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Abstract
Internet of Things (IoT) devices possess valuable
yet private multimodal data, calling for a decen-
tralized machine learning scheme. Though sev-
eral multimodal federated learning (MFL) methods
have been proposed, most of them merely over-
look the system heterogeneity across IoT devices,
resulting in the inadaptability to real world applica-
tions. Aiming at this, we conduct theoretical anal-
ysis and exploration experiments on straggler im-
pacts and uncover the fact that stragglers caused
by system heterogeneity are fatal to MFL, result-
ing in catastrophic time overhead. Motivated by
this, we propose a novel Multimodal Federated
Learning with Accelerated Knowledge Distillation
(MFL-AKD) framework, which is the first attempt
to integrate knowledge distillation to combat strag-
glers in complex multimodal federated scenarios.
Concretely, given the pretrained large-scale vision-
language models deployed in the central server,
we apply a fast knowledge transfer mechanism to
conduct early training of local models with part
of the local data. The early-trained model is then
enhanced through the distillation of the pretrained
large model and further trained on the remaining
data. Extensive experiments on two datasets for
video moment retrieval and two datasets for image-
text retrieval demonstrate that our method achieves
superior results with high straggler robustness.

1 Introduction
Nowadays, with the increase of multimedia data (e.g., im-
ages, videos, and texts) in daily life, the imperative to harness
the wealth of multimedia data has become a hot topic, which
has raised increasing research interests in many multimodal
tasks such as text-image retrieval [Qu et al., 2021] and video
moment retrieval [Gao et al., 2017; Wang et al., 2021]. The
integration and storage of these data modalities across mobile

∗Corresponding Author: Haoyu Tang

and IoT systems present a significant challenge in training
models with data from diverse devices.

Multimodal Federated Learning (MFL) [McMahan et al.,
2017; Yang et al., 2020] has emerged as a promising approach
to leverage multimodal data from various sources such as
enormous IoT devices without privacy disclosure. These IoT
devices always vary in computation capacity, communication
bandwidth, energy power, and operation systems [Han et al.,
2020]. All these factors lead to so-called system heterogene-
ity. However, existing MFL methods have overlooked this
intrinsic property with a naive assumption: uniform capaci-
ties and the same model structures across all clients [Cheng
et al., 2021; Wang et al., 2021]. Such an ideal assumption
eliminates the heterogeneous nature of MFL, neglecting the
severe time overhead and performance degradation caused by
the stragglers.

Stragglers, or less efficient participants, have been rec-
ognized as a fundamental challenge in FL since its incep-
tion [Wu et al., 2020]. The huge extra time overhead with
the performance degradation [Kairouz et al., 2021] caused
by stragglers have led to the development of various miti-
gation methods, which can be broadly categorized into two
groups: (1) employing relaxed synchronization, (2) improved
scheduling and aggregation schemes. What’s worse, al-
most all these methods cannot be applied to MFL directly.
For synchronization-based methods, the outdated models and
dropped knowledge parts are deadly to multimodal scenarios.
Additionally, aggregation-based methods face difficulties due
to the expected diversity in model structures among clients, a
result of the inherent system variability in MFL. This varia-
tion makes it challenging to directly combine local gradients,
rendering the aggregation approach impractical in MFL.

Focusing on the issue, we carefully investigate the prac-
tical impact of stragglers in MFL under the real-world sce-
narios. Instead of simulation, we conduct all the explored
experiments using real decentralized machines with different
controlled computation capacities and communication band-
width. As shown in Fig. 1, our findings reveal that the im-
pact of stragglers in MFL is more severe than in horizontal
single-modal FL, leading to significant delays and even train-
ing failure, and this problem is exacerbated as the number
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(a) Time increase v.s stragglers. (b) Times@70% v.s sleep time

Figure 1: Illustrations of Straggler issues. In left figure, a straggler is
set to 50% reduced speed compared to a standard client. ‘Uni’ and
‘multi’ represent unimodal and multimodal FL, respectively. The
right figure shows the results from MSCOCO for i2t retrieval.

and latency of stragglers increase. All these findings sug-
gest a significant implication: incomprehensive aggregation
of cross-modal information is fatal to multimodal decentral-
ized learning, which calls for the development of a straggler-
robust MFL framework under practical system heterogeneity.

