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Abstract
Deep clustering methods improve the performance
of clustering tasks by jointly optimizing deep rep-
resentation learning and clustering. While numer-
ous deep clustering algorithms have been proposed,
most of them rely on artificially constructed pseudo
targets for performing clustering. This construc-
tion process requires some prior knowledge, and it
is challenging to determine a suitable pseudo tar-
get for clustering. To address this issue, we pro-
pose a deep embedding clustering algorithm driven
by sample stability (DECS), which eliminates the
requirement of pseudo targets. Specifically, we
start by constructing the initial feature space with
an autoencoder and then learn the cluster-oriented
embedding feature constrained by sample stabil-
ity. The sample stability aims to explore the deter-
ministic relationship between samples and all clus-
ter centroids, pulling samples to their respective
clusters and keeping them away from other clus-
ters with high determinacy. We analyzed the con-
vergence of the loss using Lipschitz continuity in
theory, which verifies the validity of the model.
The experimental results on five datasets illustrate
that the proposed method achieves superior perfor-
mance compared to state-of-the-art clustering ap-
proaches.

1 Introduction
Clustering [Xu and Wunsch, 2005], one of the most crucial
tasks in machine learning, aims to group similar samples into
the same cluster while separating dissimilar ones into differ-
ent clusters. Traditional clustering methods such as k-means
[MacQueen, 1967b], spectral clustering [Ng et al., 2001;
Yang et al., 2018], Gaussian mixture model [Bishop and
Nasrabadi, 2006; Reynolds, 2009] and hierarchical clustering
[Sneath and Sokal, 1962; Johnson, 1967; Koga et al., 2007]
have achieved tremendous success over the past decades.
However, these methods depend on manually extracted fea-
tures, making them impractical for high-dimensional and un-
structured data. Benefiting from the development of deep rep-
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resentation learning, deep clustering arises and has attracted
increasing attention recently.

The existing deep clustering methods can be roughly cate-
gorized into three types: First, the pseudo labeling deep clus-
tering method [Niu et al., 2020; Niu et al., 2022] filters out
a subset of samples with high confidence and trains in a su-
pervised manner, yet, the performance of this method heav-
ily relies on the quality of the filtered pseudo labels, which
is susceptible to model capability and hyper-parameter tun-
ing. Second, the self-training deep clustering method [Xie
et al., 2016; Guo et al., 2017a] optimizes the distribution
of cluster assignments by minimizing the KL-divergence be-
tween the assignment distribution and an auxiliary distribu-
tion, but the performance of this method is limited by the
construction method of the auxiliary distribution. Third,
the contrastive deep clustering method [Jaiswal et al., 2020;
Jing and Tian, 2020] aims to pull the positive pairs close
while pushing the negative pairs far away, this method relies
on the construction approach of positive and negative sample
pairs. In summary, despite the proposal of numerous excel-
lent deep clustering methods, most of them rely on artificially
constructed pseudo targets that require prior knowledge and
may heavily impact the clustering results.

In this paper, inspired by traditional clustering methods
based on sample stability [Li et al., 2019; Li et al., 2020],
we propose a deep embedding clustering algorithm driven by
sample stability (DECS). Different from prior methods, our
method eliminates the requirement of a pseudo target, and
clustering using sample stability as a constraint.

Specifically, our method consists of two stages: represen-
tation learning and clustering. In the representation learning
stage, we employ a convolutional autoencoder [Guo et al.,
2017b] to map the raw data into a latent embedding space
that captures the underlying structure of the data. This is
achieved by minimizing the reconstruction loss, ensuring that
the learned feature representations preserve the essential in-
formation from the original input. Subsequently, in the clus-
tering stage, we retain the encoder module of the autoencoder
and compute the soft assignment probabilities of each sample
to all cluster centroids based on the learned embedding rep-
resentations, which we refer to as co-association probability.
Then, we compute the level of determinacy for each sample
with respect to all cluster centers and further calculate the sta-
bility of all samples by considering their determinacy levels
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regarding each cluster center. To the best of our knowledge,
our method is the first to utilize the deterministic relation-
ship between samples and centroids for clustering, and inno-
vatively employ the instability of samples as a loss to opti-
mize the parameters of deep neural networks. In summary,
the main contributions of this work are as follows:

• The concept of sample stability is extended into deep
clustering, and a novel loss function that effectively cap-
tures both intra-class and inter-class relationships among
the samples is proposed. This approach is then applied
in a joint learning framework, which comprises an au-
toencoder and a clustering layer.

