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Abstract
Leveraging the experiences of other agents of-
fers a powerful mechanism to enhance policy
optimization in multi-agent reinforcement learn-
ing (MARL). However, contemporary MARL al-
gorithms often neglect experience sharing possibil-
ities or adopt a simple approach via direct parame-
ter sharing. Our work explores a refined off-agent
learning framework that allows selective integra-
tion of experience from other agents to improve
policy learning. Our investigation begins with a
thorough assessment of current mechanisms for
reusing experiences among heterogeneous agents,
revealing that direct experience transfer may re-
sult in negative consequences. Moreover, even
the experience of homogeneous agents requires
modification before reusing. Our approach intro-
duces off-agent adaptations to the multi-agent pol-
icy optimization methods, enabling effective and
purposeful leverage of cross-agent experiences be-
yond conventional parameter sharing. Accompa-
nying this, we provide a theoretical guarantee for
an approximate monotonic improvement. Exper-
iments conducted on the StarCraftII Multi-Agent
Challenge (SMAC) and Google Research Football
(GRF) demonstrate that our algorithms outperform
state-of-the-art (SOTA) methods and achieve faster
convergence, suggesting the viability of our ap-
proach for efficient experience reusing in MARL.

1 Introduction
Multi-agent reinforcement learning (MARL) [Busoniu et al.,
2008; Yang and Wang, 2020] aims to develop multi-agent
systems by enabling agents to co-evolve towards their respec-
tive goals of reward maximization. Recently, substantial ad-
vancements in both algorithms and testing environments have
been achieved in MARL. This approach has proven to be ef-
fective in multiplayer games [Peng et al., 2017; Baker et al.,
2020; Brown and Sandholm, 2019; Vinyals et al., 2019], in-
telligent transportation systems [Adler and Blue, 2002], sen-
sor networks [Zhang and Lesser, 2011], and energy networks
[Glavic et al., 2017; Qiu et al., 2023]. Fascinating as these re-
sults are, a long-standing problem of MARL is its extremely
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Figure 1: Experience utilization process: Independently, agents up-
date policies using personal experiences (left). Alternatively, agent
A assimilates the experiences of others, determined by policy dis-
tance; proximity within the circle correlates with policy consistency
to agent A (right). Red and blue regions reflect experiences agent A
adopts or omits, respectively.

high sample complexity, as the original single-agent sample
complexity problem is exacerbated by multi-agent interac-
tions. Existing methods attempt to enhance sample efficiency
by designing off-policy algorithms or sharing agents’ param-
eters. However, off-policy algorithms are direct extensions
of single-agent counterparts and do not specifically address
experience reuse between agents, while parameter-sharing
methods only partially resolve homogeneous-agent cooper-
ation issues. A more natural approach to improve sample ef-
ficiency remains to be proposed.

Analyzing learning patterns in human society reveals a
common phenomenon of individuals subconsciously learning
from their peers to improve their strategies [Jarrahi, 2018].
For instance, in soccer, players acquire effective techniques
demonstrated by teammates, later employing them to achieve
superior performance. Conversely, if the behaviors of the
partner result in suboptimal outcomes, others will avoid re-
peating the same mistakes. These patterns also appear in
team activities like military actions and rescue missions. This
demonstrates that humans can learn not only from their own
experiences but also from others, rapidly mastering complex
tasks through limited trials. This observation inspires us to
consider sharing valuable knowledge among agents to nat-
urally improve sample efficiency. The significance of this
lies in the fact that the improvement in sample complexity
increases with the number of agents, which can be consider-
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able in large-scale multi-agent settings [Zhou et al., 2019].
To our understanding, there seems to be limited exploration
into the specific conditions for agent reuse and the extent to
which experiences from other agents may be leveraged.

In our study, we investigate how learning from others’ ex-
periences contributes to efficient knowledge sharing among
agents. We merge on-policy and off-policy methods into a
unified approach termed off-agent policy optimization, cov-
ering heterogeneous and homogeneous agent scenarios de-
picted in Figure 1. Our primary contributions include:

• We propose an off-agent framework, defining conditions
for experience reuse and establishing theoretical support
for approximate monotonic policy improvement. Based
on these conditions, we devise a mechanism for experi-
ence sharing and a distribution of experience mappings
between agents.

• We introduce two practical algorithms—Off-Agent
TRPO (OATRPO) and Off-Agent PPO (OAPPO)—and
validate their effectiveness and adaptability through a
tailored Maze game, highlighting the benefits and effects
of various mapping distributions.

