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Abstract
Graph anomaly detection (GAD), which aims to
identify those graphs that are significantly differ-
ent from other ones, has gained growing atten-
tion in many real-world scenarios. However, exist-
ing GAD methods are generally designed for cen-
tralized training, while in real-world collaboration,
graph data is generally distributed across various
clients and exhibits significant non-IID characteris-
tics. To tackle this challenge, we propose a fed-
erated graph anomaly detection framework with
local-global anomaly awareness (LG-FGAD). We
first introduce a self-adversarial generation module
and train a discriminator to identify the generated
anomalous graphs from the normal graph. To en-
hance the anomaly awareness of the model, we pro-
pose to maximize/minimize the mutual information
from local and global perspectives. Importantly, to
alleviate the impact of non-IID problems in col-
laborative learning, we propose a dual knowledge
distillation module. The knowledge distillation is
conducted over both logits and embedding distri-
butions, and only the student model engages in col-
laboration to preserve the personalization of each
client. Empirical results on various types of real-
world datasets prove the superiority of our method.

1 Introduction
Graph data has widely existed in many real-world scenarios,
e.g., the medical, biological, and social network data [Aggar-
wal, 2011; Li et al., 2021c; Li et al., 2023a; Sun and Fan,
2024; Cai et al., 2024a] is naturally graph-structured. Graph
anomaly detection (GAD) [Pang et al., 2021; Ma et al., 2021;
Duan et al., 2023], which aims to identify abnormal pat-
terns within graph data, is a fundamental problem in machine
learning and has raised growing research interests. In this pa-
per, we focus on the challenging anomaly detection problem
of graph-level data. Recently, numerous GAD methods [Zhao
and Akoglu, 2021; Qiu et al., 2022; Ma et al., 2022; Zhang et
al., 2024b] have been proposed. They typically utilize emerg-
ing graph neural networks (GNNs) [Kipf and Welling, 2017;

∗Corresponding author.

Xu et al., 2019; Chen et al., 2023b; Chen et al., 2023a;
Wu et al., 2024a] as the backbone, and combine with gen-
eral anomaly detection methods like deep one-class classi-
fication (DeepSVDD) [Ruff et al., 2018] to detect anoma-
lous graphs. One may also adopt recent advances (e.g.,
[Cai and Fan, 2022; Zhao et al., 2023; Liu et al., 2023;
Fu et al., 2024]) in general anomaly detection to graph data.

However, existing GAD methods are generally designed
for centralized training [Ma et al., 2021; Ma et al., 2023],
which requires the collection of all training data. In real-
world scenarios, data is often distributed among different
clients of data owners. Unfortunately, data owners are often
reluctant to share private data to collaboratively train a GAD
model due to privacy leakage concerns, which hinder the ap-
plication of those centralized GAD methods. Therefore, a
promising research problem is how to facilitate the collabo-
ration with multiple data owners for training a GAD model
while guaranteeing the data security and model efficiency.

Federated learning (FL) [Li et al., 2021b; Fu et al., 2022;
Qiao et al., 2023; Zhang et al., 2024a], an emerging technique
that aims to facilitate secure collaborative learning, provides
an intuitive solution to this issue. In classical FL methods,
e.g., FedAvg [McMahan et al., 2017] and FedProx [Li et
al., 2020], data privacy can be protected to some extent as
it excludes the sharing of sensitive data information between
clients. In addition, federated graph learning (FGL) [Xie et
al., 2021; Tan et al., 2023; Huang et al., 2023], a branch
of FL that specializes in graph data, has also been investi-
gated in recent years. FGL methods generally utilize GNNs
[Kipf and Welling, 2017; Xu et al., 2019; Sun et al., 2024;
Wu et al., 2024b] and are promising for detecting anomalous
graphs in FL scenarios. Therefore, combining the state-of-
the-art FL or FGL methods with existing anomaly detection
methods such as DeepSVDD is an intuitive solution to ad-
dress the abovementioned problem.

Nevertheless, it may encounter the following challenges:

1. The above solutions identify anomalies by the learned rep-
resentation on the graph level, which overlooks the factors
within the node level that potentially cause anomalies.

2. The graph data distributed across different clients exhibits
non-IID characteristics [Xie et al., 2021] (see the specific
setting in Section 4.1), which is a challenging issue.

3. The integration of DeepSVDD poses a great challenge
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Figure 1: An illustration of the proposed LG-FGAD. In each client, a set of anomalous graphs is generated through the anomaly generator,
and then a discriminator (anomaly detector) is trained in an adversarial manner. The local-global anomaly awareness module is introduced to
enhance the discrimination ability of the anomaly detection model. Furthermore, a dual knowledge distillation (relation and logits) mechanism
is proposed to preserve the personalization of local models (via teacher) and alleviate the non-IID problem (via student).

to learning a unified decision boundary on such non-IID
graph data across different clients.