Motivated by these observations, we decompose the chal-
lenge and reorganize them into two requirements: (1) Effi-
ciency and lightness for locally deployed models, ensuring
minimal computation and communication demands, paired
with a powerful, large-scale global model for in-depth cross-
modal understanding. (2) An effective, adaptable aggrega-
tion strategy, not only enabling knowledge obtainment from
different model structures, but also allowing partial aggrega-
tion to avoid total falls while maintaining the possibility of
full aggregation. To this end, we propose a multimodal fed-
erated learning framework with accelerated knowledge distil-
lation (MFL-AKD). To alleviate the local budget while keep-
ing the powerful representative ability of the central server,
we deploy a lightweight encoder to each client while main-
taining the powerful CLIP in the central server. For flexible
aggregation and potential stragglers, we incorporate princi-
ples of knowledge distillation for efficient knowledge trans-
fer from the central model to local models, and designed a
fast knowledge transfer mechanism before the regular updat-
ing in each round, accelerating the convergence of the fed-
erated models. We validate the proposed MFL-AKD on two
crucial vision-language tasks, text-image retrieval [Qu et al.,
2021] and video moment retrieval [Tang et al., 2021a; Tang
et al., 2021b; Hu et al., 2023], on four popular datasets. Ex-
perimental results validate the superior performance and the
remarkable straggler-tolerant ability of our proposed MFL-
AKD. The main contributions of this paper are summarized
as follows:

• We take the first attempt to identify and address the
straggler problem in multimodal federated learning.
Through analysis and exploration experiments with real
decentralized machines, we discovered that stragglers
affect MFL more severely than single-modal FL, signif-
icantly impacting the central model’s effectiveness.

• We decompose the straggler challenge in MFL and pro-
pose Multimodal Federated Learning with Accelerated
Knowledge Distillation. To mitigate potential straggler

issues, MFL-AKD introduces a Fast Knowledge Trans-
fer Mechanism to circumvent potential setbacks caused
by large-scale data and provide guidance for subsequent
full-batch training, effectively combating the stragglers
with its fast convergence and early-training strategy.

• We demonstrate the effectiveness of our approach on
two crucial vision-language tasks: text-image retrieval
and video moment retrieval. Extensive experiments con-
firm that our method outperforms existing MFL ap-
proaches, demonstrating superior performance and re-
markable tolerance to straggler-related delays.

2 Related Work
2.1 Stragglers in Federated Learning
In recent years, federated learning has gained increasing at-
tention for its ability to train deep models using decentralized
data on the client side, without sharing raw local data [Li et
al., 2020a; Kairouz et al., 2021]. However, system hetero-
geneity leads to stragglers that can significantly slow down
the convergence rate of synchronous FL algorithms, posing a
serious issue for real-time applications. To address this, re-
searchers have proposed asynchronous FL algorithms to mit-
igate straggler lag by relaxing client synchronization require-
ments [Wu et al., 2020; Liu et al., 2021]. However, these
methods face challenges with communication bottlenecks
and outdated local model updates during aggregation. There-
fore, current research efforts primarily focus on straggler is-
sues in synchronous FL. Common strategies involve setting
fixed deadlines for all clients to update and share their local
models, allowing clients to process data samples at varying
speeds based on computational capacity [Smith et al., 2017;
Li et al., 2020b; Han et al., 2020]. Additionally, [Reisizadeh
et al., 2022] proposed to first train with faster clients and
then gradually include stragglers towards the end of train-
ing. However, these approaches have not investigated the
MFL scenario, which is more severely impacted by strag-
glers. They also lack a real-time update strategy in federated
learning knowledge distillation environments, which is cru-
cial for maintaining efficiency and effectiveness in MFL with
multiple stragglers and extended delays.

2.2 Knowledge Distillation
Knowledge distillation (KD) aims to transfer the knowledge
of a large and complex model (i.e., the teacher model) to a
smaller and simpler model (i.e., the student model) so that
a lightweight student with comparable performance to the
teacher can be obtained [Hinton et al., 2015; Romero et al.,
2015]. This technique often minimizes the discrepancy in
probability distributions of teacher and student models be-
tween their final logical outputs [Hinton et al., 2015] or in-
termediate features [Komodakis and Pesquet, 2017].