• Additionally, through evaluations on the StarCraftII
Multi-Agent Challenge (SMAC) and Google Research
Football (GRF), we demonstrate that OAPPO and OA-
TRPO not only achieve SOTA performance on bench-
mark tasks but also offer enhanced sample efficiency and
stable performance improvements.

2 Related Work
Our work, grounded in the MARL policy optimization frame-
work, relates methods of experience reuse to off-policy meth-
ods. We subsequently review the literature on MARL policy
optimization and off-policy topics, distinguishing our algo-
rithm from imitation learning.

In the field of cooperative MARL, Independent Proxi-
mal Policy Optimization (IPPO) [de Witt et al., 2020] was
introduced to address the gap in Trust Region Learning
(TRL). This approach views other agents as part of the en-
vironment when updating a single agent. However, this
method gives rise to non-stationary issues as other agents
continuously evolve. To address this problem, the central-
ized training with decentralized execution paradigm (CTDE)
was introduced.[Lowe et al., 2017; Foerster et al., 2018;
Zhou et al., 2021]. Here, agents make decisions based on
their local observations and update policies with a global
value function. Building on the CTDE training paradigm,
several effective multi-agent policy optimization algorithms
have been proposed. MADDPG [Lowe et al., 2017] pro-
vides the first general solution for cooperative and competi-
tive scenarios, while Coordinated Proximal Policy Optimiza-
tion (CoPPO) [Wu et al., 2021] extends trust region methods
to multi-agent systems. Multi-Agent Proximal Policy Opti-
mization (MAPPO) [Yu et al., 2021] significantly improves
sample efficiency through parameter sharing. However, when
faced with a heterogeneous agent scenario, MAPPO can lead
to exponentially worse suboptimal outcomes [Kuba et al.,
2021]. Heterogeneous-Agent Trust Region Policy Optimiza-

tion (HATRPO) algorithm [Kuba et al., 2021] employs se-
quential policy update methods to avoid the joint policy stuck
in local optimums. Nevertheless, it underperforms in chal-
lenging scenarios due to poor sample efficiency. [Sun et al.,
2023] assures monotonicity for trust regions in non-stationary
settings, and [Wang et al., 2023] does likewise for agent inter-
actions. Nevertheless, their studies omit theoretical analysis
of agents’ experience reuse. Our off-agent algorithm designs
a scheme for agents to reuse other agents’ experiences, sig-
nificantly enhancing sample efficiency in MARL policy opti-
mization with guaranteed performance.

Off-policy algorithms enhance sample efficiency by
reusing samples gathered from previous policies. Numer-
ous off-policy algorithms, including Deep Deterministic Pol-
icy Gradient (DDPG) [Lillicrap et al., 2015] and Soft Actor-
Critic (SAC) [Haarnoja et al., 2018], have been proposed
within the MARL context. However, these methods may
suffer from significant bias due to off-policy data. Ap-
proaches like Policy-on Policy-off Policy Optimization (P3O)
[Fakoor et al., 2020] and Actor Critic with Experience Re-
play (ACER) [Wang et al., 2016], which combine on-policy
and off-policy methods, can significantly mitigate distribu-
tion shifting. However, they lack a theoretical performance
guarantee. Recently, Generalized Proximal Policy Optimiza-
tion with Experience Reuse (GePPO) [Queeney et al., 2021]
proposed a PPO-based method that integrates off-policy and
on-policy methods, offering a lower bound to ensure perfor-
mance improvement. However, it merely considers sample
reuse in the time dimension and single-RL scenarios. Shared
Experience Actor Critic (SEAC) [Christianos et al., 2020] has
proposed a method for utilizing experiences among agents,
yet it has not explored the extent to which agents can reuse
experiences. Although Selective Parameter Sharing (SEPS)
[Christianos et al., 2021] has addressed the issue of agent
selection, it has not yet investigated the conditions for pos-
sible agent reuse. To our knowledge, there appears to be a
scarcity of comprehensive research and established standards
on methods and conditions for agent experience reuse. Con-
sequently, we investigated the conditions for experience reuse
between agents and proposed an off-agent PG algorithm that
allows an agent to update from the experiences of other agents
while ensuring performance improvement.

