
Automated CPU Design by Learning from Input-Output Examples
Shuyao Cheng1,2,3 , Pengwei Jin1,2,3 , Qi Guo1 , Zidong Du1,4 , Rui Zhang1 , Xing Hu1,4 , Yongwei

Zhao1 , Yifan Hao1 , Xiangtao Guan5 , Husheng Han1,2 , Zhengyue Zhao1,2 , Ximing
Liu1,2 , Xishan Zhang1,3 , Yuejie Chu1 , Weilong Mao1 , Tianshi Chen3 , Yunji Chen1,2 ∗

1State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences
2University of Chinese Academy of Sciences

3Cambricon Technologies
4Shanghai Innovation Center for Processor Technologies

5University of Science and Technology of China

Abstract
Designing a central processing unit (CPU) requires
intensive manual work of talented experts to imple-
ment the circuit logic from design specifications.
Although considerable progress has been made in
electronic design automation (EDA) to relieve hu-
man efforts, all existing tools require hand-crafted
formal program codes (e.g., Verilog, Chisel, or C)
as the input. To automate the CPU design with-
out human programming, we are motivated to learn
the CPU design from only input-output (IO) exam-
ples, which are generated from test cases of design
specification. The key challenge is that the learned
CPU design should have almost zero tolerance for
inaccuracy, which makes well-known approximate
algorithms such as neural networks ineffective.
We propose a new AI approach to generate the CPU
design in the form of a large-scale Boolean func-
tion, from only external IO examples instead of for-
mal program code. This approach employs a novel
graph structure called Binary Speculative Diagram
(BSD) to approximate the CPU-scale Boolean
function accurately. We propose an efficient BSD
expansion method based on Boolean Distance, a
new metric to quantitatively measure the structural
similarity between Boolean functions, gradually in-
creasing the design accuracy up to 100%. Our ap-
proach generates an industrial-scale RISC-V CPU
design within 5 hours, reducing the design cycle
by about 1000× without human involvement. The
taped-out chip, Enlightenment-1, the world’s
first CPU designed by AI, successfully runs the
Linux operating system and performs compara-
bly against the human-design Intel 80486SX CPU.
Our approach even autonomously discovers human
knowledge of the von Neumann architecture.

1 Introduction
CPU (central processing unit) design has long been consid-
ered one of the most challenging intellectual tasks humans

∗Yunji Chen (cyj@ict.ac.cn) is the corresponding author.

(a)

(b)

Circuit
Logic

Pass

Violation

BSD
ExpansionISA

Test
Cases

Test
Generation

Legacy
Programs

IO Examples

Verification

IO Examples

Circuit
Logic

ISA PassProgramming Verification

Test
Cases

Violation

Test
Generation

Legacy
Programs

IO Examples

Debugging

Figure 1: Comparison of CPU design flow. (a) The conventional
design flow is an iterative process with huge manual efforts in pro-
gramming, debugging, and verification of the circuit logic. (b) The
proposed automated design flow, which learns the circuit logic only
from input-output (IO) examples of test cases with the proposed
BSD expansion, is a fully-automatic and iterative process that elim-
inates manual efforts on programming, debugging, and verification
of the circuit logic.

have ever undertaken. In conventional CPU design flow,
a team of talented engineers use formal programming lan-
guages (e.g., Verilog [IEEE, 1996], Chisel [Bachrach et al.,
2012], or C/C++ [Coussy et al., 2009; Gajski et al., 2012]) to
implement the circuit logic of a CPU based on design spec-
ification. Then billions of dedicated test cases with both in-
puts and their expected outputs are developed to test the func-
tionality of the circuit logic for verification and debugging,
as shown in Fig. 1(a). Though modern commercial elec-
tronic design automation (EDA) tools such as logic synthe-
sis [Rudell, 1989] or high-level synthesis (HLS) [McFarland
et al., 1990; Lahti et al., 2018] tools are available to alle-
viate the manual efforts of designing circuit logic, all these
tools require hand-crafted formal programming codes as in-
put. Thus, the conventional design flow remains highly com-
plex and needs non-trivial manual effort in hand-crafted for-
mal program coding. A real case is that designing a new Intel
CPU involves a team of more than 500 engineers with up to
2 years [Bentley, 2005].

To automate CPU design without tedious human program-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3843

ming, we are motivated to automatically learn the circuit
logic only from external input-output (IO) examples, which
are easily accessible from a large number of legacy or au-
tomatically generated test cases. As shown in Fig. 1(b), in
the proposed automated CPU design flow, the IO examples
are either directly obtained from legacy programs with par-
ticular functionalities, or automatically generated with con-
strained test generation techniques [Kabylkas et al., 2021;
Adir et al., 2004]. Different from the conventional manual
design flow in Fig. 1(a), the proposed automated design flow
eliminates manual efforts in the entire logic design flow, in-
cluding programming, debugging and verification. Hence,
the problem of automated CPU design can be formulated as
generating the circuit logic in form of a large-scale Boolean
function satisfying the IO specification.

The main challenge of the formulated problem is to en-
sure the strict accuracy of the generated large-scale Boolean
function, i.e., to find circuit logic that is almost 100% ac-
curate so that it can pass the functional verification. In the
industrial practice of designing the Intel Pentium 4 micropro-
cessor, one billion tests (each with 10, 000 instructions) are
executed during verification, indicating that verification accu-
racy should be over 99.99999999999% [Bentley, 2001]. Due
to error accumulation effects, larger-scale cases such as mod-
ern CPUs are more challenging.1 Well-known probabilistic
learning algorithms such as neural networks (NNs) have not
ensured this strict accuracy even on much easier small-scale
cases. For example, existing NN and reinforcement learn-
ing approaches only generate correct circuit logic of at most
200 logic gates [Rai et al., 2021; Chen and Wang, 2012;
Roy et al., 2021]. With the manual description of the circuit
structure, existing LLM (Large Language Model) methods
can only design circuits with less than 1000 gates [Blocklove
et al., 2023; Fu et al., 2023]. Moreover, these small-scale de-
signs are only verified on limited number of test cases, with-
out a sound accuracy guarantee for tape-out industrial imple-
mentation.

To address this accuracy challenge, we propose to auto-
matically design CPU-scale circuit logic with a novel graph
structure called Binary Speculation Diagram (BSD). BSD is
an approximate representation of the well-known Binary De-
cision Diagram (BDD) [Akers, 1978]. In the BSD, certain
sub-diagrams (nodes and their child nodes) of the conven-
tional BDD are replaced with a speculated constant node 0
or 1. For every constant node 0 or 1 in the BSD, it can be
further expanded with Boole’s Expansion Theorem [Boole,
1854] to two sub-nodes to increase the approximate accu-
racy. We theoretically prove that along with the BSD expan-
sion, its accuracy increases gradually up to 100%. Therefore,
by continuously expanding the BSD scale to meet strict ac-
curacy constraints from a compact approximation, the auto-
mated design flow iteratively enables verified implementation
for large-scale circuit design.

Despite all possible BSD expansions ensuring design ac-
curacy, it is computationally intractable to straightforwardly
expand the BSD due to the exponentially increased size of

1Even the Intel 80486 CPU designed in the 1990s has 1.2 million
transistors, equivalent to about 300, 000 logic gates [Collen, 2011].