• The model’s convergence is theoretically analyzed, pro-
viding evidence that clustering with internal sample rela-
tionship driven by sample stability can indeed converge.

• Experiments are conducted on five image datasets to val-
idate the effectiveness of our method. The experimental
results demonstrate that our approach outperforms the
state-of-the-art methods.

2 Related Work
This work is closely related to convolutional autoencoder and
sample stability, which are briefly introduced in this section.

2.1 Convolutional Autoencoder
Autoencoder is an unsupervised neural network model widely
used for tasks like data dimensionality reduction and feature
extraction. Deep Embedded Clustering (DEC) [Xie et al.,
2016] was the pioneer in utilizing denoising autoencoders for
joint learning of feature representations and cluster assign-
ments. Subsequent works, such as IDEC [Guo et al., 2017a],
FCDEC-DA [Guo et al., 2018], SDEC [Ren et al., 2019], and
others, have built upon DEC’s autoencoder framework, and
achieved remarkable clustering results.

Due to the limited ability of fully connected layers in ex-
tracting features from high-dimensional data, such as images,
convolutional autoencoder [Guo et al., 2017b] was proposed
by incorporating Convolutional Neural Networks (CNNs)
into autoencoders, which showed improved adaptation to
image-related tasks. DEPICT [Ghasedi Dizaji et al., 2017],
ConvDEC-DA [Guo et al., 2018], DBC [Li et al., 2018], Stat-
DEC [Rezaei et al., 2021], and so on, have adopted convolu-
tional autoencoders instead of fully connected autoencoders
in order to learn feature representations and achieve superior
clustering results.

2.2 Sample Stability
The concept of sample stability [Li et al., 2019] was first pro-
posed in clustering ensembles. Clustering methods based on
sample stability aim to explore the indeterminacy of sample
relationships and identify sets of samples with stable relation-
ships. These approaches leverage pairwise relationships be-
tween samples for clustering, which reduces the impact of
indeterminate relationships among samples.

Given a set of clustering results, the co-association prob-
ability between two samples can be represented by their fre-
quency of belonging to the same cluster based on their sim-
ilarity. A co-association probability value of one indicates

high determinacy that the samples belong to the same cluster,
while a value of zero indicates high determinacy that they do
not belong to the same cluster. However, when the value falls
between zero and one, it becomes difficult to definitively de-
termine whether the two samples belong to the same cluster,
resulting in a low determinacy. Due to the insufficiency of
using co-association probabilities alone in reflecting the level
of determinacy regarding whether two samples belong to the
same cluster, the determinacy function [Li et al., 2019] was
proposed to evaluate the level of determinacy between two
samples. Then, the stability of sample xi is defined as the
average level of determinacy among sample xi and all other
samples based on their co-association probability values:

sq (xi) =
1

n

n∑
j=1

fq (pij)

where n represents the number of samples in the dataset, and
pij ∈ P, P = {pij |1 ≤ i ≤ n, 1 ≤ j ≤ n} denote the co-
association probability of sample xi and xj , and fq (·) denote
the determinacy function.

Subsequently, SSC [Li et al., 2020] extended the concept
of sample stability from cluster ensembles to clustering anal-
ysis and proposed a new function for measuring sample sta-
bility in cluster analysis, and the theoretical validity of sample
stability was analyzed in this work.