Our algorithms facilitate learning from the experiences of
other agents, a concept similar to the paradigm of imita-
tion learning. Imitation Learning (IL) [Hussein et al., 2017;
Osa et al., 2018; Oh et al., 2018; Zare et al., 2023] aims to
emulate the behavior of experts in specific tasks by learning
the mapping between observations and actions. While IL re-
quires expert data, our method does not, as it updates their
policy from the exchange of experiences between agents.

3 Preliminaries
We consider a multi-agent decentralized partially observable
Markov decision process (Dec-POMDP) [Oliehoek and Am-
ato, 2016], defined by a tuple ⟨N ,S,A, R, Z,O, p, γ⟩. Here,
N = {1, . . . , n}, S represents the finite state space, and
A =

∏n
i=1 Ai denotes the joint action space, composed of

the actions of each agent. The transition probability function
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is p : S × A → ∆S , ∆S means the distribution of state,
while R(s, a) : S × A → R stands for the reward function,
and γ ∈ [0, 1) is the discount factor.

In a partially observable scenario, the observation of each
agent i is oi ∈ O, given by the observation mapping:
Z(s,a) → O. We consider the decision of each agent as
a stationary policy πi : O → ∆A, where ∆A means the
distribution of action. The agents interact with the environ-
ment as per the following protocol: at time step t ∈ N, the
agents are at state st ∈ S , with agent i observing oit; agent
i takes an action ait ∈ Ai, drawn from its policy πi(· | oit),
which, in conjunction with the actions of other agents, forms
a joint action at = (a1t , . . . , a

n
t ) ∈ A, drawn from the joint

policy π(· | st) =
∏n

i=1 πi(· | oit); the agents receive a
joint reward rt = R(st,at) ∈ R, and transition to a state
st+1 ∼ p(· | st,at).

In a fully-cooperative setting, all agents share the same re-
ward function and aim to maximize the expected total reward
J(π) = Eτ∼π [

∑∞
t=0 γ

trt], where τ ∼ π represents a pro-
cess of sampling followed by s0 ∼ ρ0,at ∼ π(· | st) and
st+1 ∼ p (· | st, at). The joint policy π, the transition prob-
ability function p, and the initial state distribution ρ0, induce
a marginal state distribution at time t, denoted as ρtπ . We
define the marginal state distribution as ρπ ≜

∑∞
t=0 γ

tρtπ .
For an agent i, we define the observation distribution as
oi ∼ ηπi

(o) ≜
∑∞

t=0 γ
tηtπi

(ot = oi).
The state value function and the state action value func-

tion are defined as: Vπ(s) = Eτ∼π [
∑∞

t=0 γ
trt | s0 = s]

and Qπ(s,a) = Eτ∼π [
∑∞

t=0 γ
trt | s0 = s,a0 = a]. Sub-

sequently, the advantage function is given as Aπ(s,a) =
Qπ(s,a)− Vπ(s). a1:m denote joint action [a1, a2 · · · am].

4 Off-Agent Policy Optimization
In this section, we present the framework for our Off-Agent
Policy Optimization (OAPO). In the following section, we
assume that all agents in the same scenario share the same
state and action space. Section 4.1 outlines the theoretical
framework for the reuse of experience and reviews the tradi-
tional MARL algorithm in this context. Moving to Section
4.2, we initially define the conditions required for efficient
experience reuse among agents and subsequently propose the
Off-Agent Multi-Agent Trust Region Method as a solution to
these challenges. Ultimately, we perform a theoretical anal-
ysis of the proposed algorithm, leading to an approximate
monotonic improvement guarantee.

4.1 Revisit Experience Reuse in Multi-agent Policy
Optimization

To facilitate a comprehensive discussion on the mechanism
of experience reuse, we will use MAPPO as the represen-
tative of parameter-sharing algorithms class, and HAPPO as
the representative of parameter non-sharing algorithms class
in the following theoretical framework and experimental set-
ting. Our primary focus is on the optimization objective of
MARL, which is expressed as:

J(π̄) = J(π) + Es∼ρπ,a∼π̄ [Aπ(s,a)] . (1)

Here, π̄ is the candidate joint policy. Denote π̄(·|s) =∏n
i=1 π̄i(·|oi), J(π) = Eτ∼π [

∑∞
t=0 γ

trt], we can extend
the MDP theoretical setting to Dec-POMDP. For parameter-
sharing methods in MARL, it can be seen that each agent
updates its policy using the experience of all other agents.