BSD nodes. To address this issue, we proposed an effi-
cient BSD expansion method to find a BSD with much fewer
nodes while still maintaining design accuracy. The expansion
method iteratively chooses a cluster of BSD nodes accord-
ing to the Boolean Distance and expands these nodes with
Boole’s Expansion Theorem. Boolean Distance is a new met-
ric to quantitatively measure the structural similarity between
two Boolean functions, i.e. how many BSD nodes can be
reused to represent these two Boolean functions. Consider-
ing the cluster of BSD nodes chosen by the Boolean Dis-
tance contains reusable graph structures, in each expansion
iteration, the Boolean function can be represented with fewer
BSD nodes by reusing these structures. Although the Boolean
Distance needs exponential complexity to be calculated ac-
curately, it can be efficiently approximated with the Monte
Carlo method. We theoretically prove that by sampling more
IO examples, the accuracy of the Monte Carlo method can
achieve any arbitrary small error bound, therefore maintain-
ing design accuracy.

The proposed automated design flow is validated by de-
signing a 32-bit RISC-V CPU, i.e., Enlightenment-1.
Enlightenment-1 was automatically designed within
only 5 hours and successfully taped out, running the
Linux operating system and SPEC CINT2000 benchmark on
it. Enlightenment-1 performs comparably against the
human-designed Intel 80486SX CPU[Intel, 1993], while the
design cycle is significantly reduced by about 1000×. To
our best knowledge, this is the world’s first CPU automat-
ically designed by AI, which may reform the semiconduc-
tor industry by significantly reducing the design cycles. We
also demonstrate that our approach autonomously discovers
the general von Neumann architecture [Von Neumann, 1993]
from scratch.

This paper makes the following contributions:

• We propose a novel automated CPU design flow, which
completely eliminates manual efforts on iterative design
and verification in the conventional design flow and thus
reduces design cycles significantly.

• We propose a new graph structure, i.e., BSD, to effi-
ciently represent large-scale Boolean functions. BSD is
theoretically proven to approximate the Boolean func-
tion with desirable accuracy.

• We propose an efficient BSD expansion method to gen-
erate the large-scale Boolean functions from sampled IO
examples. By iteratively expanding the BSD guided by
Boolean Distance, the final BSD with ultra-high accu-
racy can be generated efficiently.

• We apply the proposed method to automatically design a
32-bit RISC-V CPU within 5 hours. The taped-out CPU
successfully runs the Linux OS and performs compara-
bly against the human-designed Intel 80486SX CPU.

2 Problem Statement
Fig. 1(b) shows the proposed automated CPU design flow,
which takes the IO examples of vast test cases as the inputs
and then automatically generates the circuit logic of the CPU.
The generated circuit logic will be checked with validation

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3844

test cases as well. Once it fails to pass specific tests, more IO
examples will be automatically sampled from the test cases
to update the generated circuit logic. This is a fully automatic
and iterative process where the generated circuit logic is ver-
ified and debugged till it passes a sufficient number of tests
(e.g., one billion tests).

Since the sequential circuit logic can be simply unfolded
as combinational circuit logic, the underlying problem of au-
tomatically generating the circuit logic becomes: with only
finite IO examples, infer the circuit logic in form of Boolean
function that can be generalized to infinite IO examples with
extremely high accuracy. The reason to use finite IO exam-
ples is that it is impossible to obtain all IO examples for large-
scale circuits as their number increases exponentially (2n for
n-bit input circuits). Based on the above analysis, the prob-
lem of automated CPU design can be formulated as follows:

Definition 1 (Automated CPU Design). There is an Ora-
cle ϕ : {0, 1}n 7→ {0, 1}m, satisfying IO examples of the
CPU. Given at most N input-output probes from the oracle
{(x1, ϕ(x1)) , (x2, ϕ(x2)) , . . . , (xN , ϕ(xN))}, construct a
Boolean function ψ to simulate ϕ, such that ∀x ∈ {0, 1}n,

P (ϕ(x) = ψ(x)) ≥ 1− ϵ (ϵ→ 0),

where the Boolean function ψ is the generated CPU design.

The key challenge of this problem is to obtain the
large-scale circuit logic ψ (e.g., 1, 000, 000 logic gates)
with an extremely small ϵ (e.g., 10−13 corresponding to
99.9999999999999% accuracy) given only a small number of
probes (e.g. N ≈ 1040, comparing to all possible 10540 IOs).
Existing machine learning methods fail to address this accu-
racy challenge, and the accuracy of the circuit designed by all
of these methods is now less than 99.99% (i.e., ϵ < 10−4)
with a size of at most 200 logic gates, which is multiple or-
ders of magnitude smaller than that of a CPU. Therefore, it is
required to design a new approach that can theoretically guar-
antee any given high accuracy even in an iterative manner.

3 Methodology
3.1 Circuit Representation with BSDs
To address the challenge of the automated CPU design flow,
we propose a new graph structure called the Binary Specu-
lation Diagram (BSD). BSD is an approximate representa-
tion of the Binary Decision Diagram (BDD), one of the most
well-known and efficient data structure for representing large-
scale circuits in the form of Boolean functions (details of
BDD and circuit representations are in the Appendix). Based
on BSD, the proposed automated design flow can obtain the
accurate Boolean functions of large-scale circuits only from
input-output examples.

The BSD is a rooted, directed acyclic graph (DAG) which
consists of internal decision nodes and leaf speculation nodes.
The internal decision node indicates a Boolean variable with
the assignment of value 0 or 1 to its two child nodes, and the
speculation nodes approximate the sub-functions represented
by the child nodes with constant 0 or 1. Fig. 2 shows the
circuit representation by BDD and BSD. BDD is the 100%
accurate BSD representation, as shown in Fig. 2(a). If we

(a) (b) (c)

BDD
100% accurate BSD

62.75% Accurate
BSD

𝑥1

75% Accurate
BSD

Speculated
Node1=0:

75% Accurate

Speculated
Node2=0:

50% Accurate

𝑥1

𝑥275%

Node=0
75%

Node=1
75%

75%:0
25%:1

75%:1
25%:0

75%:0
25%:1

50%:0
50%:1

Truth Table Distribution

𝑥1

𝑥2 𝑥2

𝑥3 𝑥4 𝑥4

0 𝑥5 𝑥6 1

0 1

Figure 2: The circuit logic representation by BDD and BSD. (a)
The BDD representation of a Boolean function with variables x1 to
x6, also known as the 100% accurate BSD. (b) A 3-node BSD with
two speculate nodes, the accuracy is 62.75% as the accuracy of its
two child nodes are 75% and 50%. (c) Expand one speculated node,
and get a 5-node BSD with three speculated nodes, the accuracy in-
creases to 75%. The circles are the decision nodes, and the cubes are
the speculated nodes, which approximately represent a sub-graph in
the box below with constant 0/1.

use only one decision node to approximate the correspond-
ing BDD, the result is shown in Fig. 2(b). Each speculated
node in the BSD approximately represents a sub-function of
the BDD, with constant 0 or 1 according to the IOs. For ex-
ample, the blue speculated node on the left side in Fig. 2(b)
represents the Boolean function F in the blue box below,
F ↔ (¬x2 ∧ x3 ∧ x5) ∨ (x2 ∧ x4 ∧ x5), and thus if it
is speculated to constant 0, i.e. Fspec = 0, the accuracy
Acc = P (F = Fspec) = 0.75. The total accuracy is the
expectation of the accuracy of all the speculated nodes. Since
the BDD is a BSD with no speculated node, it is a 100% accu-
rate BSD. The BSD becomes more accurate when it has more
nodes, as shown in Fig. 2(c), with one more decision node,
the accuracy of the BSD increases from 62.75% to 75%.

Since the precise representation of the sub-functions re-
quires multiple nodes, the speculation nodes trade off the rep-
resentation accuracy with a more compact structure. To de-
crease the accuracy loss, each speculation node in the BSD
can be expanded with the Boole’s Expansion Theorem into
two child speculation nodes, formulated as follows:
Definition 2 (BSD Expansion). In the k-th expanding iter-
ation, the sub-function represented by the speculation node
Fk(x) can be represented with one less variable xi ∈ x,
where x is the input variable set,

Fk(x) = xiFk+1(x|xi = 0) + xiFk+1(x|xi = 1).