Although the clustering methods based on sample stability
[Li et al., 2019; Li et al., 2020] provide new ideas for clus-
tering, these methods are heuristic approaches that only use
sample stability as an evaluation function. However, utiliz-
ing sample’s stability to guide clustering optimization has not
been well studied.

3 Method
In this section, we present the proposed Deep Embedding
Clustering Driven by Sample Stability (DECS) model. Our
model first trains a convolutional autoencoder and then uti-
lizes sample stability as guidance to accomplish clustering.
Fig.1 illustrates the overall process.

3.1 Problem Formulation
In this paper, we aim to cluster a set of n samples X =
{xi}ni=1 from the input space X ∈ Rd into k classes using
a clustering network. Distinguishing with the prior works,
we reconsider the problem of clustering in deep neural net-
works by introducing constraints on the relationships among
samples, and make the first attempt to reduce the calculation
of sample stability from n2 to kn. Our method first employs
an autoencoder to map the sample set X into a representa-
tion space, and then utilizes sample stability as a constraint to
achieve sample clustering.

To this end, the objective function of our framework can be
formulated as:

L = Lr + Lc, (1)

where Lr and Lc represent the reconstruction loss and clus-
tering loss, respectively.
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Figure 1: Pipeline of the proposed DECS. We first train an autoencoder consisting of an encoder and a decoder to embed the inputs into a
latent space and reconstruct the input samples using their latent representations. The reconstruction loss is utilized to learn discriminative
information from the inputs. Then, we discard the decoder and jointly optimize the encoder and clustering model to get the clustering results.

3.2 Extract Features with Convolutional
Autoencoder

To accurately represent each sample with an embedding vec-
tor, we employ a convolutional autoencoder as the feature ex-
tractor, an encoder fθe is used to map a sample xi ∈ X to
its latent embedding vector zi ∈ Z, while a decoder gθd re-
constructs xi from its embedding vector zi. To be specific,
given a set of samples X =

{
xi ∈ Rd

}n
i=1

, a random trans-
formation Trandom is applied to each sample xi to obtain the
augmented sample x′

i = Trandom (xi), and then serve as the
inputs of convolutional autoencoder, which extracts the la-
tent embedding representation of each sample from its inter-
nal layers by minimizing the reconstruction loss:

Lr =
1

n

n∑
i=1

∥gθd (fθe (x′
i))− x′

i∥
2
2 , (2)

where n represent the number of samples.
The convolutional encoder is utilized to capture the essen-

tial information of the samples, while a convolutional decoder
is employed to validate and enhance the representation ability
of the embedding vectors. This process can be expressed as:

fθe = σ

(∑
i∈H

x′ ∗Wi + bi

)
, (3)

gθd = σ

(∑
i∈H

zi ∗ W̃i + ci

)
, (4)

where θe and θd represent the parameters of the convolutional
encoder and decoder, respectively, σ is the activation function
such as ReLU, H denotes the group of latent feature maps,
Wi and bi correspond to the filter and bias of the ith feature
map in the encoder, similarly, W̃ and ci are the correspond-
ing parameter in the decoder, and ∗ denotes the convolution
operation.

3.3 Clustering with Sample Stability
In the clustering stage, we utilize the encoder trained in the
previous stage as the feature extractor and then fine-tune the
encoder using sample stability as guidance, which ensures
that it learns cluster-oriented sample representations. For the
sake of writing and understanding, we consider only a single
sample and describe the computational processes in vector
form in the following description. We introduce the notation
I ∈ R1×k as a row vector with all ones, and T denotes the
transpose of a vector.

In the clustering stage, we first perform k-means cluster-
ing in the embedding space to obtain initial centroids m =
[m1,m2, . . . ,mk] ∈ Rk×d, where k and d represent the
number and dimension of centroids, respectively. Next, we
calculate the assignment probability between a sample em-
bedding zi and the centers m of all clusters by a Student’s
t-distribution:

qi =
I
[
E+ 1

αdiag
(
(Zi −m) (Zi −m)

T
)]−α+1

2

I
[
E+ 1

αdiag
(
(Zi −m) (Zi −m)

T
)]−α+1

2

IT
,

(5)
where qi ∈ R1×k, Zi = IT · zi represents the dimension
broadcasting of the embedding representation for the ith sam-
ple xi, and E is an identity matrix.