Consider ai ∼ πζ(i)(·|oi) as the probability of sampling ac-
tion ai from policy πζ(i) given observation oi, with ζ being a
permutation of the indices such that ∪n

i=1ζ(i) = {1, 2, ..., n}.
We define Eζ to be the expected advantage when actions fol-
low policies permuted by ζ:

Eζ = Es∼ρπ,a1∼πζ(1)(·|o1),...,an∼πζ(n)(·|on) [Aπ(s,a)] , (2)

where ζ cycles through all policy index permutations. Con-
sequently, we can expand formula (1) as follows:

J(π̄) = J(π) +
1

An
n

∑
ζ

Eζ , (3)

summing over all An
n permutations of ζ.

This equation characterizes the binding relationship be-
tween agents and experience, which can be regarded as the
result of the combined action of An

n optimization objectives.
Each agent uses the experience generated by another agent
(possibly itself). It is imperative to maintain the uniqueness
of each agent’s experience within every optimization objec-
tive. The reuse binding relationship between the agents can
be found in Figure 2.

For independent learning in MARL, where each agent up-
dates the policy based on its own experience, Eq. (1) is equiv-
alent to the following,

J(π̄) = J(π) + Es∼ρπ ai∼π̄i(·|oi),∀i [Aπ(s,a)] , (4)

Eq.(3) and Eq.(4) correspond to the update mechanisms in
MAPPO and HAPPO, respectively. In MAPPO, experience
sharing may be harmful when agents have conflicting goals,
despite identical action and observation spaces. This can lead
to suboptimal performance. HAPPO, in contrast, ensures
monotonic improvement through sequential updates, but this
can result in lower sample efficiency and slower convergence
when each agent learns solely from its own experiences.

In response to these issues, we propose the OAPO al-
gorithm. OAPO slightly relaxes the monotonic improve-
ment guarantee to boost sample efficiency and overall perfor-
mance. The algorithm is designed to efficiently utilize the ex-
periences of other agents, enhancing its applicability in both
heterogeneous and homogeneous cooperative settings.

4.2 Approximate Monotonic Improvement for
Trust-Region Method

For each agent indexed by j within a set of n agents, let ej ∈
1, . . . , n. Here, ej signifies that agent indexed by j reuses the
experience of agent ej . We define the vector e = [e1, . . . , en]
to represent a specific mapping of experience reuse among
the n agents. The distribution ω = ∆e encompasses all these
possible mappings. An illustration of selecting a mapping
from ω is shown in Figure 2, aligning with the procedure in
lines 5-6 of Algorithm 1.

As agents update their policies in a sequential manner, π̃j

denotes the resulting joint policy after the j-th update, which
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Figure 2: A reuse matrix example for four agents with MAPPO, HAPPO, and our method shows joint policy π = π1, π2, π3, π4 and matrix
M for mapping reuses, where Mij is the probability of agent i using agent j’s experience. Figure (2d) displays sampling the update sequence
and mapping, starting with a binding mapping πe4 = π1, πe3 = π2, πe2 = π3, πe1 = π4 from M . The red indicates reuse relations, and
agents are shuffled for an update order, then updated accordingly.

Algorithm 1 Off-agent Policy Iteration with Approximate
Monotonic Improvement

1: Initialize the joint policy π0.
2: for each iteration k = 0, 1, . . . do
3: Collect data with πk in the environment.
4: Compute the advantage function Aπk

(s, a),
ϵ = maxs,a |Aπk

(s,a)| and C = 4γϵ
(1−γ)2 .

5: Draw a reuse sequence e = [e1, · · · , en] from ω.
6: Shuffle an update sequence ẽ = shuffle(e) randomly.
7: for em in ẽ do
8: Update the agent using

πem
k+1 = argmax

πem

[
Le1:m
πk

(π̃m−1
k+1 ,πem)

−CDmax
KL (πm

k , πem)]

9: end for
10: end for

is constructed as π̃j = π̄e1 × · · · × π̄ej . We define the joint
policy as π =

∏n
k=1 πek with its associated joint advantage

function Aπ(s,a). During each update, π̄em represents the
candidate policy for the m-th agent, then we define,

Le1:m
π (π̃m−1,π̄em)

=Es∼ρπ,a1:m−1∼π̃m−1,am∼π̄em
[Aπ(s,a1:m)] .

Where a1:m−1 represents the joint actions taken by the first
m− 1 agents, and the term Aπ(s,a1:m) can be broken down
as specified by the Multi-Agent Advantage Decomposition
(Appendix B). The function L serves as our optimization tar-
get within a multi-agent cooperative framework.

