number of models and the rollout length influ-
ence the performance. We investigate these questions through
extensive experiments on both the conventional D4RL [Fu et
al., 2020] offline RL benchmark and the near-real-world Ne-
oRL [Qin et al., 2022] benchmark within MuJoCo task.

5.1 Experiment Setup
In the initial phase of pre-training the dynamics models, we
divide the offline dataset into a training set and a validation
set using an 8:2 ratio. For each task, we construct a set of
estimated models by training either 7 (for D4RL) or 15 (for
NeoRL) models. After this training, we proceed to select the
top 5 (for D4RL) or 10 (for NeoRL) models based on their
predictive accuracy, which is evaluated on the validation set.

Baselines. We conduct a comparison of our algorithm
against various state-of-the-art offline RL methods. These in-
clude model-free approaches as follows: (1) BC that simply
mimics the policy that collected the dataset, (2) CQL [Ku-
mar et al., 2020a] that uniformly penalizes Q-values for out-

of-distribution samples, (3) APE-V [Ghosh et al., 2022] that
uses the Bayesian approach for decision-making within in-
support region, and (4) EDAC [An et al., 2021] that diver-
sifies Q-value ensembles to effectively estimate the expected
minimum Q-value for policy learning. Additionally, we con-
sider model-based approaches, which include (5) MOPO [Yu
et al., 2020] that uses the uncertainty of the transition pre-
diction as a penalty on reward function, (6) COMBO [Yu et
al., 2021] that applies the penalty function of CQL within
the model-based regime, (7) MAPLE [Lee et al., 2021]
that also addresses decision-making in the out-of-support re-
gion by utilizing an ensemble of dynamics models, and (8)
RAMBO [Rigter et al., 2022] that trains the policy through
maximizing the expected value while training the dynamics
model to minimize the expected value.

5.2 D4RL Benchmark
Datasets. Our evaluation spans across twelve datasets
encompassing three distinct environments (halfcheetah,
walker2d, hopper) and four data types (random, medium,
medium-replay, medium-expert) for each environment. We
used the ‘v2’ version of the datasets, and the results are sum-
marized in Table 1. The reported scores are obtained from the
10 episodes of online evaluation at the last iteration.
Performance comparison. As a notable model-free base-
line, EDAC uses either 10 or 50 critics to estimate the pes-
simistic Q-value. Our approach in D4RL relies on a mere
5 dynamics models to enhance the synthetic dataset for fit-
ting the value function. This implies that when we have
a restricted number of neural networks, employing them to
enhance generalization can yield better results compared to
utilizing them for estimating pessimistic values. This under-
scores the efficiency of our proposed method.

Model-based baselines also utilize 5 ensemble models, ex-
cept MAPLE (n = 14). These models are employed to cre-
ate pessimistic MDP, through estimating uncertainty or reg-
ularizing values for state-action pairs that are unseen during
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100 1000
Task Name

BC CQL EDAC MOPO COMBO MoDAP BC CQL EDAC MOPO COMBO MoDAP
HalfCheetah-L 29.1 32.6 32.5 42.0 33.8 49.5±4.5 29.1 38.2 38.2 40.1 32.9 53.9±1.1
Walker2d-L 29.1 30.3 21.9 9.7 22.7 26.6±17.5 28.5 44.7 39.8 11.6 31.7 51.3±7.8
Hopper-L 16.1 16.5 17.6 5.0 16.4 21.8±5.0 15.1 16.8 18.6 6.2 17.9 26.1±4.7
HalfCheetah-M 48.9 51.6 52.0 63.1 47.1 70.8±2.7 49.0 54.6 57.5 62.3 50.8 81.0±2.3
Walker2d-M 50.2 53.2 51.6 20.1 53.1 65.9±2.7 48.7 57.3 56.7 39.9 53.8 70.8±3.1
Hopper-M 28.0 63.2 15.4 1.8 55.2 29.5±8.4 51.3 64.5 42.4 1.0 56.3 44.2±15.3
HalfCheetah-H 47.2 74.0 7.1 47.8 15.8 64.4±8.4 71.3 77.4 79.7 65.9 62.2 84.1±8.3
Walker2d-H 64.1 74.3 72.3 23.3 71.2 57.5±25.1 72.6 75.3 76.0 18.0 71.8 73.6±2.8
Hopper-H 44.4 69.7 25.7 7.6 37.0 20.2±1.3 43.1 76.6 53.5 11.5 63.2 28.5±10.8