Then, the determinacy among sample xi and all centroids
is determined by a mapping function as follow:

fqi =
Qi · diag (Qi)

t2
1 (Qij < 0) +

Qi · diag (Qi)

(1− t)
2 1 (Qij ≥ 0) ,

(6)
here, t represents the co-association probability at the lowest
level of determinacy, which is adaptively determined using
Otsu’s method, Qi = qi − t,Qi ∈ R1×k indicates the offset
of qi with respect to the threshold t, diag denotes the con-
struction of a diagonal matrix from a vector, and 1(·) repre-
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Algorithm 1 Algorithm of DECS
Input: Dataset X, Number of cluster k, Maximum iterations
MaxIter;
Output: Cluster center m, Cluster assignment s;

1: Initialize autoencoder’s weight by (2) with X;
2: Initialize m and s with k-means algorithm;
3: while iter ≤ MaxIter do
4: compute the co-association probability matrix of sam-

ples x ∈ X and centers m by (5);
5: compute the determinacy between samples x ∈ X and

centers m by (6);
6: compute the stability sq of n samples x ∈ X by (7);
7: update encoder’s weight and m by optimizing

(16)(17);
8: end while
9: return Cluster center m, Cluster assignment s by maxi-

mizing sq.

sents an indicator function that equals one only when a certain
condition is satisfied, and zero otherwise.

After obtaining the determinacy relationship between each
sample-center pair, the stability of sample xi can be calcu-
lated based on the following formula:

sqi =
1

k
fqi · IT − λ

k
tr

[(
fqi −

1

k
fqi · IT I

)T (
fqi −

1

k
fqi · IT I

)]
,

(7)
here, k represents the number of clusters, λ is a proportion-
ality coefficient, tr denotes the trace of a matrix. That is,
the first and second terms of Eq. (7) represent the mean and
variance of fqi, respectively.

Based on the above discussion, we can obtain the stability
of each sample. During the process of clustering, we utilize
instability as the loss and optimize the network parameters by
minimizing this loss. Thus, our clustering loss function can
be formulated as:

Lc = 1− 1

n
I · sq, (8)

where n denotes the number of samples, sq = {sqi}ni=1,
sq ∈ Rn×1 represents the stability of the n samples.

By optimizing this objective function, we can gradually
move each sample close to its corresponding cluster and far-
ther away from other clusters. This results in a high level of
stability of all samples, close to one. The training steps of the
proposed DECS are shown in Algorithm 1.

3.4 Optimization and Convergence Analysis
At each epoch, our model jointly optimizes the cluster cen-
ters {mj} and neural network parameters θ using stochastic
gradient descent with momentum. Firstly, the gradients of Lc

with respect to sq can be expressed as follows:
∂Lc

∂sq
= − 1

n
IT . (9)

Secondly, the gradient of stability sqi of the ith sample
with respect to deterministic fqi can be written as:

∂sqi

∂fqi
=

1

k
IT − 2λ

k

[(
fqi

T − 1

k
fqi

T · IIT
)]

. (10)

We proof the correctness of Eq. (10) as follow:

Proof. According to Eq. (7),

sqi =
1

k
fqi · IT − λ

k
tr

[(
fqi −

1

k
fqi · IT I

)T (
fqi −

1

k
fqi · IT I

)]

=
1

k
fqi · IT − λ

k
tr

[(
fqi

T fqi −
1

k
fqi

T fqi · IT I

−1

k
tr(IT I · fqi

T fqi) +
1

k2
tr(IT I · fqi

T fqi · IT I)
)]

=
1

k
fqi · IT − λ

k

[(
tr(fqi

T fqi)−
1

k
tr(fqi

T fqi · IT I)

−1

k
tr(fqiI

T I · fqi
T ) +

1

k2
tr(fqi · IT I · IT I · fqi

T )

)]
=
1

k
fqi · IT − λ

k

[(
tr(fqi

T fqi)−
1

k
tr(fqi

T fqi · IT I)

−1

k
tr(fqiI

T I · fqi
T ) +

1

k
tr(fqi · IT I · fqi

T )

)]
=
1

k
fqi · IT − λ

k

[(
tr(fqi

T fqi)−
1

k
tr(fqi

T fqi · IT I)
)]

.