Note that in the BSD expansion, similar to the original
Boole’s Expansion Theorem, the child function Fk+1 is rep-
resented by either an existing node functional equivalent with
it or a newly inserted node if no functional equivalent nodes
exist in the BSD. By expanding the speculation nodes of the
BSD, the BSD representation grows larger and more accurate
and finally becomes exactly the same as the original BDD
representation. We prove Theorem 1 (Proof in the Appendix):
along with the BSD expansion, the accuracy of the BSD is in-
creased gradually up to 100%.
Theorem 1 (The accuracy of BSD increases after node ex-
pansion). After expanding the generated BSDFk(x) (shorted

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3845

𝑥1
𝑥1

𝑥2 …

𝐵𝑆𝐷0 𝐵𝑆𝐷1 𝐵𝑆𝐷2 𝐵𝑆𝐷𝑛

More nodes, more
accuracy

𝐼𝑡𝑒𝑟. 1 𝐼𝑡𝑒𝑟. 2 𝐼𝑡𝑒𝑟. 𝑛

𝑥1

𝑥2 𝑥2

𝑥3 𝑥4 𝑥4

0 𝑥5 𝑥6 1

0 1

Figure 3: Learning the circuit logic with BSD expansion.

Figure 4: An iteration of the BSD expansion. In the kth itera-
tion of the expansion, the approach first find the speculated nodes to
be expanded with the chosen node. Then, it detects the functional
equivalence of the child-functions and get the k + 1th BSD.

as Fk) by any input bit xi to Fk+1, the accuracy of expansion
ended with Fk will be no larger than the accuracy of expan-
sion ended with Fk+1, that is,

Acc(Fk) ≤ Acc(Fk+1). (1)

Therefore, the challenge of achieving the strict accuracy
constraint of a large-scale Boolean function can be addressed
by iteratively expanding the BSD for a more accurate repre-
sentation of the Boolean function. As shown in Fig. 3, the
BSD is initialized as a root speculated node, and the desired
Boolean function is a complete black box with only IO ex-
amples. The BSD gradually expands to increase the design
accuracy, and some of the circuit logic is designed during ex-
pansion (the bottom line in the figure). Until the BSD passes
the verification, the entire Boolean function is formulated by
the BSD, and the circuit logic is designed.

Compared with other circuit representations (e.g., Kar-
naugh maps [Brown, 1990], canonical sum-of-products
form [Geetha et al., 2015], and neural network [Liang and
Van den Broeck, 2019]), BSD shows the following key ad-
vantages. BSD is a compact form of the Boolean function
and can reduce the description complexity of general Boolean
functions from exponential to polynomial formally [Drech-
sler and Becker, 2013]. Furthermore, different from proba-
bilistic ML methods, every part of the BSD representation is
formal and can be checked and debugged with SAT solvers.

3.2 BSD Expansion Method
For a specific Boolean function, there exists infinite BSD
representations which can guarantee the design accuracy but
their sizes are quite different. Most of these BSD expan-
sions are inefficient, i.e. a large amount of redundant BSD

Algorithm 1 Learn the circuit logic with BSD Expansion

Require: Input-Output examples of the circuit logic
Ensure: Circuit logic represented by BSD

Initialize NODEspec ← {root} , BSD ← ∅
repeat

choose a speculated node n ∈ NODE to expand
Initialize CLUSTER← ∅
for all speculated node ni ∈ NODE do

if ni can be clustered with n then
CLUSTER.append(ni)

end if
end for
Expand the nodes in CLUSTER,update BSD

check functional equivalence,
get new speculated nodes CHILD

Update NODE ← NODE ∪CHILD \CLUSTER
Verify Circuit

until Verification Pass

nodes are used to represent a Boolean function which can
be represented with very few nodes. Unfortunately, existing
methods[Qian et al., 2023; Haaswijk et al., 2018] need the
formal expression of Boolean function which is unknown in
automated CPU design flow, and fail to find the efficient rep-
resentation with only IO examples. Thus, a new approach to
efficiently represent the Boolean functions with fewer BSD
nodes is urgently needed.

According to Definition 2, during BSD expansion, the BSD
node number increases only if all nodes in the current BSD
are not functionally equivalent to the child function. There-
fore, it is necessary to detect BSD nodes which are function-
ally equivalent during expansion.

Based on this analysis, we proposed a BSD expansion
method to iteratively detect the functional equivalence ap-
proximately to reduce the newly introduced BSD nodes. Al-
gorithm 1 shows the learning process. The BSD is initialized
as only one speculated node, which is the root of the BSD.
In every single iteration, there are two steps, i.e. clustering
and expansion. First, it chooses a node to be expanded, and
finds other nodes to cluster with it based on the Boolean Dis-
tance according to Section 3.3. Then, the algorithm expands
the clustered nodes together, according to Boole’s Expansion
Theorem, with the same variable to maximize the accuracy.
If the expanded child node is functionally equivalent to the
function represented by an existing BSD node, it is repre-
sented by the existing node. Otherwise, this child function is
represented by a newly inserted node in the BSD. The func-
tional equivalence is checked with a Monte Carlo method re-
lying on the same expanded variables, i.e. sample a large set
of inputs and check if all the outputs are the same, After the it-
eration, the speculated node-set and the BSD are updated, the
expanded nodes are changed from speculated nodes to deci-
sion nodes, and the new child nodes are speculated nodes for
further expansion. The iterative process continues until the
BSD passes the verification.

Fig. 4 illustrates an iteration in the BSD expansion. The kth
iteration, i.e. Iter.k, start from the expanded BSD, BSDk.
The method first finds the nodes which are clustered with the

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3846

chosen node, the red node, to be expanded, and then expands
with the approximate functional equivalence. Fig. 4 shows
an example, that if the right child node of the first expanded
node, and the left child node of the second expanded node are
functional equivalent, only one speculated node is inserted
in the BSD expansion. After the BSD expansion iteration,
the BSD updates, i.e. BSDk+1, which increases the design
accuracy.

The proposed design flow maintains the design accuracy,
because the error introduced in the expansion, i.e. approxi-
mating the functional equivalence according to IO examples,
is convergent, as shown in Thoerem 2 (proof in Appendix).
Theorem 2 (The convergence of expansion error). When we
detect the functional equivalent nodes in the BSD expansion,
the probability that the error of generated BSD larger than δ
will no more than T

Kδ , where T is the total number of node
reduction,K is the number of IO examples during calculating
the functional equivalence, and δ is a very small value. Thus,
the probability that the error of generated BSD is larger than
a very small value will converge to zero by increasing the
number of sampled IO examples.

3.3 Node Clustering with Boolean Distance
In the BSD expansion process, a significant problem is how
to cluster the nodes, i.e. what kind of nodes should be clus-
tered to more efficient BSD simplification. If too many nodes
are mis-clustered, the expansion is inefficient because of mix-
ing up simplify patterns in the same cluster. On the contrary,
if too few nodes are clustered, it is also inefficient because
of missing merging opportunities between nodes in different
clusters. An efficient cluster should contain nodes with struc-
turally similar Boolean functions so that there are more child
functions with functional equivalence.

To efficiently cluster the BSD nodes, we propose Boolean
Distance to guide the BSD expansion process. Boolean Dis-
tance is a new metric to quantitatively measure the structural
similarity between two Boolean functions, i.e. how many
BSD nodes can be reused to represent these two Boolean
functions, relying on the observation that many sub-graph
structures can be reused to represent these functions. For a
pair of Boolean functions, if the Boolean Distance Dist>0 ,
showing that there are structures that can be reused, and these
functions benefit from clustering. The larger Boolean Dis-
tance shows that the clustering is more efficient.
Definition 3 (Boolean Distance). Given two Boolean func-
tions, f and g, the Boolean distance Dist(f, g) is calculated
based on the circuit complexity of f , g, and their combination
τ .