Table 2: Results on MuJoCo NeoRL benchmark with (100, 1000) trajectories datasets. Normalized scores are calculated as (score - random
policy score) / (expert policy score - random policy score), and the standard deviation is denoted by ±. The score of our algorithm is an
average across 4 random seeds.

training. The results of our experiments convincingly demon-
strate that our algorithm’s heightened capacity for generaliza-
tion can outperform or rival these model-based alternatives.

We also conducted a comparison with MAPLE that does
not re-train the dynamics model during policy training. As we
excluded the results of MAPLE (n = 5) due to the relatively
lower performance, the detailed comparison results with
MAPLE are provided in Appendix D.1. It is worth to note
that both MoDAP and MAPLE initiate policy training us-
ing the same dynamics models across different seeds in case
(n = 5). Here, MoDAP exhibits significant performance im-
provement compared to MAPLE (e.g., +54.3 on halfcheetah-
medium-expert or +39.6 on halfcheetah-medium-replay). In-
terestingly, even though MAPLE uses a larger number of dy-
namics models (n = 14) as shown in Table 1, its performance
does not surpass that of MoDAP, which uses only 5 models.
This highlights the importance of the diverse composition of
the set of dynamics models as a critical factor in learning
adaptive policy for model-based offline RL.

5.3 NeoRL Benchmark
Datasets. NeoRL benchmark [Qin et al., 2022] is de-
signed to replicate real-world scenarios. They have collected
datasets through the more conservative policy, which aligns
more closely with data-collection procedures encountered in
real-world settings. The constrained nature of its narrower
datasets hinders the high performance of existing offline RL
algorithms. We focused on nine datasets that encompass three
environments (HalfCheetah-v3, Hopper-v3, Walker-v3) and
are categorized into three quality levels (L, M, H), repre-
senting low, medium, and high, respectively. Notably, Ne-
oRL offers varying numbers of trajectories for training data
(100, 1000, 10000) for each task. We have specifically ex-
perimented on 100 and 1000 trajectories settings, in order to
nuance the limited support region covered by the datasets.

Performance comparison. In Table 8, we compared the
performance of our algorithm with five baselines, including
both model-free and model-based offline RL algorithms. To
accommodate the characteristics of the NeoRL benchmark,
MoDAP employs 10 dynamics models, in contrast to the

5 models utilized in the D4RL experiments. Further de-
tails about the baseline results and hyperparameter settings
can be found in Appendix C.2. Our MoDAP method con-
sistently showed robust and superior performance especially
when compared to the deteriorated performance of EDAC,
which performed remarkably well in D4RL benchmark. As
the dataset support of NeoRL is significantly constrained, our
diversity policy learning demonstrates the potential benefits
of making decisions in out-of-support regions.

Furthermore, MoDAP showed substantial performance im-
provement with the larger number of trajectories (increasing
from 100 to 1000). The augmented dataset size significantly
contributes to constructing a set of better dynamics mod-
els. Meanwhile, the performance of the CQL method, which
demonstrated high scores on several NeoRL datasets, showed
relatively marginal improvement. This can be attributed to the
inherent nature of NeoRL datasets, where the introduction of
more conservative data does not necessarily translate to per-
formance improvement.

We have observed that the performance of MoDAP was
lower than that of BC, especially in the Hopper-v3-high
dataset. This suggests that incorporating synthetic data some-
times leads to worse results than relying solely on the offline
dataset if there is a significant discrepancy between the syn-
thetic data and the true environment. We believe that increas-
ing the number of dynamics models can handle this discrep-
ancy issues, potentially leading to performance improvement.
Specifically, in the Hopper-v3-high dataset, the normalized
scores of MoDAP with n = 40 demonstrate a significant im-
provement: 37.1± 0.8 for 100 trajectories (compared to 20.2
for n=10), and 52.4± 3.2 for 1000 trajectories (compared to
28.4 for n=10). These results clearly indicate that increasing
the number of dynamics models leads to substantial improve-
ments in performance.