So, we can easily conclude Eq. (10).

Thirdly, the gradient of determinacy fq (qij) with respect
to qij can be written as follow:

∂fq (qij)

∂qij
=

2 (qij − t)

t2
1 (qij < t)+

2 (qij − t)

(1− t)
2 1 (qij ≥ t) ,

(11)
and thus the gradient of determinacy fqi with respect to qi

can be written as
∂fqi

∂qi
=

[
∂fq (qi1)

∂qi1
,
∂fq (qi2)

∂qi2
, . . . ,

∂fq (qik)

∂qik

]
, (12)

where qij and fq (qij) represents the jth element of qi and
fqi, respectively.

Lastly, for simplicity, we let α = 1 and

A := diag
(
E+ ZZT − 2ZmT +mmT

)
;

B := −diag (2Z− 2m) ;

C := −diag (2m− 2Z) .

(13)

The gradient of qi with respect to zi and m can be expressed
separately as:

∂qi

∂zi
=

A−2BIT IA−1IT −A−1IT IA−2BIT

IA−1IT IA−1IT
, (14)

∂qi

∂m
=

A−2CIT IA−1IT −A−1IT IA−2CIT

IA−1IT IA−1IT
. (15)

Proof. According to Eq. (5),

qi =
I
[
E+ diag

(
(Zi −m) (Zi −m)

T
)]−1

I
[
E+ diag

(
(Zi −m) (Zi −m)

T
)]−1

IT

=
I
[
diag

(
E+ ZiZi

T − 2Zim
T +mmT

)]−1

I
[
diag

(
E+ ZiZi

T − 2ZimT +mmT
)]−1

IT
.
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Based on Eq. (13), we can easily conclude Eq. (14) and Eq.
(15).

Therefore, the gradients of Lc with respect to the latent
embedding zi and cluster centroid m are be computed as:

∂Lc

∂zi
=

∂Lc

∂sqi
· ∂sqi

∂fqi
· ∂fqi

∂qi
· ∂qi

∂zi
, (16)

∂Lc

∂m
=

∂Lc

∂sqi
· ∂sqi

∂fqi
· ∂fqi

∂qi
· ∂qi

∂m
. (17)

Then, the gradients ∂Lc

∂zi
are propagated to the neural net-

work and used in backpropagation to compute the network’s
parameter gradient ∂Lc

∂θ . Through iterating these updates, the
model finds the optimal clustering result. The training pro-
cess is repeated until the convergence condition is met.

To validate the correctness of the optimization process,
Fig.2 presents the graphs of functions and their derivatives
involved in computing sample stability for the case of two
classes.

(a) (b)

(c) (d)

Figure 2: Visualization of the functions and their derivatives in-
volved in sample stability clustering. (a) shows the function of sq
w.r.t fq and its derivative in the case of two centroids. (b) represents
the function of fq w.r.t q and its derivative. (c) demonstrates the
function of q w.r.t two dimensions vector z and its derivative. (d)
depicts the function of q w.r.t two cluster centers m and its deriva-
tive.

Furthermore, We have theoretically proven the conver-
gence of the loss Lc with respect to the centroids m.

Theorem 1. There exists M > 0 such that || ▽ Lc|| ≤ M ,
where M = 2(1+2λ)(α+1)

4nkt2α max(||zi −mj ||).

Proof.

Lemma 1. [Nesterov, 1998] Let f be Lipschitz continuous on
the ball B2 (x

∗, R) with the constant M and ||x0 − x∗|| ≤ R.