Dist(f, g) = CΩ(f) + CΩ(g)− CΩ(τ), (2)
where CΩ(·) is the circuit complexity of a Boolean function
(defined by the circuit size), τ is the combination of f and g,
the input bits of τ are the union of input bits of f and g, the
output of τ is the concatenation of the output bits of f and g,
formulated as

τ(xf\g,xg\f ,xf∩g) = (f(xf), g(xg)), (3)

where xf\g are the input bits that in f but not in g, xg\f are
the input bits that in g but not in f , xf∩g are the input bits that

 (a) (b)

(c)

Figure 5: The (a) layout, (b) manufactured chip, and (c) printed
circuit board of Enlightenment-1.

in both f and g, (·, ·) means the concatenation of the output
bits of two Boolean functions.

Straightforwardly, the Boolean Distance can be calculated
accurately given concrete circuit logic according to the defini-
tion. However, in the learning process, without prior knowl-
edge of the circuit structure, we use a Monte Carlo method to
approximately calculate both the circuit complexity and the
Boolean distance. For every Boolean function f , the circuit
complexity CΩ(f) can be recursively calculated by another
BSD with few layers expanded and lower accuracy require-
ment, allowing to estimate the BSD size of function f in a
short time. During the calculation of the circuit complexity
CΩ(f), the complexity of the leaf node of the BSD is ap-
proximated as the information entropy of the corresponding
function. The approximate error of CΩ(f) is also gradually
reduced to 0 with the size of the BSD growing. When the
BSD is fully expanded and thus exactly the same as f , the
circuit complexity CΩ(f) is an exact rather than an approxi-
mate value.

4 Evaluation
We use the proposed approach to automatically generate a 32-
bit RISC-V CPU, Enlightenment-1, within 5 hours, and
demonstrate that the approach can discover human knowl-
edge of von Neumann architecture.

4.1 Automatically Design a RISC-V CPU
We use the proposed approach to generate the CPU design
from a relatively small set of IO examples. Concretely, the

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3847

Target Circuit Gate No. Methods Tape-out Time
Adder [Roy et al., 2021] 118 RL NA

Circuit Modules [Chen et al., 2020] 186 DT NA
Circuit Modules [Rai et al., 2021] ∼2500 EL NA
8-bit CPU [Blocklove et al., 2023] 999 LLM 2023-05

Enlightenment-1 4,272,680 BSD 2021-12

Table 1: Comparison with automated circuit design tasks.

CPU has 1789 input bits and 1826 output bits, and thus the
total number of IO examples is 1826× 21798, while only less
than 240 IO examples are randomly sampled for training. The
training process takes less than 5 hours to achieve the accu-
racy of > 99.99999999999% for validation tests (Detailed
settings of the algorithm are in Appendix B). The generated
CPU design then undergoes the physical design process with
scripts at 65nm technology to generate the layout for fabri-
cation. Figure 5 illustrates the layout of the entire chip with
major components marked, the manufactured chip with a fre-
quency of 300 MHz, and the printed circuit board containing
the chip. Although we demonstrate the capability of our ap-
proach with the RISC-V32IA instruction set, it can generate
the circuit logic of other CPUs with different instruction sets
as long as we can obtain the IO examples.

We successfully run the Linux (kernel 5.15) operat-
ing system and SPEC CINT2000 [Henning, 2000] on
Enlightenment-1 to validate the functionality (see Fig-
ure 6(a)). We also use the widely-used Dhrystone [Weicker,
1984] to evaluate the performance. Figure 6(b) compares the
performance of Enlightenment-1 against different gen-
erations of commercial CPUs, e.g., Intel 80386 (1980s), Intel
80486SX (1990s), and Intel Pentium III (2000s). On the eval-
uated program, it performs comparably to Intel 80486SX, de-
signed in mid-1991. Though Enlightenment-1 performs
worse than recent processors such as Intel Core i7 3930K, it
is the world’s first automatically designed CPU, and its per-
formance could be significantly improved with augmented al-
gorithms, which is left as our future work.

Reduction of development costs. To demonstrate that the
proposed method reforms the CPU design flow, we further
compare the development costs of Enlightenment-1 and
human-designed CPU (i.e., CPU-Man), where the internal
registers of CPU-Man exhibit exactly the same behaviour
as Enlightenment-1 based on the same instruction set
specification. The CPU-Man takes ∼ 5000 man-hours to
complete the entire design, while Enlightenment-1 only
takes less than 5 hours to obtain the design by training from
the IO examples. The reduction of development costs is fur-
ther validated by the design and verification costs of an Intel
486-compatible CPU, K486, which takes more than 190 days
(i.e., 4560 hours) merely for the verification process [Yim et
al., 1997]. The reason is that manual efforts in programming,
debugging, and verification of circuit logic in the conven-
tional CPU design flow is completely eliminated.

4.2 Comparison with State-of-the-art
Automated circuit design is an extremely challenging task,
and thus there are only several recent studies on using ma-
chine learning methods to generate small-scale circuits, in-

1.0E+00
1.0E+01
1.0E+02
1.0E+03
1.0E+04
1.0E+05
1.0E+06
1.0E+07
1.0E+08

C
om

m
odore 64

M
otorola 68020

80386
VA

X
 8600

A
3010

C
PU

-A
I

80486SX
80586
Pentium
Pentium

 III
C

ore i7 3930K

D
hr

ys
to

ne
/s

(a) (b)

Version : 5.15.12
Arch : RISCV32
/ # ls
bin etc init linuxrc root spec usr
dev ini lib proc sbin sys
/ # touch helloworld.sh
/ # echo “#!/bin/sh” >> helloworld.sh
/ # echo “echo \ “Hello World\” ” >> helloworld.sh
/ # chmod +x helloworld.sh
/ # ./helloworld.sh
Hello World

Figure 6: Functional validation and performance comparison.
(a) The outputs of booting up the Linux operating system. (b) The
performance of Enlightenment-1 is compared against commer-
cial CPUs on the Dhrystone benchmark, and Enlightenment-1
performs comparably to the human-designed Intel 80486SX CPU.

cluding LLMs, NNs, Reinforcement Learning (RL), Decision
Trees (DTs) and Ensemble Learning (EL) methods.
Experiment on small-scale circuit designs. As listed in
Table 1, automatically designed by our approach is more than
1700× larger than existing work, because they cannot yet
handle the accuracy challenge of large-scale circuits such as
CPUs. Besides, these designs are only verified on limited
number of test cases, and cannot guarantee the strict design
accuracy for taped-out industrial CPUs. In comparison, the
proposed method can functionally design all the benchmark
circuits solved by the SOTA methods in the ICCAD contest
and Opencores accurately. The experiment benchmarks in
these tasks are components of a large-scale processor, such
as the logic/arithmetic unit or controllers in the processor, or
over-simplified CPUs cannot even run the modern essential
programs, such as the Linux operation system or other mod-
ern file systems.
Experiment on the large-scale CPU design. We apply
state-of-the-art algorithms in the proposed CPU design flow
to design the circuit logic, replacing the proposed BSD ex-
pansion method. However, all these methods fail due to the
strict accuracy constraint. With only IOs as prompt without
any structural description from the human designer, the LLM-
based methods can only read 1 pair of IO examples with 2000
tokens, and impossible to design. The RL-based method does
not have a proper initialization without a formal expression
and fails to design due to the sparse rewards in the vast de-
sign space. All the DT-based methods fail to design, because
without the merging possibility in the data structure, for such
large-scale circuit design, it fails because of state explosion.
NN methods can fit the IOs, but even the training errors are
not close to 10−13, and drops more in the quantization to pro-
duce the circuit logic.