Recently, knowledge distillation has demonstrated encour-
aging outcomes in compressing the client model size of uni-
modal FL [Huang et al., 2022]. For example, [Ahn et al.,
2020] presented to transfer the knowledge from a global
model to local models with a weighted loss function to bal-
ance the knowledge distillation and the federated learning ob-
jectives. [Li et al., 2020c] proposed a FedMD framework
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that integrates transfer learning and knowledge distillation
to facilitate federated learning in scenarios where individual
clients possess their distinctive model designs.

Despite the progress they have made, directly extending
those unimodal knowledge distillation methods into the mul-
timodal FL scenarios will be highly inappropriate due to the
heterogeneity of cross-modal data. More importantly, the
straggler problem not addressed by these federated knowl-
edge distillation methods will lead to more severe perfor-
mance degradation and cost increases [Bonawitz et al., 2017].

2.3 Multimodal Federated Learning
Multimodal federated learning is an emerging area that in-
volves using various data sources (e.g., text, image, and au-
dio) from multiple clients to develop a multimodal model,
ensuring data privacy across different clients. To address
this issue, several methods have been proposed in recent
years [Cheng et al., 2021; Wu et al., 2022; Li et al., 2020c;
Zhao et al., 2021]. For example, [Liu et al., 2019] introduced
FL to the vision-and-language grounding tasks and proposed
to collaboratively extract diverse image representations de-
rived from different tasks. Inspired by the idea of contrastive
learning, [Huang et al., 2022] presented a CreamFL frame-
work that regularizes local client training by incorporating
both inter-modal and intra-modal contrasts to enhance the
multimodal FL. Besides, [Wang et al., 2021] aimed at the
video moment retrieval and proposed to attentively aggregate
the model of grouped clients that are trained sequentially.

However, as these methods do not involve knowledge dis-
tillation and specialized acceleration strategy design, all of
them will face severe performance degradation and commu-
nication delays when facing stragglers. In contrast, our MFL-
AKD ensures its robustness to stragglers through the designed
quick knowledge transfer strategy in KD process.

3 Revisiting Stragglers in Synchronized FL
To investigate the difference in the impact of stragglers in uni-
modal FL and multimodal FL, we here theoretically revisit
and further conduct exploration experiments.

3.1 Problem Setup
Consider a multimodal federated learning scenarios with K
clients with up to N modals data. Each client ci possesses
ni samples, constituting the local dataset Di = {xj

i , y
j
i }

ni
j=1.

The goal of multimodal federated learning is to collabora-
tively train a global model f(·; θg) parameterized by θg by
utilizing the decentralized datasets {Di}Ki in T communica-
tion rounds. At the beginning of each round, the server will
decide the participated clients set P. Let It = {i|ci ∈ P}.
The participant number in the t-th round is denoted as τ t =
|Pt| = |It|. Each client ci ∈ P is then required to conduct
the training task on its local data Di. Considering the system
heterogeneity across Pt, there may exist M t stragglers in the
t-th communication round, and M t ≤ τ t. Unimodal FL is
the special case when N = 1 under this definition.

3.2 The Impact of Stragglers
System heterogeneity is an inevitable issue that occurs in the
practical application of FL. Due to the difference in hard-

ware, e.g. computing chips, battery power, and communi-
cation bandwidth, the ability to execute training tasks varies
across different clients, which causes the well-known strag-
glers problem. Though numerous methods have been elab-
orated to deal with such an issue, the theoretical analysis of
straggler impact in FL is yet to be established.
Definition 1 (Time Consumption of Synchronized FL) Con-
sider a synchronized federated framework with K clients
{ci}Ki=1 for R communication rounds, the server requires
each participated client ci ∈ Pr to conduct the training task
on its local dataset Di. Let ϵri denote the total floating point
operation number of client ci in the r-th round, γr

i denote
the comprehensive computation capacity measured by float-
ing point operations per second (FLOPS). The time consump-
tion of FL is defined as:

Υ =
R∑

r=1

max

({(
ϵri
γr
i

+ ζri

)
|i ∈ Ir

})
(1)

where max() is a function to extract the max element in a set
and ζri is the communication time cost of client ci in the r-th
round.