Then

f∗
k − f∗ ≤ M

R2 +
∑k

i=0 h
2
i

2
∑k

i=0 hi

, (18)

where hi represents the step size and M is termed as the Lip-
schitz constant.

According to Lemma 1, its convergence can be determined
by the initial solution and step size when the loss function
satisfies Lipschitz continuity. Consequently, we can conclude
based on Lemma 1 that the objective function Lc is conver-
gence i.f.f. || ▽ Lc|| ≤ M . In other words, to verify the
convergence of Lc, it is necessary to prove the existence of
an upper bound for its derivative.

For the sake of simplicity, a centroid mj is used as an ex-
ample for the convergence analysis, and we only consider the
case where qij < t, while the case of qij ≥ t can be similarly
treated. We can know:∣∣∣∣∣∣∣∣ ∂Lc

∂mj

∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣ ∂Lc

∂sq(xi)

∂sq(xi)

∂fq(qij)

∂fq(qij)

∂qij

∂qij
∂mj

∣∣∣∣∣∣∣∣ , (19)

where sq(xi), fq(qij) and qij represents the stability of ith

sample, determinacy and co-association probability of the ith
sample with respect to the jth centroid.

For the first term of the Eq.(19), it is clear that ∂Lc

∂sq(xi)
=

− 1
n , and as for the second item, we know that:∣∣∣∣∣∣∣∣ ∂sq(xi)

∂fq(qij)

∣∣∣∣∣∣∣∣ = 1

k
− 2λ

k
(fq(qij)− µ) ≤ 1 + 2λ

k
, (20)

here, µ represents the mean of {fq(qij)}kj=1 and 0 ≤
fq(qij) ≤ 1.

For the third term of the Eq.(19), in the case of qij < t:∣∣∣∣∣∣∣∣∂fq(qij)∂qij

∣∣∣∣∣∣∣∣ = 2 (qij − t)

t2
≥ −2

t2
, (21)

and for the last term of the Eq.(19), we know that:∣∣∣∣∣∣∣∣ ∂qij∂mj

∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣α+ 1

α

zi −mj

1 + ||zi −mj ||2/α
qij (1− qij)

∣∣∣∣∣∣∣∣
≤ α+ 1

4α
||(zi −mj)|| ,

(22)

where, zi represents the ith sample embedding, 1 + ||zi −
mj ||2/α ≥ 1, and qij (1− qij) ≤ 1

4 due to 0 ≤ qij ≤ 1.
According to the above analysis, we can conclude that the

upper bound for the loss Lc:∣∣∣∣∣∣∣∣ ∂Lc

∂mj

∣∣∣∣∣∣∣∣ ≤ 2 (1 + 2λ) (α+ 1)

4nkt2α
||zi −mj || . (23)

That is to say, there exists M > 0 such that ||▽Lc|| ≤ M ,
where M = 2(1+2λ)(α+1)

4nkt2α max(||zi −mj ||). In fact, there
exists an upper boundary of ||zi −mj || for any real-world
dataset.

4 Experiments
In this section, we evaluate the effectiveness of the proposed
DECS method on five benchmark datasets. We also present
the visualization of sample distribution and analyze how these
hyperparameters impact the performance.
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methods MNIST MNIST-test USPS Fashion YTF
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

k-means 0.532 0.499 0.542 0.500 0.668 0.626 0.474 0.512 0.601 0.776
GMM 0.433 0.366 0.540 0.593 0.551 0.530 0.556 0.557 0.348 0.411

SC-Ncut 0.656 0.731 0.660 0.704 0.649 0.794 0.508 0.575 0.510 0.701
SC-LS 0.714 0.706 0.740 0.756 0.746 0.755 0.496 0.497 0.544 0.759