To ensure stable performance improvement, we impose
constraints on our optimization objectives. The following
lemma provides a lower bound on the potential increase in
expected returns when switching from a current joint policy
π to any new joint policy π̄:
Lemma 1. Given π as a joint policy, for any joint policy π̄,
we have

J(π̄)− J(π) ≥ E
e∼ω

n∑
m=1

[Le1:m
π (π̃m)− CDmax

KL (πem , π̄em)] ,

where π̃i = π̄e1 × · · · × π̄ei is defined as the policy up-
date up to the i-th agent, ω is a distribution of reuse map-
ping satisfying Condition 1, and J(π) = Eτ∼π [

∑∞
t=0 γ

trt].
C = 4γϵ

(1−γ)2 and ϵ = maxs,a |Aπk
(s,a)|. The proof is shown

in Appendix D.
As described in Algorithm 1, OAPO proceeds by collecting

data, computing the advantage function, and update the policy
of each agent sequentially based on a specific order and expe-
rience reuse mapping. To enable effective experience reuse,
we introduce a constraint on the similarity between policies,
which is formalized in the following:

Condition 1. Let π̄i be the candidate policy of agent i. For
agent i to reuse the experience produced by agent j, the fol-
lowing condition must be satisfied:

π̄i ∈ Bσ(πj), i, j ∈ N , (5)

here, Bσ(πj) represents a sphere defined by the KL di-
vergence, and σ is a small positive threshold. The candidate
policy π̄i must stay within this KL divergence sphere around
πj to utilize its experience. This condition enables us to con-
struct an appropriate distribution for reuse mapping, and a
complete explanation is available in Section 5.3.

Building on Lemma 1, we propose a theorem guarantee-
ing the approximate monotonic improvement of the OAPO
algorithm. The theorem is stated as follows:

Theorem 1. Let U(x0, ϵ) denote the neighborhood of a point
x0 within distance ϵ, where ϵ is a positive number. For a se-
quence of joint policies π∞

k=0 that satisfies Condition 1, af-
ter applying updates via Algorithm 1, we find J(πk+1) −
J(πk) ≥ max (U(0, ϵ)) when k > K, K ∈ N+. This result
demonstrates the approximate monotonic improvement of the
policies, with a comprehensive proof provided in Appendix E.

Remark. Given the sequential updating approach, the agent
only employs experiences that satisfy the reuse condition dur-
ing the reuse phase. This methodology ensures a stable con-
vergence of expected returns and provides a guarantee of
approximate monotonicity, ensuring that our policy exhibits
consistent iterative improvement.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3801



(a) Map for Black and Red

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

20

40

60

80

100

Av
er

ag
e 

Ep
is

od
e 

Re
w

ar
d

optimal
OAPPO(our)
OATRPO(our)
MAPPO
HAPPO

(b) Results on Black and Red.

0.01 0.1 1 10

70

80

90

100

110

Av
er

ag
e 

Ep
is

od
e 

Re
w

ar
d optimal

(c) The effect of policy distance
(σ).

0.2 0.4 0.7 1.0

90

95

100

105

Av
er

ag
e 

Ep
is

od
e 

Re
w

ar
d

optimal

(d) The influence of reuse mapping
distribution (λ).

Figure 3: (a) Black and Red maze game map: symbolizes the target, the red agent, and the black agent. (b) Algorithmic performance
in the maze game, each tested with 5 seeds—mean shown by solid line, standard deviation by shadow. Consistent seed number used in (c)
and (d). Effects of distribution probability changes and policy distance on algorithm performance examined in (c) and (d).

5 Practical Algorithm Implementation
Direct computation of L is not practical. As such, we propose
the following transformation:

Proposition 1. Assume π =
∏n

k=1 πek is a joint policy, e
represents the binding relationship between experience reuse
for all agents, Aπ(s,a) denotes joint advantage function,
and π̂em is a candidate policy conditioned on the experience
of agent m. Then,

Le1:m
π (π̃m−1, π̂em)

=Es∼ρπ,a1:m−1∼π̃m−1,am∼π̂em
[Aπ(s,a1:m)]

=Ea∼π

[(
π̂em

πm
− 1

)
π̃m−1

π1:m−1
Aπ(s,a)

]
. (6)

Through this transformation, we convert an intractable op-
timization objective into one leveraging the existing joint ad-
vantage function, modifying it as needed with the updated
joint policy factor. Balancing computational complexity and
performance enhancement, we devise two MARL algorithms
using the trust region method to substantiate our method.
Each agent’s policy πi is parameterized by θi, and the col-
lective policy πθ is denoted by θ = (θ1, ..., θn).