5.4 Analysis on Hyperparameters

The number of models n employed plays a pivotal role in
the performance of our algorithm, and rollout length k can
impact our algorithm’s behavior. To investigate these consid-
erations, we conduct experiments to analyze the asymptotic

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3868



N
or

m
al

iz
ed

 S
co

re

0

0.2

0.4

0.6

0.8

Iteration
0k 0.4k 0.8k 1.2k 1.6k 2.0k

0

0.2

0.4

0.6

0.8

Iteration
0k 0.4k 0.8k 1.2k 1.6k 2.0k

0

0.2

0.4

0.6

0.8

Iteration
0k 0.4k 0.8k 1.2k 1.6k 2.0k

0

0.2

0.4

0.6

0.8

Iteration
0k 0.4k 0.8k 1.2k 1.6k 2.0k

(a)  n = 5 (b)  n = 10

[Rollout Length]

(c)  n = 20 (d)  n = 40

= 5 = 10 = 20 = 40

Figure 1: Investigation of performance variation with varying number of models and rollout lengths. The graph depicts the average score
across 3 seeds, with standard error shading on the medium-quality dataset with 100 trajectories in the Walker2d-v3 task.

performance while varying the number of model n and the
rollout length k. This decision was driven by the understand-
ing that utilizing a comparatively small number of training
trajectories would enable a clear observation of the distinct
impact of varying the number of models. Furthermore, the
use of a medium-quality dataset is particularly effective in
showcasing the algorithm’s inherent capabilities. This is be-
cause other types of datasets could potentially yield perfor-
mances that are either too low or too high, thus diminishing
the significance of performance differences.

The results, illustrated in Figure 1, reveal several trends.
Notably, for all values of n except when using 5 models, in-
creasing the rollout length k leads to improved performance
of the converged policies. However, in the case of 5 models,
all tested rollout lengths show worse performance. This sug-
gests that utilizing only 5 models is insufficient in the Walker-
v3-medium-100 task.

Interestingly, when a rollout length of k = 5 is employed,
increasing the number of models does not significantly im-
prove performance. This observation implies that a rollout
length of 5 may not be adequate to generate the necessary di-
versity across the dynamics models. However, as the number
of models becomes sufficiently large, such as in the case of
20, 40 models, a rollout length of 40 exhibits rapid and su-
perior performance. This outcome underscores the effective-
ness of our algorithm in making decisions in out-of-support
regions.

6 Conclusion

Offline RL has wrestled with the fundamental challenge of
policy learning from limited datasets that capture only a frac-
tion of the environment’s dynamics. While constrained op-
timization has been a prevailing approach to cope with this
challenge, it tends to suffer when encountering unexplored re-
gion during test time. To tackle this dilemma and enable bet-
ter decision-making in previously unexplored regions, the ad-
vent of adaptive methodologies has been instrumental. These
approaches have the capacity to train highly generalizable
adaptive policy by incorporating a broad range of possible
dynamics models as potential candidates for representing the
true environment. However, the practical construction of an

exhaustive set of dynamics models remains elusive, often re-
sorting to ensemble structures to approximate this diversity.
In this paper, we delve into the crucial question of which dy-
namics models should be embraced in training adaptive poli-
cies. To address this, we introduce a novel framework for
assembling a set of dynamics models, driven by a mutual-
information-based objective. Our method is put to the test
through comprehensive experiments conducted on both the
D4RL and NeoRL benchmarks. The results demonstrate the
superiority and competitiveness of our approach when com-
pared to state-of-the-art algorithms, affirming its prowess in
enhancing policy learning from limited data.

Furthermore, there exist several potential extensions to our
algorithm, particularly within the context of Offline Meta
RL [Pong et al., 2022; Lin et al., 2022]. In such scenarios,
a limited number of tasks are sampled from the task distri-
bution. To facilitate adaptation to new tasks, it would be ad-
vantageous to construct novel tasks that can interact with the
policy, ultimately enhancing its generalization capability.
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