AC-GDL 0.113 0.017 0.933 0.864 0.725 0.825 0.112 0.010 0.430 0.662
DEC 0.863 0.834 0.856 0.830 0.762 0.767 0.518 0.546 0.371 0.446
IDEC 0.881* 0.867* 0.846 0.802 0.761* 0.785* 0.529 0.557 0.400* 0.483*
DCEC 0.890 0.885 0.852 0.809 0.790 0.862 - - - -
VaDE 0.944 0.891 0.944* 0.885* 0.566* 0.512* 0.629 0.611 0.601* 0.753*
JULE 0.964 0.913 0.961 0.915 0.950 0.913 0.563* 0.608* 0.684 0.848

DEPICT 0.965* 0.917* 0.963* 0.915* 0.899 0.906 0.392 0.392 0.621 0.802
IDCEC 0.948 0.906 0.923 0.853 0.812 0.858 - - 0.632 0.793
TELL 0.952 0.888 0.776* 0.751* 0.865* 0.786* 0.584* 0.658* - -

AdaGAE 0.929 0.853 - - 0.920 0.848 - - - -
MI-ADM 0.969 0.922 0.871 0.885 0.979 0.948 - - 0.606 0.801
DSCDA 0.978 0.941 0.980 0.946 0.869 0.857 0.662 0.645 0.691 0.857
DynAE 0.987 0.964 0.987 0.963 0.981 0.948 0.591 0.642 - -

ASPC-DA 0.988 0.966 0.973 0.936 0.982 0.951 0.591 0.654 - -
DeepDPM 0.980 0.950 - - 0.940 0.900 0.610 0.500 0.821 0.930

TDEC 0.985 0.957 0.975 0.935 0.976 0.935 0.645 0.693 0.950 0.980
DECS 0.990 0.973 0.990 0.971 0.992 0.976 0.642 0.716 0.827 0.911

Table 1: Comparison of clustering performance on five datasets in terms of ACC and NMI. The bolded font represents the best and second
results.

4.1 Datasets and Evaluation Metrics
In order to validate the performance and generality of the
proposed method, we perform experiments on five image
datasets, as shown in Table 2. Considering that clustering
tasks are fully unsupervised, the training and test split are
merged in all our experiments.

Dataset samples Classes Dimensions
MNIST-full 70,000 10 1x28x28
MNIST-test 10,000 10 1x28x28

USPS 9,298 10 1x16x16
Fashion-Mnist 70,000 10 1x28x28

YTF 12,183 41 3x55x55

Table 2: Description of Datasets

Two widely-used unsupervised evaluation metrics includ-
ing cluster accuracy(ACC) and normalized mutual informa-
tion(NMI) are used to validate the performance of the pro-
posed model. Higher values of these metrics indicate better
clustering performance.

4.2 Baseline Methods
In the comparative experiments, our proposed method was
compared with several representative conventional baseline,
including: k-means [MacQueen, 1967a], GMM [Reynolds,
2009], sc-Ncut [Shi and Malik, 2000], SC-LS [Chen and
Cai, 2011] and AC-GDL [Zhang et al., 2013]. In addition,
our method was compared with several state-of-the-art deep
clustering algorithms. To ensure the fairness of our experi-
ments, we have selected comparative methods that utilize au-
toencoders as feature extractors, including: DEC [Xie et al.,

2016], IDEC [Guo et al., 2017a], DCEC [Guo et al., 2017b],
VaDE [Jiang et al., 2016], JULE [Yang et al., 2016], DEPICT
[Ghasedi Dizaji et al., 2017], IDCEC [Lu et al., 2022], TELL
[Peng et al., 2022], AdaGAE [Li et al., 2021], MI-ADM [Jabi
et al., 2019], DSCDA [Yang et al., 2019], DynAE [Mrabah
et al., 2020], ASPC-DA [Guo et al., 2019], TDEC [Zhang et
al., 2023] and DeepDPM [Ronen et al., 2022].

4.3 Experiment Results
Table 1 presents the performance of our method and other
comparative methods. For the compared methods, if their re-
sults on some datasets were not reported, we ran the released
code with hyperparameters mentioned in their papers, and the
results are marked by (*) on top. When the code is not pub-
licly available or running the released code is not practical,
we replaced the corresponding results with dashes (-).