5.1 Off-Agent Trust Region Policy Optimization
(OATRPO)

In line with TRPO, we replace the challenging maximum
KL-divergence with the expected KL-divergence constraint
Eo∼ηπem

[DKL (πm(·|o), π̄em(·|o))] ≤ δ, where δ is a pre-set
threshold, and Monte Carlo method is used for approxima-
tion.

Our proposed OATRPO algorithm updates the policy pa-
rameters θk+1

em for agent em at each iteration k + 1, utilizing
the experience from agent m. The refined optimization ob-
jective for OATRPO is:

θk+1
em = argmaxθ̃Es,a∼p

[(
π̄em
θ̃

πm
θk

− 1

)
ρθk+1Aπ

θk
(s,a)

]
,

subject to Eo∼ηπm

θk

[
DKL

(
πm
θk(·|o), π̄em

θ̃
(·|o)

)]
≤ δ. (7)

Where ρθk+1 =
π̃m−1

θk+1

π1:m−1

θk

, θ̃ denotes the currently optimized

policy, and Es,a∼p [·] is Es∼ρπ
θk

,a1:m−1∼π̃m−1

θk+1 ,am∼πem
θ̃

[·],
the detailed of OATRPO show in Appendix G.

5.2 Off-Agent Proximal Policy Optimization
(OAPPO)

To avoid the significant computational cost associated with
the second-order gradient, we adopt the same method used in
PPO. Here, we employ a clipping operation to transform the
optimization objective (7) into an unconstrained first-order
optimization problem. The clipped objective for updating the
parameter of agent em is given by:

Es,a∼p

[
min

(
ρθ̃, clip

(
ρθ̃, 1± ϵ

))
ρ
e1:m−1

θk+1 Aπ
θk
(s,a)

]
,

(8)

where, ρθ̃ =
π̄em
θ̃

πm

θk
, and the remaining notation is consistent

with optimization objective (7), the detailed of OAPPO show
in Appendix H.

5.3 Reuse Mapping Distribution
The choice of reuse mappings influences the optimization tra-
jectory. We represent the frequency of reuse mappings with a
distribution e ∼ ω. Mappings that violate the reuse condition
Dmax

KL (πj , π̄i) > σ can impede the approximate monotonic
improvements and cause update inconsistencies when shar-
ing experiences, thus they are assigned a zero probability. For
mappings meeting the reuse condition, we define distribution
ω to allocate occurrence probabilities:

p(em) =


λ, Dmax

KL (πm, π̄em) = 0
1−λ

γ(m)−1 , 0 < Dmax
KL (πm, π̄em) ≤ σ

0, Dmax
KL (πm, π̄em) > σ

. (9)

Where γ(m) denotes the count of agents whose experience
agent m can draw on. The hyperparameter λ balances the ex-
perience exchange between agent m and others, while σ sets
the policy distance threshold for experience reuse. The prob-
ability distribution p(em) must integrate into one over all ex-
periences em. As outlined in Algorithm 1, each policy itera-
tion employs a single reuse mapping. Using all possible map-
pings exponentially increases the computation and potential
invalid updates for an agent. To improve sampling efficiency
and lower complexity, we translate reuse mapping probabili-
ties into weights, indicating how often an agent’s experience
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(d) MMM2

Figure 4: (a) The MMM2 scenario of SMAC, the red team uses our algorithm and the blue team uses the built-in algorithm. (b)-(d) Winning
rates compared on SMAC’s super hard map, each algorithm run 5 seeds; solid lines is mean and shaded areas show standard deviation.

is utilized. The complete reuse batch update procedure is in
Appendix G and H.

6 Experiments
We designed two maze-based games to assess the efficacy
of various reuse strategies in mixed environments. Subse-
quently, we concentrated on two prevalent environments: the
StarCraft II Multi-Agent Challenge (SMAC) and Google Re-
search Football (GRF). Within these settings, we evaluated
the performance of our algorithms, both with and without
an off-agent. To ensure a thorough evaluation of our al-
gorithm’s capabilities, we also conducted comparisons with
several established baseline algorithms, including: MAPPO,
which uses parameter sharing; HAPPO, which relies exclu-
sively on individual experiences for updates; SEPS, which
adopts selective parameter sharing; and SEAC, which incor-
porates experiences from other agents for updates.