To further facilitate the numerical analysis, we introduce
the sum of the averaged wasted time across all clients during
a full federated training procedure as a metric to measure the
absolute impact of stragglers in FL defined as below:

Definition 2 (Averaged Wasted Time of Stragglers) Given a
federated framework with its relevant variables as introduced
before, the averaged wasted time of stragglers is defined as:

δ =

R∑
r=1

∑
i∈Ir

1

|Ir|

∣∣∣∣ ϵriγr
i

+ ζri − υ

∣∣∣∣ (2)

where υ = max
({(

ϵri
γr
i
+ ζri

)
|i ∈ Ir

})
is the time con-

sumption of the lowest client in r-th round.

We now claim our analysis of straggler impacts as indi-
cated in Proposition 1.
Proposition 1 The impact of stragglers is correlated with:
(1) Task Difficulty Φ; (2) Balance of dataload on unit compu-
tation capacity; (3) Communication consumption.

Analysis (1) Task difficulty Φ closely relates to the re-
quired communication rounds R for desired model perfor-
mance. The convergence speed within a federated algorithm
is influenced by the convexity and smoothness of the objec-
tive functions. Therefore, simpler tasks that satisfy the con-
ditions of convexity and smoothness, tend to converge more
rapidly. (2) Workload on unit computation capacity is decided
by the data amount and the model capacity. The more imbal-
ance the dataload on unit computation, the more gap exists in
the time consumption across all clients.

Discussion (1) The common trick to mitigate severe strag-
glers involves setting a response threshold, effectively reduc-
ing υ to lessen the time consumption gap

∣∣∣ ϵriγr
i
+ ζri − v

∣∣∣. (2)
The communication budget is generally constant, as the up-
loaded content consistently includes the gradient or param-
eters of the current local model. Therefore, communication
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Figure 2: An illustration of the proposed MFL-AKD framework, which consists of the following steps in each communication round: 1)
distribute the initialized global model θrg to all participated clients; 2) early training is conducted on the part of local data; 3) upload early-
trained model θrel,i to the server; 4) distill knowledge from pretrained vision-language model to get distilled local model θrdl,i; 5) re-distribute
θrdl,i to its client and conduct regular training; 6) aggregation to get global model θr+1

g .

consumption ζi mainly depends on the communication band-
width, which is hard to manually optimize in federated algo-
rithm design.

Comparison of multimodal FL with unimodal FL: (1)
Tasks in multimodal FL are often more difficult than those in
unimodal FL, as they involve the joint relationships between
different modalities. (2) Workload is more imbalanced across
clients in multimodal FL than in unimodal FL, as data in dif-
ferent modalities possesses different data structures with dif-
ferent storage requirements. Those differences magnify the
impact of stragglers in multimodal FL, calling for the estab-
lishment of a straggler-robust multimodal FL framework.

4 The Proposed Method
In this section, we introduce our proposed straggler-robust
multimodal federated framework MFL-AKD. We choose the
vision-language tasks as representative multimodal tasks.
Specifically, we consider text-to-image and video moment re-
trieval tasks, which aim to match a given sentence x with its
most relevant image or video moment y.

4.1 Motivation
We now briefly revisit our motivation for the proposal of
MFL-AKD. As described before, system heterogeneity is an
inevitable issue in the practical application of multimodal fed-
erated learning, causing stragglers in each communication
round. However, such an issue has been largely overlooked
with a naive conjecture that the impact of stragglers in MFL is
similar to that in the unimodal FL. With the analysis proposed
in Section 3.2, the impact of stragglers in multimodal FL is
much more severe than that in unimodal FL, which calls for
the establishment of a straggler-robust multimodal federated

framework. To develop such a framework, the following re-
quirements should be satisfied: From the system perspective:
(1) Lightweight but effective client-deployed model to alle-
viate the workload of clients. (2) Powerful and large server-
deployed model to sufficiently handle the difficult multimodal
tasks. From the scheduling perspective: (1) Balanced work-
load decided by computation capacities across all clients; (2)
Efficient aggregation schema to accelerate the convergence.