4.3 Discovering the von Neumann Architecture
By detailing the generated circuit logic of
Enlightenment-1, we demonstrate that our approach
discovers human knowledge of von Neumann architecture
only from the IO examples. Concretely, the generated CPU
design in terms of BSD has the key component of the von
Neumann architecture, which mainly consists of the control
unit generated first in the BSD for global control, and the

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3848

Control Unit

Arithmetic
Unit

Central Processing Unit

Control Unit

Arithmetic Unit

Memory Unit

Von Neumann Architecture

Privilege

ALU LSU

…

… …

…

arithmetic address

…

Inst.
Decoder

…

CSR

CPU

Figure 7: Discovering von Neumann architecture from scratch.
The generated BSD mainly consists of the control unit and arith-
metic unit, which can be further decomposed into sub-modules in
the BSD, e.g., the control unit contains the privilege controller and
instruction decoder, and the arithmetic unit contains ALU and LSU.

arithmetic unit (see Figure 7). The control unit generates the
controlling signals for the entire CPU, and the arithmetic unit
accomplishes arithmetic operations (e.g., ADD and SUB)
and logic operations (e.g., AND and OR). Moreover, we
observe that both the control unit and arithmetic unit can
be recursively decomposed into smaller functional modules
such as the instruction decoder, ALU, and LSU (load/store
unit) by expanding more BSD layers.

5 Related Work
The design and verification process in conventional CPU
design flow takes 60%-80% of the design efforts and re-
sources [Bergeron, 2012]. To alleviate human efforts, various
attempts have been practiced. High-level synthesis (HLS) has
been proposed to agilely program the circuit logic, and auto-
matic test generation has been proposed to automate the ver-
ification process. Besides, machine learning techniques have
been developed to design the circuit logic without human pro-
gramming automatically. However, all these methods cannot
yet design a CPU-scale circuit without human participants.
High-level synthesis. The HLS tools emerged to gener-
ate RTL (register-transfer-level) description from behaviour
specifications (e.g., C/C++ programs)[Cong et al., 2022].
Since the early 2000s, it has been introduced by many EDA
vendors commercially, and most of them used C, C++, Sys-
temC, or Matlab as input [Nane et al., 2015; Pursley and
Yeh, 2017], producing both dataflow and control logic with
reasonable performance. Recently, machine learning, es-
pecially deep learning techniques, have been employed to
improve the efficiency of HLS, e.g., HLS quality estima-
tion [Dai et al., 2018], circuit performance predication [Ustun
et al., 2020; Yang et al., 2022], overhead estimation [Mo-
hammadi Makrani et al., 2019], and search space opti-
mization [Goswami et al., 2023; Wang and Schafer, 2020;
Kwon and Carloni, 2020; Liu and Carloni, 2013]. All the
HLS methods require a formal description of the circuit logic,
such as C/System C, while our approach completely elimi-
nates manual efforts to develop such formal inputs. Instead,
the circuit design is automated by directly reusing empirical

IO examples from automatic test generation in the conven-
tional verification process.
Automatic test generation. Test cases for verification can
be either directly obtained from a large number of legacy pro-
grams with particular functionalities (e.g., SPEC CPU bench-
marks or repositories with high-quality test cases), or au-
tomatically generated with constrained test generation tech-
niques [Bose et al., 2001; Fine and Ziv, 2003; Corno et al.,
2004]. Specifically, the test program generator takes the con-
strained directives as the input to produce the test cases. Af-
ter simulating the test cases on the designed circuit logic
with EDA tools, the coverage reports are collected and up-
dated, which are used to guide the generation of new di-
rectives with AI techniques (e.g., genetic algorithms). Such
a coverage-directed constrained test generation has already
been used for the verification of commercial CPUs such as In-
tel X86 [Corno et al., 2004], PowerPC [Fine and Ziv, 2003],
and Godson [Shen et al., 2008]. In short, the test cases, along
with their IO examples, are easily accessible in traditional
CPU design flow.
Automated circuit design without programming. There
are several recent studies on using machine learning meth-
ods to generate small-scale circuits with human program-
ming. The decision tree (DT) [Chen et al., 2020] and ensem-
ble learning (EL) [Rai et al., 2021] are also used to generate
small functional modules. Though Blocklove et al. proposed
to generate an 8-bit CPU with intensive interactions between
the large language model (LLM) and human engineers, the
design is quite small with only ∼ 1000 logic gates, and the
usage of natural language prompts does not alleviate human
efforts in the design[Blocklove et al., 2023]. In short, the
circuit automatically designed by our approach is more than
1700× larger than existing work, and they cannot yet handle
the accuracy challenge of large-scale circuits such as CPUs.
More importantly, these small-scale designs are only verified
on a limited number of test cases, without a sound accuracy
guarantee for tape-out industrial implementation. Once the
generated circuit logic cannot pass a given test, such machine
learning methods, neural networks and reinforcement learn-
ing in particular cannot automatically debug and refine the
generated circuit logic in order to pass the failed test.

6 Conclusion and Future Work
In this work, we propose a novel AI approach based on
BSD to reform the traditional CPU design flow and thus
obtain the world’s first automatically generated CPU, i.e.,
Enlightenment-1. Enlightenment-1 successfully
runs the Linux operating system and performs comparably
against the human-designed Intel 80486SX CPU. Moreover,
compared to human-designed CPUs, our approach reduces
the design cycle by about 1000×, because the manual pro-
gramming and verification process of traditional CPU design
is completely eliminated. In addition to offering human-like
design abilities, our approach even autonomously discovers
human knowledge of von Neumann architecture. In future
work, the performance of the design can be further optimized
with human knowledge, such as the module circuit library
and design quality measurements for restructuring.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3849

A Circuit Representation with BDDs
Binary Decision Diagram (BDD), a rooted, directed acyclic
graph which consists of internal decision nodes and leaf
nodes [Akers, 1978], is one of the most well-known and ef-
ficient data structures for representing large-scale circuits in
form of Boolean functions. The internal decision node in-
dicates a Boolean variable with the assignment of value 0
or 1 to its two child nodes, and the leaf nodes are labeled
with 0 and 1. The node-operation of the BDD can be for-
mulated as the Boolean Expansion Theorem [Boole, 1854]:
left node with xi = 0 and right with xi = 1. Hence the
corresponding Boolean function of the BDD node F() can
be represented into two sub-functions with one less variables
F(x) = xiF(x|xi = 0) + xiF(x|xi = 1) when expanding
variable xi.

The advantages of BDD over other circuit representa-
tions (e.g., Karnaugh maps [Brown, 1990], canonical sum-
of-products form [Geetha et al., 2015], and neural net-
work [Liang and Van den Broeck, 2019]) is three-fold. The
first is that BDD can reduce the description complexity
of general Boolean functions from exponential to polyno-
mial [Drechsler and Becker, 2013]. The second is that the
tree-based structure of BDD is inherently interpretable and
makes it possible to efficiently and accurately identify the
incorrect circuit logic (i.e., sub-tree of the BDD) for poten-
tial refinement when the generated BDD cannot pass specific
tests. The third and most important advantage is that as the
BDD is expanded with more nodes, the represented partial
Boolean function is closer to the final target, which might
have the potential to provide an accuracy guarantee.

Nevertheless, traditional methods for BDD generation can-
not be directly applied to solve our problem. The reason is
that it requires a formal specification of the circuit logic or
full observation of all possible IO examples [Drechsler and
Becker, 2013].