6.1 Maze Game
Black and Red Game
Figure 3a illustrates the Black and Red game scenario: red
agents can move through red grids and open spaces; black
agents through black grids and open spaces. Both strive
to reach the terminal ( ) via possible optimal routes (blue
lines). The global state comprises a 9 × 9 map matrix and
agent locations, with each agent’s 3 × 3 view matrix and lo-
cation forming its observation. Agents can move: up, down,
left, right, or nop. Experiment details are in Appendix I.

Figure 3b reveals that in heterogeneous tasks, the shared
parameters of MAPPO often produce suboptimal results.
HAPPO performs better, but requires more samples and con-
verges slowly. Homogeneous scenarios (e.g. Ma-Mujoco)
show that direct experience reuse can degrade performance
(Appendix A). Our methods surpass MAPPO and HAPPO,
avoiding MAPPO’s local optima and converging faster than
HAPPO through inter-agent reuse. In TRPO’s tighter con-
straints, OATRPO converges quicker than OAPPO.

Modifying the parameter σ significantly affects the scope
of experience that agents can reuse, as depicted in Figure 3c.
With a small σ (σ = 0.01), agents are constrained to their
own experiences, causing policy updates and convergence to
be slower. A larger σ (σ = 0.1) incorporates more relevant
experiences, enhancing the convergence rate. However, as σ
expands further (σ = 1), the inclusion of irrelevant experi-
ences confuses the direction of gradient update. An overly

large σ (σ = 10) causes the agent to integrate experiences
from all peers, which may hinder performance due to the as-
similation of divergent policies.

When assessing the effect of reuse mapping distributions
on performance through adjustment of λ, as illustrated in Fig-
ure 3d, we find that a smaller λ (λ = 0.2) promotes agents
to prioritize external experiences, potentially leading to local
optima due to policy fluctuations in initial training. A larger
λ (λ = 1) restricts agents to their own experiences, which
is less effective and delays convergence compared to inter-
mediate values of λ (λ = 0.4/0.7), which strike a balance
in experience reusing. Among these, λ = 0.7 demonstrates
marginally improved performance relative to λ = 0.4. Opti-
mal selection of λ is thus critical for advancing agent perfor-
mance and accelerating convergence.

(a) Map for Black Blue Red

0 20 40 60 80 100
Average Episode Reward

NR

UR

RR

AR

optimal

(b) Results on Black Blue Red

Figure 5: (a) Black Blue Red maze map: blue agent blocked by
blue grids, star as target. Red, black, and blue lines show optimal
routes. (b) Reuse scheme comparison in Black Blue Red maze with
5 seeds; thin black lines on bars represent standard variance.

Black Blue Red Game
To assess how different experience reuse methods affect per-
formance, we created another maze game with three hu-
manoid icons representing red, black, and blue agents. A
blue trap grid, accessible to only black and red agents, helps
demonstrate reuse effects among similar agents. The red
agent cannot enter black grids, the black agent cannot enter
red grids, and the blue agent cannot enter both. Figure 5a
shows the game map and agent roles, revealing numerous de-
cision conflicts between the red and black agents, while black
and blue agents have fewer differences.

We tested four reuse schemes to examine inter-agent reuse
effects. No Reuse (NR) involves agents updating based
solely on their experiences (HAPPO). Unreasonable Reuse

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3803



(a) Google research football

Algorithms pass and shoot 3_vs_1 CA-Easy CA-Hard

MAPPO 93.8(5.3) 88.7(2.5) 59.7(12.6) 58.5(16.6)
HAPPO 89.8(4.0) 93.7(5.0) 25.8(12.4) 13.5(10.3)
SEAC 91.4(2.1) 94.9(3.7) 52.1(20.2) 36.4(5.3)
SEPS 95.3(3.4) 96.8(2.6) 76.3(9.1) 36.2(9.2)

OAPPO(our) 94.4(2.1) 95.7(3.1) 88.1(6.6) 62.5(2.5)
OATRPO(our) 93.3(3.3) 94.5(3.3) 94.9(5.6) 89.1(4.8)

Steps 5e6 5e6 1e7 1.5e7

(b) Results on GRF cooperative multi-agent scenarios.