4.2 Framework Overview
In response to these requirements, we develop a straggler
robust multimodal federated method named MFL-AKD. To
handle the challenge brought by multimodal tasks, MFL-
AKD deploys a powerful pretrained vision-language model
CLIP F(·; θC) on the server and allows clients to use its de-
sired model fi(·; θi) in arbitrary structures. To facilitate the
convergence of the federated algorithm and allow the dy-
namic workload to prevent straggling, we have designed a
novel Fast Knowledge Transfer Mechanism (FKTM) in MFL-
AKD. FKTM requires all clients to extract part of its local
data to conduct workload-balanced early training before the
ordinary training. Such a partial extraction ensures the bal-
ance of workload on computation capacity, largely reducing
the wasted time of stragglers. The early-trained models are
then uploaded to the server to conduct a warm-up utilizing the
CLIP model through knowledge distillation. By doing this,
FKTM not only mitigates the time consumption gap between
clients but also accelerates the convergence of the federated
framework. The application of KD also allows the deploy-
ment of models in different structures on clients. Note that
we here mainly introduce MFL-AKD with the same model
architectures deployed in clients to facilitate the comparison
with other MFL methods. The overall framework of MFL-
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AKD is illustrated in Figure 2.
Commencing the r-th round, the central server first iden-

tifies the participated client set Pr. For each client ci ∈ Pr,
the server distributes current global model parameter θrg to
initialize its local model. Concerning the possible imbalance
workload on computation capacity ϵri

γr
i

among clients set Pr,
MFL-AKD requires each client ci ∈ Pr to randomly extract a
mini-batch of local data Di according to its computation ca-
pacity ϵri in current round and further conduct early-training
to get the local model parameter θrel,i, which is further asyn-
chronously uploaded to the server. Receiving the uploaded
early-trained parameter θrel,i of client ci, the FKTM in the
server then utilizes the CLIP model to conduct knowledge
distillation to warm up the early-trained local model, accel-
erating the convergence of the federated frameworks. The
distilled early-trained local model θrdl,i is then distributed to
its corresponding client ci and further conduct model training
on the rest data to get updated local model θri . All the up-
dated local model {θri }i∈Ir is then uploaded to the server to
get global model θr+1

g for next round training.

4.3 Multimodal Local Training
Without loss of generality, we introduce the local training of
MFL-AKD under the multimodal retrieval tasks. The input
instance {xi, yi} in the local dataset Di denotes a sentence
xi and its related image or video moment yi, and the train-
ing goal is to obtain a local multimodal encoder fi(·; θri ) that
characterizes the visual language well. Considering the excel-
lence of transformer in cross-modal embedding, we adopted
a transformer-structured encoder [Vaswani et al., 2017].

Specifically, fi encodes xi and yi into their respective em-
beddings hxi and hyi . The local loss function that minimizes
the distance between hxi and hyi is defined as:

min
fi

1

ni

ni∑
n=1

L(hxi
, hyi

) (3)

where ni denotes the size of Di, and L denotes the mean
square error.

4.4 Fast Knowledge Transfer Mechanism (FKTM)
via Centralized Knowledge Distillation

We here specifically introduce the designed FKTM with a
centralized knowledge distillation process in MFL-AKD. As
analyzed before, the impact of stragglers on a particular fed-
erated framework is highly correlated with its convergence
speed and balance of workload on unit computation capac-
ity across clients. To effectively handle the straggler prob-
lem and prevent entirely dropped clients, FKTM requires the
clients ci ∈ Pr to early-train the initialized local model θrg on
a small fraction of its local data while remaining the work-
load balance. After receiving the local early-trained model
θrel,i, FKTM further enhances the ability of the model by dis-
tilling knowledge from the powerful teacher model. Specif-
ically, a large pretrained CLIP model F(·; θC) is adopted as
the teacher. For the input pair (xj

i , y
j
i ), the CLIP teacher and

the student encoder θrel,i embed them into their correspond-
ing representations and further conduct knowledge distilla-

tion through:

Ldist = KL
(
F (xj

i | θC)∥f(x
j
i | θ

r
el,i)

)
(4)

The distilled local model θrdl,i of client ci is then re-
distributed to the client to continue the training on the rest
of its local data. FKTM sufficiently utilizes the prior knowl-
edge in pretrained large multimodal models to help the early-
trained model rapidly adapt to its local multimodal data and
get experience from the prior knowledge. Such a mecha-
nism significantly accelerates the convergence of the MFL-
AKD, making the framework tolerant to stragglers and leav-
ing readiness models for each client to combat the potential
drop-offs during the subsequent training.