B Theorem Proof
Theorem 1 (The accuracy of BSD boosts after expansion).
After expanding the generated BSD Fk by any input bit xi to
Fk+1, the accuracy of expansion ended with Fk will be no
larger than the accuracy of expansion ended with Fk+1, that
is,

Acc(Fk) ≤ Acc(Fk+1). (4)

Proof. Consider a node fk inFk when the expansion is ended
with Fk. Denote Q0(fk) and Q1(fk) as the proportions that
the value of fk are equal to 0 and 1, respectively. Thus, the
larger one between Q0(fk) and Q1(fk) decides the value of
fk

Acc(fk) = max(Q0(fk), Q1(fk)). (5)
We continue expand fk to f0k+1 and f1k+1 with a selected in-
put bit xi assigning to 0 and 1, respectively. Denote P0(fk)
and P1(fk) as the proportions that fk are expanded with xi
assigning to 0 and 1, respectively, then we have

Acc({f0k+1, f
1
k+1})

= P0(fk)Acc(f
0
k+1) + P1(fk)Acc(f

1
k+1)

= P0(fk)max(Q0(f
0
k+1), Q1(f

0
k+1))

+ P1(fk)max(Q0(f
1
k+1), Q1(f

1
k+1)).

(6)

We also have

Q0(fk) = P0(fk)Q0(f
0
k+1) + P1(fk)Q0(f

1
k+1), (7)

Q1(fk) = P0(fk)Q1(f
0
k+1) + P1(fk)Q1(f

1
k+1). (8)

Combine Eqn. (5) (7) (8), we can get

Acc(fk) = max(P0(fk)Q0(f
0
k+1) + P1(fk)Q0(f

1
k+1),

P0(fk)Q1(f
0
k+1) + P1(fk)Q1(f

1
k+1))

≤ max(P0(fk)Q0(f
0
k+1), P0(fk)Q1(f

0
k+1))

+ max(P1(fk)Q0(f
1
k+1), P1(fk)Q1(f

1
k+1))

= P0(fk)max(Q0(f
0
k+1), Q1(f

0
k+1))

+ P1(fk)max(Q0(f
1
k+1), Q1(f

1
k+1))

= Acc({f0k+1, f
1
k+1}).

(9)
When we apply Eqn. (9) to all nodes in Fk, we can directly
obtain Eqn. (4).

Theorem 2 (The convergence of merging error). When we
perform the merging stage during the process of generating
BSD, the probability that the error of generated BSD larger
than δ will no more than T

Kδ , where T is the total number
of merging stages, K is the number of IO examples during
calculating the Boolean distance, and δ is a very small value.
Thus, the probability that the error of generated BSD is larger
than a very small value will converge to zero by increasing the
number of sampled IO examples.

Proof. Assuming in one merging stage, we merge two leaf
nodes that correspond to two not exactly the same Boolean
functions. We denote r as the proportion of incorrect results
of merged nodes after the merging stage, namely the pro-
portion of different results of the two corresponding Boolean
functions given the same input. Denote R as the error rate of
merged nodes after any merging stage, then the distribution
of R is

Pr(R) =

{
(1− r)K R = r
1− (1− r)K R = 0

. (10)

So the expected value of R is

E(R) = r(1− r)K . (11)

Considering the range of r is (0, 12], E(R) increases mono-
tonically at r ∈ (0, 1

K+1), and decreases monotonically at
r ∈ (1

K+1 ,
1
2]. Therefore, E(R) takes the maximum value

1
K+1

(
K

K+1

)K

when r takes 1
K+1 , so

E(R) ≤ 1

K + 1

(
K

K + 1

)K

<
1

K
. (12)

Given a small value δ, using Markov’s inequality, we can ob-
tain

Pr(R ≥ δ) ≤ E(R)

δ
<

1

Kδ
. (13)

Eqn. (13) means that in each merging stage, the probability
that the error rate after merging two leaf nodes larger than δ
is less than 1

Kδ . Thus, the probability that the accuracy of a
merged node larger than 1− δ is no less than 1− 1

Kδ . When

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3850

Component Area (um2) % Power (mW) %

CPU core 275933.53 14.46

Combinational 264476.88 95.85 8.70 60.14
Register 11456.64 4.15 5.76 39.86

Table 2: Hardware characteristics of Enlightenment-1.

finishing the process of generating the BSD, which contains
T merging stages, the probability that the accuracy of the final
BSD larger than 1 − δ is no less than (1 − 1

Kδ)
T which is

no less than 1 − T
Kδ . In conclusion, the probability that the

error of generated BSD is larger than δ will be no more than
T
Kδ .

C Detailed Design Configurations
We introduce detailed configurations of our approach, includ-
ing IO samples, algorithm parameter settings, and the hard-
ware implementation, to generate the 32-bit RISC-V CPU.
Data for BSD generation. The IO examples for automated
CPU design are directly borrowed from the verification of tra-
ditional CPU design flow. There are two main kinds of IO
examples for traditional verification. The first kind is the ran-
domly generated input stimuli and their corresponding out-
puts, and the second kind is the input-outputs of legacy pro-
grams with particular functionalities, such as high-quality test
cases. We start from RISC-V official ISA documents and end
with a verification-passed GTECH netlist after synthesis.
Algorithmic parameters. During the generation of circuit
logic in the form of BSD, there are multiple parameters to set.
For the partition stage, the maximal number of clusters for
each output bit is set as 10 to control the scale of the generated
BSD. For the expansion stage, the maximal width of BSD is
set as 10, 000 to balance the BSD accuracy and expansion ef-
ficiency. For the merging stage, to determine the similarity
between different nodes, the maximal sampling number per
node is set as 1, 000, 000 to balance the reduction accuracy
and sampling efficiency. The implemented program is exe-
cuted on a Linux cluster including 68 servers, each of which
is equipped with 2 Intel Xeon Gold 6230 CPUs.
Hardware implementation. After the generation of BSD,
we tape out the CPU chip to demonstrate the effectiveness of
our approach. Specifically, the generated BSD is converted
into a Verilog module by traversing every node in it. Hence,
the BSD generation is compatible with the existing back-end
design flow. We use commercial tools to transform the Ver-
ilog module to a GTECH netlist, better supported by back-
end EDA flows. We verify our output netlist on the FPGAs
and tape out the chip with 65nm technology, and the detailed
hardware characteristics are listed in Table 2. The automat-
ically designed CPU, Enlightenment-1, was sent to the
manufacturer in December 2021.

D An Illustrate Example
Here we use an 8-bit adder, c[8 : 0] = a[7 : 0]+b[7 : 0], as an
illustrative example to detail the process of the BSD expan-
sion. The initialized BSD is only 9 root nodes, indicating the

𝑐 8: 0 = 𝑎 7: 0 + 𝑏[7: 0]

Initialize
𝑐[8]𝑐[7] … … 𝑐[1]𝑐[0]

Iteration 1:
𝑐[8]

𝑐[8]𝑐[7]
𝐷𝐼𝑆𝑇 𝑐 8 , 𝑐 7 = 20 Clustering: 𝒄 𝟕 , 𝒄[𝟖]

𝑐[8] 𝑐[7]

Expanding Variables:
𝒂 𝟕 , 𝒃[𝟕]

𝑎[7] 𝑎[7]

𝑏[7] 𝑏[7] 𝑏[7] 𝑏[7]

0 1

Iteration 2:
…

Verification: 𝑭𝒂𝒊𝒍
Continue!Total Accuracy = 55.56%

Total Accuracy End iteration until
Verification: 𝑷𝒂𝒔𝒔

Figure 8: An 8-bit full adder example of BSD expansion. An
iteration in the BSD expansion.

output bits c[8 : 0]. Figure 8(a) illustrates one single iteration
of the BSD expand.