It be seen from Table 1 that the proposed DECS algo-
rithm achieves superior clustering results across all datasets.
Specifically, on the USPS dataset, our algorithm achieves a
clustering accuracy of over 99%. It outperforms the second-
best ASPC-DA by 1.0% and 2.5% on ACC and NMI, respec-
tively. Furthermore, our method significantly outperforms
several classical shallow baselines, which can be attributed
to the utilization of a multi-layer convolutional autoencoder
as the feature extractor.

Furthermore, we also performed t-SNE visualization to
compare the cluster structures obtained using different clus-
tering algorithms on the USPS dataset, as shown in Fig.3.
Specifically, Fig.3 (a)-(e) represent the clustering results ob-
tained by algorithms DEC, TELL, AdaGAE, ASPC-DA, and
DeepDPM, respectively, while Fig.3 (f) represents the clus-
tering result of our proposed algorithm. It is evident that our
proposed algorithm is able to achieve clearer and more accu-
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rate cluster structures, which further proves the effectiveness
of the proposed algorithm.

(a) DEC (b) TELL (c) AdaGAE

(d) ASPC-DA (e) DeepDPM (f) Ours

Figure 3: T-SNE visualization comparing the cluster structures ob-
tained from different clustering algorithms on the USPS datasets.
Distinct colors represent different digits, and the cluster centers are
indicated by black ’x’ symbols.

In addition, we have investigated the sensitivity of our
model to the parameters α and λ using the USPS, MNIST and
Fashion datasets, and the results are shown in Fig.4. Specif-
ically, Fig.4 (a), (c) and (e) display the results of ACC from
different parameter settings on USPS, MNIST and Fashion
datasets, and Fig.4 (b), (d) and (f) show the results of NMI.
According to the figure, we can observe that the variation
of hyperparameters has little effect on the clustering perfor-
mance, which indicates that our model is not sensitive to the
initialization of hyperparameters.

4.4 Implementation
For all datasets, we specify that the encoder to consists of four
convolutional layers with channel sizes of 32, 64, 128, and
256, respectively. Each convolutional kernel has a size of 3×3
and uses a stride of 2. Furthermore, batch normalization and
max pooling layers are added after each convolutional layer.
The decoder uses a network that mirrors the encoder’s struc-
ture. Additionally, ReLU is utilized as the activation function
for all convolutional layers in the model.

During the training process, data augmentation techniques
such as random rotation, translation, and cropping are ap-
plied to improve the neural network’s generalization abil-
ity. In addition, the autoencoder is trained end-to-end for
500 epochs using the Adam optimizer with default param-
eters in Keras. Then, the encoder is further trained for
10000 iterations with a batch size of 256. The coeffi-
cient λ for variance is set to 0.8 during the calculation of
sample stability. Our source code is publicly available at:
https://github.com/ChengZhanwen/DECS.

5 Conclusion
In this paper, we proposed a deep embedding clustering al-
gorithm driven by sample stability. The algorithm combines
a convolutional autoencoder model with a clustering layer
that relies on sample stability. Unlike previous methods, our

(a)ACC of USPS (b)NMI of USPS

(c)ACC of MNIST (d)NMI of MNIST

(e)ACC of Fashion (f)NMI of Fashion

Figure 4: ACC and NMI of our method with different α and λ on
USPS, MNIST and Fashion datasets, respectively.

method constrains the sample using sample stability, elim-
inating the need for artificially constructed pseudo targets.
This mitigated the clustering biases caused by inappropri-
ate pseudo targets and significantly improved the reliability
of the clustering results. We analyzed the convergence of
the proposed DECS model, and the experimental results on
five image datasets indicate that our algorithm achieve su-
perior clustering performance. In the future, incorporating
more complex representation learning models and applying
our approach to a wider range of real-world datasets may be
an intriguing and practical avenue for research.
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