5 Experiments
We evaluated our framework on two fundamental vision-
language tasks: image-text retrieval on the Flickr30k and MS
COCO datasets, and video moment retrieval on the Charades-
STA and ActivityNet Captions datasets.

5.1 Experimental Setup
Datasets We use four popular multimodal datasets in text-
image and text-video retrieval tasks. Details are given below:

1. Flickr30k [Young et al., 2014]: This image-text re-
trieval dataset consists of 31,784 images, each of which
is manually annotated with five different sentence de-
scriptions. As in [Qu et al., 2021], 29,784, 1,000,
and 1,000 images with paired sentences are adopted for
training, validation, and testing, respectively.

2. MSCOCO [Lin et al., 2014]: This image-text retrieval
dataset contains 123,287 images, each of which is paired
with five annotated sentences. For fair comparisons, the
public dataset split is adopted [Qu et al., 2021], i.e.,
113,287, 5000, and 5000 images for training, validation,
and testing, respectively. Besides, the MSCOCO 5Fold
1K setting is adopted for evaluation, where the average
results are over 5-fold of 1,000 testing images.

3. Charades-STA [Gao et al., 2017]: This dataset video
moment retrieval is manually annotated by [Gao et al.,
2017], which contains 6,672 videos with 29.76 seconds
long on average. The number of sentence-video pairs
is 16,127 in total. Following the common settings [Gao
et al., 2017], we divide those pairs into two parts, i.e.,
12408 pairs for training and 3720 pairs for testing, re-
spectively.

4. ActivityNet Captions (Anet) [Krishna et al., 2017]:
This video moment retrieval dataset contains 14926
videos with an average duration of 120 seconds. The
sentence-video pairs are 71,957 in total, where the cor-
responding sentences are longer with more complicated
semantics. Following [Gao et al., 2017], we adopt
37,417, 17,505, and 17,031 sentence-video pairs for
training, validation, and testing, respectively.

Evaluation metrics. The standard Recall@K (R@K for
short) and R@n, IoU=m are adopted as the evaluation met-
rics for the image-text retrieval and video moment retrieval
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Method
Flickr30k MSCOCO 5Fold 1K

Text Retrieval Image Retrieval Text Retrieval Image Retrieval
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

FedAvg[McMahan et al., 2017] 67.9 89.0 47.8 73.1 64.8 89.8 46.6 79.6
FedIoT[Zhao et al., 2021] 67.2 88.7 45.4 71.9 64.0 89.6 43.7 79.1
FedCG[Wu et al., 2022] 66.5 87.8 44.9 70.4 63.8 88.5 45.8 78.7
FedMD[Li et al., 2020c] 67.4 89.1 47.9 73.8 64.9 90.7 46.4 80.3
FedGEMS[Cheng et al., 2021] 69.4 90.7 50.9 74.5 66.0 94.2 54.0 82.3
FedVMR[Wang et al., 2021] 69.3 91.3 51.2 75.2 66.3 94.1 54.2 82.8
MFL-AKD (w/o. KD) 66.8 88.4 46.9 72.3 64.8 92.9 53.3 81.5
MFL-AKD (w/o. FKTM) 68.3 89.6 49.2 72.1 66.0 92.7 53.4 81.7
MFL-AKD 69.0 91.5 51.3 75.8 66.1 94.2 54.4 83.1

Table 1: Performance comparison of Text-Image Retrieval on Flickr30k and MSCOCO datasets (%).

Models
Charades-STA Anet

R@1 R@5 R@1 R@5
n=0.5 n=0.7 n=0.5 n=0.7 n=0.5 n=0.7 n=0.5 n=0.7

FedAvg[McMahan et al., 2017] 50.5 25.5 82.4 58.3 36.9 17.6 78.9 63.7
FedIoT[Zhao et al., 2021] 47.9 23.6 80.4 57.2 37.8 18.6 79.3 64.1
FedCG[Wu et al., 2022] 39.4 19.7 78.9 53.5 20.0 4.2 71.4 58.3
FedMD[Li et al., 2020c] 51.7 26.4 82.9 59.1 39.4 19.8 80.4 64.3
FedGEMS[Cheng et al., 2021] 52.9 31.7 83.6 64.4 41.7 22.5 81.2 65.3
FedVMR[Wang et al., 2021] 53.0 31.6 84.7 64.7 42.3 22.7 82.6 66.2
MFL-AKD (w/o. KD) 49.3 25.4 79.2 53.6 34.8 16.5 79.0 61.2
MFL-AKD (w/o. FKTM) 49.2 24.9 80.1 53.4 36.9 20.1 80.6 64.1
MFL-AKD 53.1 32.2 84.6 65.0 42.4 23.4 82.4 66.1