First, the highest bit c[8] is chosen to be expanded first,
and by calculating the Boolean Distance, c[7] can be chosen
to cluster with c[8], because many child nodes of these nodes
can be reused. If c[7] and c[8] are individually designed, the
total BSD nodes CΩ(c8) + CΩ(c7) = 43 + 23 = 66; But if
they are clustered, the total BSD nodes CΩ(c8, c7) = 46. The
Boolean Distance Dist = CΩ(c8) +CΩ(c7)−CΩ(c8, c7) =
20 0 indicates that 20 BSD nodes can be reused, and it is
efficient to cluster these nodes with each other.

Next, in this cluster with c[8] and c[7], the variable which
expanded first is the variable which increases the accuracy the
most. With the IO examples, it is clear that the most signif-
icant bit a[7] and b[7] should be expanded first. While ex-
panding these nodes, merging possibilities can be found with
Monte Carlo method according to Theorem 2. Specifically,
c[8]|(a[7] = 0, b[7] = 0) = 0, i.e. when a[7] = 0 and
b[7] = 0 c[8] = 0, thus the node is constant 0 and end its ex-
pansion. c[8]|(a[7] = 1, b[7] = 1) = 1, thus the node is con-
stant 0 and end its expansion. With Monte Carlo method, it is
found that c[8]|(a[7] = 0, b[7] = 1) = c[8]|(a[7] = 1, b[7] =
0) = c[7]|(a[7] = 0, b[7] = 1) = c[7]|(a[7] = 1, b[7] = 0),
and thus these four sub-functions can be merged into one
speculated node. Similarly, c[7]|(a[7] = 0, b[7] = 0) =
c[7]|(a[7] = 1, b[7] = 1) and thus these two nodes can also
be merged. Therefore, after the 2-variable expansion, there
remains 2 speculated nodes. Differently, if these nodes were
not in the same cluster and expanded seperately, there would
be 4 instead of 2 speculated nodes remaining, and 20 more
nodes after the entire expansion, showing that the node clus-
tering is efficient to reduce the BSD nodes.

Then after the iteration expanding two variables, the cir-
cuit logic updates with the BSD and checked if it can pass the
verification. The iteration ends until it passes the verification.
In this case, the current BSD cannot pass the verification, be-
cause the speculated nodes are not yet constant 0 or 1. There-
fore the method choose another BSD node to start another
iteration. Finally, when the designed BSD passes the verifi-
cation, we output the BSD in Verilog, and it is the automated
circuit logic design from our method.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3851

Acknowledgments
This work is partially supported by the NSF of China(under
Grants 61925208, U22A2028, 62222214, 62341411,
62102398, 62102399, U20A20227, 62372436, 62302478,
62302482, 62302483, 62302480), Strategic Priority Re-
search Program of the Chinese Academy of Sciences,
(Grant No. XDB0660200, XDB0660201, XDB0660300,
XDB0660301), CAS Project for Young Scientists in Ba-
sic Research(YSBR-029), Youth Innovation Promotion
Association CAS and Xplore Prize.

References
[Adir et al., 2004] Allon Adir, Eli Almog, Laurent Fournier,

Eitan Marcus, Michal Rimon, Michael Vinov, and Avi Ziv.
Genesys-pro: Innovations in test program generation for
functional processor verification. IEEE Design & Test of
Computers, 21(2):84–93, 2004.

[Akers, 1978] Akers. Binary decision diagrams. IEEE
Transactions on computers, 100(6):509–516, 1978.

[Bachrach et al., 2012] Jonathan Bachrach, Huy Vo, Brian
Richards, Yunsup Lee, Andrew Waterman, Rimas
Avižienis, John Wawrzynek, and Krste Asanović. Chisel:
Constructing hardware in a scala embedded language.
In Proceedings of Design Automation Conference, pages
1212–1221, 2012.

[Bentley, 2001] Bob Bentley. Validating the intel pentium
4 microprocessor. In Proceedings of Design Automation
Conference, pages 244–248, 2001.

[Bentley, 2005] Bob Bentley. Validating a modern micro-
processor. In Proceedings of International Conference on
Computer Aided Verification, pages 2–4, 2005.

[Bergeron, 2012] Janick Bergeron. Writing testbenches:
functional verification of HDL models. Springer Science
& Business Media, 2012.

[Blocklove et al., 2023] Jason Blocklove, Siddharth Garg,
Ramesh Karri, and Hammond Pearce. Chip-chat: Chal-
lenges and opportunities in conversational hardware de-
sign. arXiv preprint arXiv:2305.13243, 2023.

[Boole, 1854] George Boole. An Investigation of the Laws of
Thought: On which are Founded the Mathematical Theo-
ries of Logic and Probabilities. 1854.

[Bose et al., 2001] Mrinal Bose, Jongshin Shin, Eliza-
beth M. Rudnick, Todd Dukes, and Magdy Abadir. A
genetic approach to automatic bias generation for biased
random instruction generation. In Proceedings of the
Congress on Evolutionary Computation, pages 442–448
vol. 1, 2001.

[Brown, 1990] Frank Markham Brown. Boolean Reasoning:
The Logic of Boolean Equations. 1990.

[Chen and Wang, 2012] Yu-Fang Chen and Bow-Yaw Wang.
Learning boolean functions incrementally. In Proceedings
of International Conference on Computer Aided Verifica-
tion, pages 55–70, 2012.

[Chen et al., 2020] Pei-Wei Chen, Yu-Ching Huang, Cheng-
Lin Lee, and Jie-Hong Roland Jiang. Circuit learning for
logic regression on high dimensional boolean space. In
Proceedings of Design Automation Conference, pages 1–
6. IEEE, 2020.

[Collen, 2011] Morris F Collen. Computer medical
databases: the first six decades (1950–2010). Springer
Science & Business Media, 2011.

[Cong et al., 2022] Jason Cong, Jason Lau, Gai Liu, Stephen
Neuendorffer, Peichen Pan, Kees Vissers, and Zhiru
Zhang. Fpga hls today: Successes, challenges, and oppor-
tunities. ACM Transactions on Reconfigurable Technology
and Systems, 15(4):1–42, 2022.

[Corno et al., 2004] Fulvio Corno, Ernesto Sánchez, Mat-
teo Sonza Reorda, and Giovanni Squillero. Automatic test
program generation: a case study. IEEE Design & Test of
Computers, 21(2):102–109, 2004.

[Coussy et al., 2009] Philippe Coussy, Daniel D Gajski,
Michael Meredith, and Andres Takach. An introduction
to high-level synthesis. IEEE Design & Test of Comput-
ers, 26(4):8–17, 2009.

[Dai et al., 2018] Steve Dai, Yuan Zhou, Hang Zhang,
Ecenur Ustun, Evangeline F.Y. Young, and Zhiru Zhang.
Fast and Accurate Estimation of Quality of Results in
High-Level Synthesis with Machine Learning. In Proceed-
ings of International Symposium on Field Programmable
Custom Computing Machine, pages 129–132, April 2018.

[Drechsler and Becker, 2013] Rolf Drechsler and Bernd
Becker. Binary decision diagrams: theory and implemen-
tation. Springer Science & Business Media, 2013.

[Fine and Ziv, 2003] Shai Fine and Avi Ziv. Coverage di-
rected test generation for functional verification using
bayesian networks. In Proceedings of Design Automation
Conference, pages 286–291, 2003.

[Fu et al., 2023] Yonggan Fu, Yongan Zhang, Zhongzhi
Yu, Sixu Li, Zhifan Ye, Chaojian Li, Cheng Wan,
and Yingyan Celine Lin. Gpt4aigchip: Towards next-
generation ai accelerator design automation via large lan-
guage models. In International Conference on Computer
Aided Design, pages 1–9. IEEE, 2023.