Figure 6: (a)The 3_vs_1 scenario of GRF. (b)Performance of the evaluation score in cooperative scenarios of GRF. Each method was run with
5 different seeds, first number denote mean value and number in bracket represent standard deviation.

(UR) has black and red agents sharing experiences. Rea-
sonable Reuse (RR) involves sharing between black and blue
agents. All Reuse (AR) indicates all agents share experiences
(MAPPO). We modified OAPPO parameters to implement
these strategies, as shown in Figure 5b. Results indicate that
experience reuse is suboptimal when agents’ policies differ
significantly, potentially causing a local optimum trap. In UR
and AR, the black agent’s experience sharing with the red,
leading them to become stuck in a local optimum. In RR, the
blue agent’s slightly different optimal policy, with the help of
TRL, they can still reach an optimal solution as in NR.

6.2 Results on SMAC
SMAC [Samvelyan et al., 2019] is a widely used multi-agent
cooperative environment where teams of same or different
agents work together to defeat he opposing team. HAPPO
excels on Hard and some Super Hard maps but struggles on
others due to its reliance on individual training samples, limit-
ing its ability to achieve the performance of MAPPO with the
same number of samples, particularly when the agent count
rises. Thus, we focus on the Super Hard maps and PPO-
based algorithms to illustrate performance differences. The
global state includes all map cells, agent coordinates relative
to the map center, and unit features in view. SMAC’s local
observation encompasses a circular area around each unit and
visible surviving units. Experiment details are in Appendix
K.

In scenarios with heterogeneous agents (3s5z vs 3s6z and
MMM2, referenced in Figures 4c and 4d), OAPPO outper-
forms MAPPO and HAPPO. Unlike MAPPO, OAPPO main-
tains parameter sharing aligned with Proposition 1, and its
experience reuse mechanism enhances convergence. Further-
more, OAPPO can construct a suitable distribution for the
agent by adjusting both the distribution and the policy thresh-
olds. This method consequently achieves better results in
contrast to the conventional approach of directly selecting the
experience reuse methods of SEPS and SEAC. In the homo-
geneous agent setup 6h vs 8z (Figure 4b), OAPPO leverages
reuse mapping distribution to balance the degree of experi-
ence reuse of other agents, achieves more stable performance
enhancements without sacrificing experience reuse, This sta-
bility results in superior outcomes compared to MAPPO.
Overall, OAPPO surpasses HAPPO in convergence speed and
performance across all SMAC tasks at the same epochs.

6.3 Results on GRF
We evaluate OAPPO and OATRPO across several GRF
[Kurach et al., 2020] academy scenarios, including
academy_pass_and_shoot_with_keeper (pass
and shoot), academy_3_vs_1_with_keeper (3_vs_1),
academy_counterattack_easy (CA-Easy), and
academy_counterattack_hard (CA-Hard). In these
scenarios, a team of agents competes against an opponent
team controlled by built-in algorithm to score. While all
agents have the same action space, position-based role
differences exist. The global state refers to the complete
set of data returned by the environment after actions are
performed. Local observations include player coordinates,
ball possession and direction, active player, or game mode.
Configuration of the experiment show in Appendix J.

Table 6b presents the results. For simple tasks (pass and
shoot, 3_vs_1), agents achieve nearly perfect scores solely
through their individual experiences, without sharing. How-
ever, as tasks become complex (CA-Easy), the reliance on in-
dividual experience is inadequate to obtain high performance.
In these scenarios, selective reuse of the experiences of other
agents yields satisfactory results, clearly demonstrating the
superiority of OAPPO and OATRPO. When tasks gradually
increase in complexity and difficulty (CA-Hard), the effective
reuse of experiences continues to exhibit a faster convergence
speed. This maintains the superior performance of OAPPO
and OATRPO over other baseline algorithms.

7 Conclusion
To tackle low sample efficiency in MARL, we developed a
method enhancing inter-agent experience reuse, and designed
Maze Game to investigate conditions requisite for such reuse.
Our approach yielded two innovative algorithms, OATRPO
and OAPPO, based on inter-agent experience sharing with
guarantees of approximate monotonic improvement. Experi-
mental results on SMAC and GRF show our algorithms allow
selective experience reuse by agents, leading to superior sam-
ple efficiency and improved performance in these tasks. Nev-
ertheless, the efficacy of our experience reuse is dependent
upon the hyperparameter λ and the distribution threshold σ,
suggesting future work to adaptively fine-tune these param-
eters with respect to agent roles and experience quality for
enhanced performance.
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