Table 2: Performance comparison of Video Moment Retrieval on Charades-STA and Anet datasets (%).

task, respectively. R@K denotes the percentage of ground
truth at the top-K retrieved results, and R@n, IoU=m means
the percentage of the samples that contain at least one out
of top-n retrieval results with Intersection over Union (IoU)
larger than m. Besides, we also evaluate the efficiency of
our framework by measuring its relative time gain [Wu et al.,
2022] compared to a predefined baseline.
Compared methods. We compare the MFL-AKD with var-
ious state-of-the-art (SOTA) multimodal FL methods to val-
idate its superior performance and straggler robustness, in-
cluding FedAvg [McMahan et al., 2017], FedIoT [Zhao et
al., 2021], FedCG [Wu et al., 2022], FedMD [Li et al.,
2020c], FedGEMS [Cheng et al., 2021], and FedVMR [Wang
et al., 2021]. Among those methods, FedIoT, FedCG, and
FedGEMS are multimodal FL frameworks, where we conduct
experiments on four datasets and report the corresponding re-
sults. and FedMD is an unimodal method with knowledge
distillation, where we extend this method to accommodate
the multimodal settings.
Implementation details. Based on our MFL-AKD frame-
work, we conducted experiments with 40 to 60 communi-
cation rounds for the federated learning process. All ex-
periments were performed on a cluster of 4 heterogeneous
devices with different configurations. We implemented our
framework using PyTorch 1.7.1. For the server side, we used

a high-performance computing node equipped with four In-
tel Xeon processors and 128GB memory. For the vision-
language knowledge distillation, the ViT-B/32 version CLIP
[Radford et al., 2021] is adopted as the teacher model. Each
client device was equipped with a GPU of a different model
and memory size. We randomly partitioned the datasets
among the clients. For the text-image retrieval task, the model
on each client is trained locally for 10 rounds and 30 rounds
on the Flicker30k and MSCOCO datasets, respectively. For
the video moment retrieval task, the model on each client is
trained for 40 rounds and 60 rounds on the Charades-STA and
Anet datasets, respectively. The stochastic gradient descent
(SGD) optimizer with a learning rate of 0.001 is adopted.
During the federated learning process, we applied knowledge
distillation with a temperature of 5 and a weight of 0.5 to en-
courage model convergence.

5.2 Performance Comparison
We first compare the performance of MFL-AKD with SOTA
multimodal FL methods on four multimodal datasets. Table 1
and Table 2 display the retrieval performance of MFL-AKD
and other baselines for video moment retrieval and text-image
retrieval tasks, respectively. Note that the best results are
highlighted and the second ones are underlined.

From those results, the following observations stand out.
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Times@70% (i2t R@5/s) υ = 1500 1750 2000 2250 2500

FedAvg 20.2k 22.8k 25.3k 28.8k 31.3k
FedIoT 20.1k 22.0k 24.2k 26.3k 28.6k
FedCG 20.0k 22.4k 24.9k 27.3k 29.8k
FedMD 19.9k 22.3k 24.8k 27.1k 29.5k

FedGEMS 19.1k 20.8k 22.6k 24.5k 26.3k
FedVMR 19.8k 22.0k 24.3k 26.6k 28.9k

MFL-AKD (w/o. KD) 19.6k 21.7k 23.8k 26.0k 28.2k
MFL-AKD (w/o. FKTM) 17.4k 19.2k 21.0k 22.7k 24.2k

MFL-AKD 15.6k 16.8k 17.9k 19.1k 20.3k

Table 3: Robustness to Stragglers of Text-Image Retrieval Tasks on
Flickr30k Dataset with different straggling time υ.