[Gajski et al., 2012] Daniel D Gajski, Nikil D Dutt,
Allen CH Wu, and Steve YL Lin. High—Level Synthesis:
Introduction to Chip and System Design. Springer Science
& Business Media, 2012.

[Geetha et al., 2015] V Geetha, N Devarajan, and PN Nee-
lakantan. Network structure for testability improvement
in exclusive-or sum of products reed–muller canonical cir-
cuits. International Journal of Engineering Research and
General Science, 3(3):368, 2015.

[Goswami et al., 2023] Pingakshya Goswami, Ben-
jamin Carrion Schaefer, and Dinesh Bhatia. Machine
learning based fast and accurate high level synthesis
design space exploration: From graph to synthesis.
Integration, 88:116–124, 2023.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3852

[Haaswijk et al., 2018] Winston Haaswijk, Edo Collins,
Benoit Seguin, Mathias Soeken, Frédéric Kaplan, Sabine
Süsstrunk, and Giovanni De Micheli. Deep learning for
logic optimization algorithms. In International Sympo-
sium on Circuits and Systems, pages 1–4. IEEE, 2018.

[Henning, 2000] John L Henning. Spec cpu2000: Measur-
ing cpu performance in the new millennium. Computer,
33(7):28–35, 2000.

[IEEE, 1996] IEEE. Ieee standard description language
based on the verilog hardware description language, 1364-
1995, 1996.

[Intel, 1993] Intel. Intel’s sl enhanced intel486 (tm) micro-
processor family. 1993.

[Kabylkas et al., 2021] Nursultan Kabylkas, Tommy Thorn,
Shreesha Srinath, Polychronis Xekalakis, and Jose Renau.
Effective processor verification with logic fuzzer enhanced
co-simulation. In Proceedings of the International Sympo-
sium on Microarchitecture, pages 667–678, 2021.

[Kwon and Carloni, 2020] Jihye Kwon and Luca P Carloni.
Transfer learning for design-space exploration with high-
level synthesis. In Proceedings of the ACM/IEEE Work-
shop on Machine Learning for CAD, pages 163–168,
2020.

[Lahti et al., 2018] Sakari Lahti, Panu Sjövall, Jarno Vanne,
and Timo D Hämäläinen. Are we there yet? a study on
the state of high-level synthesis. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, 38(5):898–911, 2018.

[Liang and Van den Broeck, 2019] Yitao Liang and Guy
Van den Broeck. Learning logistic circuits. In Proceedings
of the AAAI Conference on Artificial Intelligence, 2019.

[Liu and Carloni, 2013] Hung-Yi Liu and Luca P. Carloni.
On learning-based methods for design-space exploration
with high-level synthesis. In Proceedings of Design Au-
tomation Conference, pages 1–7, May 2013.

[McFarland et al., 1990] Michael C McFarland, Alice C
Parker, and Raul Camposano. The high-level synthesis of
digital systems. Proceedings of the IEEE, 78(2):301–318,
1990.

[Mohammadi Makrani et al., 2019] Hosein Moham-
madi Makrani, Farnoud Farahmand, Hossein Sayadi,
Sara Bondi, Sai Manoj Pudukotai Dinakarrao, Houman
Homayoun, and Setareh Rafatirad. Pyramid: Machine
Learning Framework to Estimate the Optimal Timing
and Resource Usage of a High-Level Synthesis Design.
In Proceedings of the International Conference on Field
Program-mable Logic and Applications, pages 397–403,
2019.

[Nane et al., 2015] Razvan Nane, Vlad-Mihai Sima, Chris-
tian Pilato, Jongsok Choi, Blair Fort, Andrew Canis,
Yu Ting Chen, Hsuan Hsiao, Stephen Brown, Fabrizio Fer-
randi, et al. A survey and evaluation of fpga high-level
synthesis tools. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 35(10):1591–
1604, 2015.

[Pursley and Yeh, 2017] David Pursley and Tung-Hua Yeh.
High-level low-power system design optimization. In Pro-
ceedings of International Symposium on VLSI Design, Au-
tomation and Test, pages 1–4, 2017.

[Qian et al., 2023] Yu Qian, Xuegong Zhou, Hao Zhou, and
Lingli Wang. An efficient reinforcement learning based
framework for exploring logic synthesis. ACM Transac-
tions on Design Automation of Electronic Systems, 2023.

[Rai et al., 2021] Shubham Rai, Walter Lau Neto, Yukio
Miyasaka, Xinpei Zhang, Mingfei Yu, Qingyang Yi,
Masahiro Fujita, Guilherme B Manske, Matheus F Pontes,
Leomar S da Rosa, et al. Logic synthesis meets machine
learning: Trading exactness for generalization. In Pro-
ceedings of Design, Automation & Test in Europe Confer-
ence & Exhibition, pages 1026–1031, 2021.

[Roy et al., 2021] Rajarshi Roy, Jonathan Raiman, Neel
Kant, Ilyas Elkin, Robert Kirby, Michael Siu, Stuart Ober-
man, Saad Godil, and Bryan Catanzaro. Prefixrl: Opti-
mization of parallel prefix circuits using deep reinforce-
ment learning. In Proceedings of Design Automation Con-
ference, pages 853–858. IEEE, 2021.

[Rudell, 1989] Richard L Rudell. Logic synthesis for VLSI
design. University of California, Berkeley, 1989.

[Shen et al., 2008] Haihua Shen, Wenli Wei, Yunji Chen,
Bowen Chen, and Qi Guo. Coverage directed test gen-
eration: Godson experience. In Proceedings of Asian Test
Symposium, pages 321–326, 2008.

[Ustun et al., 2020] Ecenur Ustun, Chenhui Deng, Debjit
Pal, Zhijing Li, and Zhiru Zhang. Accurate operation delay
prediction for FPGA HLS using graph neural networks.
In Proceedings of International Conference on Computer-
Aided Design, pages 1–9. Association for Computing Ma-
chinery, November 2020.

[Von Neumann, 1993] John Von Neumann. First draft of a
report on the edvac. IEEE Annals of the History of Com-
puting, 15(4):27–75, 1993.

[Wang and Schafer, 2020] Zi Wang and Benjamin Carrion
Schafer. Machine Leaming to Set Meta-Heuristic Specific
Parameters for High-Level Synthesis Design Space Explo-
ration. In Proceedings of Design Automation Conference,
pages 1–6, July 2020.

[Weicker, 1984] Reinhold P Weicker. Dhrystone: a synthetic
systems programming benchmark. Communications of the
ACM, 27(10):1013–1030, 1984.

[Yang et al., 2022] Chenghao Yang, Yinshui Xia, Zhufei
Chu, and Xiaojing Zha. Logic synthesis optimization se-
quence tuning using rl-based lstm and graph isomorphism
network. IEEE Transactions on Circuits and Systems II:
Express Briefs, 69(8):3600–3604, 2022.

[Yim et al., 1997] Joon-Seo Yim, Chang-Jae Park, In-Cheol
Park, and Chong-Min Kyung. Design verification of com-
plex microprocessors. Journal of Circuits, Systems, and
Computers, 7(04):301–318, 1997.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3853

	Introduction
	Problem Statement
	Methodology
	Circuit Representation with BSDs
	BSD Expansion Method
	Node Clustering with Boolean Distance

	Evaluation
	Automatically Design a RISC-V CPU
	Comparison with State-of-the-art
	Discovering the von Neumann Architecture

	Related Work
	Conclusion and Future Work
	Circuit Representation with BDDs
	Theorem Proof
	Detailed Design Configurations
	An Illustrate Example