Times@50% (R@5 IoU=0.7/s) υ = 750 900 1050 1200 1350

FedAvg 37.4k 42.2k 47.0k 51.7k 56.3k
FedIoT 37.0k 41.7k 46.2k 50.6k 54.8k
FedCG 38.1k 42.8k 48.5k 52.8k 57.9k
FedMD 36.9k 41.0k 45.2k 49.2k 53.3k

FedGEMS 36.1k 40.0k 43.8k 47.5k 51.2k
FedVMR 35.5k 39.1k 42.7k 46.3k 49.8k

MFL-AKD (w/o. KD) 33.6k 37.0k 40.5k 43.9k 47.4k
MFL-AKD (w/o. FKTM) 32.9k 36.5k 50.0k 43.2k 46.8k

MFL-AKD 30.1k 33.0k 35.5k 37.9k 40.2k

Table 4: Robustness to Stragglers of Video Moment Retrieval Tasks
on Anet Dataset with different straggling time υ.

For the text-image retrieval task, the proposed MFL-AKD
model consistently surpasses all baselines over most met-
rics. As for “R@1” metric on both datasets, we also achieve
a competing performance (69.0 vs 69.4). Furthermore, our
MFL-AKD model also achieves the best retrieval perfor-
mance in terms of all metrics except for “R@5, IoU=0.5” on
both datasets. Compared to the strongest FedVMR baseline
which targets this task, our method achieves substantial im-
provements on most metrics.

We further compare the convergence speed of all feder-
ated methods on various multimodal benchmarks. Results
in Fig. 3 demonstrate that MFL-AKD converges fast on all
benchmarks, significantly surpassing all compared methods.

5.3 Robustness on Stragglers
We further conduct experiments to validate the effectiveness
of MFL-AKD in combating the stragglers in MFL scenarios.
To measure the severity of the straggler problems, we adopt
the same implementation strategy with the performance com-
parison experiments, while manually changing the straggling
time. We use the time consumption Υ to compare the robust-
ness of stragglers among various methods. Table 3 and Ta-
ble 4 report the experimental results on Flickr30k for image-
text retrieval tasks and Anet for video moment retrieval tasks
respectively. As demonstrated in the table, MFL-AKD ex-
hibits the shortest time consumption under different strag-
gling times, and when the straggling time varies from the
lowest to the highest, the time consumption only increases by
around 5k for text-image retrieval and 10k for video moment
retrieval, which is far lower than that of other baselines.

5.4 Ablation Studies
To evaluate the contribution of different components in our
proposed MFL-AKD framework, we further conduct abla-
tion experiments to validate the effectiveness of the design

(a) Charades-STA (b) Anet

(c) Flickr30k (d) MSCOCO

Figure 3: Fast Convergence of MFL-AKD on benchmarks.

of MFL-AKD. Specifically, we gradually remove key com-
ponents of our framework and obtained the following model
variants.

• MFL-AKD (w/o. FKTM): We discard the FKTM from
MFL-AKD which disables the early training and adopt
the common communication strategy as FedAvg. The
knowledge distillation of pretrained model is now con-
ducted on the global updated model after the aggregation
of the clients’ model.

• MFL-AKD (w/o. KD): We remove the knowledge dis-
tillation mechanism from MFL-AKD, which directly re-
turns the aggregated model of early-trained models with-
out learning from pretrained large model.

The results are illustrated in the corresponding Table 1, 2, 3,
and 4 respectively. From the results, missing of KD or FKTM
will lead to a significant loss of performance and robustness
to stragglers, which validates the effectiveness of key compo-
nents of MFL-AKD.

6 Conclusion
In this paper, we make the first attempt to analyze and combat
stragglers in multimodal FL by integrating knowledge distil-
lation, especially for vision-language scenarios. We propose
a novel straggler-robust multimodal FL method named MFL-
AKD. With the knowledge distilled from the vision-language
pretrained model, the cross-modal semantic representations
of the local model are greatly and rapidly enhanced, resulting
in a remarkable improvement in convergence speed. More-
over, we also design the Fast Knowledge Transfer Mechanism
to allow the balance of workload and enable early training of
local models to handle the stragglers. Through experiments
on video moment retrieval and text-image retrieval datasets,
we have verified that our method can significantly alleviate
the impact of stragglers while achieving remarkable retrieval
accuracy.
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