To address these challenges, we propose a local-global
federated graph anomaly detection (LG-FGAD1) method in
this paper. Figure 1 shows the network architecture. In
each client, we introduce an adversarial graph anomaly de-
tection framework based on generative adversarial network
(GAN) [Goodfellow et al., 2014] and graph isomorphism net-
work (GIN) [Xu et al., 2019]. The generator aims to generate
a set of anomalous graphs while the discriminator is trained to
serve as the anomaly detector for identifying those anomalies
from normal graphs. To improve the discrimination ability
for anomalous patterns within graph data, we propose a local-
global anomaly awareness module that maximizes/minimizes
the mutual information (MI) between normal and generated
anomalous graphs from the local and global perspectives. Ad-
ditionally, to alleviate the non-IID problems, we further pro-
pose a dual knowledge distillation mechanism, which intro-
duces a student model to distill the knowledge of both em-
beddings and predicted logits from the teacher model. No-
tably, we let only the student models participate in collabo-
rative learning between clients. Thus, the personalization of
each client is preserved by the teacher model, and the collab-
oration efficiency is also improved since the student model
simplifies the model complexity.

Our contributions are summarized as follows:

• We investigate the challenging graph anomaly detection
task in graph data distributed across multiple clients (non-
IID setting), and propose a novel LG-FGAD method to

1Code is available at https://github.com/wownice333/LG-FGAD

handle this issue.

• We propose a local-global anomaly awareness module,
which enhances the discrimination ability via the mutual in-
formation maximization/minimization over the node/graph
level between the normal and generated anomalous graphs.

• We propose a dual knowledge distillation mechanism to
preserve the personalization of local clients, thereby alle-
viating the impact of non-IID problems.

• The proposed LG-FGAD framework significantly reduces
the model parameters engaged in collaborative learning,
thus improving communication efficiency.

We demonstrate the superiority of LG-FGAD through the
comparison with state-of-the-art baselines on various data,
e.g., medical, biological, and social network data.

2 Related Work
2.1 Graph Anomaly Detection
Graph anomaly detection (GAD) [Akoglu et al., 2015; Ma et
al., 2021; Zheng et al., 2021; Cai et al., 2023] is a fundamen-
tal machine learning task on identifying abnormal patterns in
graph-structured data, involving anomaly detection on node,
edge, or graph. In this paper, we focus on anomaly detec-
tion on the entire graph. Recent advances lie in the integra-
tion of powerful GNN backbone [Kipf and Welling, 2017;
Xu et al., 2019] with general anomaly detection methods,
e.g., DeepSVDD [Ruff et al., 2018]. For instance, Zhao and
Akoglu [2021] proposed one-class GIN (OCGIN), which in-
tegrates GIN and DeepSVDD to handle graph-level anomaly
detection issues. Qiu et al. [2022] proposed one-class graph
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transformation learning (OCGTL), which overcomes the per-
formance flip problem in OCGIN by neural transformation
learning. Zhang et al. [2024b] improved DeepSVDD by stan-
dardizing the distribution of latent representation and further
handled the soap bubble problem with a novel bi-hypersphere
compression strategy. While these methods have shown effi-
cacy in centralized settings, real-world graph data, e.g., social
networks, is generally distributed in various clients, which
poses significant challenges as the graph data across clients
is often non-IID and heterogeneous. Particularly, adapting
anomaly detection methods such as DeepSVDD in FL is chal-
lenging, as it is difficult to learn a uniform hypersphere that
can accurately represent normal data patterns for non-IID
data distributed in diverse clients. Therefore, it is of sig-
nificant practical interest to study how to effectively detect
anomalies on non-IID graphs.

2.2 Federated Learning
Federated learning (FL) [McMahan et al., 2017] is an emerg-
ing paradigm in machine learning that involves training mod-
els across multiple decentralized devices or clients with lo-
cal data, which has been proven effective in machine learn-
ing tasks such as image classification [Li et al., 2021a;
Sun et al., 2023b], information retrieval [Pinelli et al., 2023;
Sun et al., 2023a], and clustering [Qiao et al., 2023; Zhang
et al., 2022; Chen et al., 2022; Li et al., 2023b; Cai et al.,
2024b], etc. FedAvg [McMahan et al., 2017] is a classi-
cal FL method, where local models are trained on individual
clients and then average their parameters to update a global
model. FedProx [Li et al., 2020] introduces a proximal term
to the loss function in FedAvg, which improves the stabil-
ity and performance in handling non-IID data. Federated
graph learning (FGL) [Zhang et al., 2021; Liu et al., 2022;
Wang et al., 2022], which aims to collaboratively train ro-
bust GNN models and guarantee data privacy, has also been
widely investigated recently. Xie et al. [2021] proposed clus-
tered federated learning (GCFL), which dynamically identi-
fies clusters of clients to reduce the heterogeneity and facili-
tate more effective federated learning. Tan et al. [2023] pro-
posed FedStar, which addresses non-IID problems by sepa-
rately encoding structural information and sharing it across
clients, whereas the personalizations of the local models are
preserved by graph feature knowledge. The potential of FL
and FGL methods to handle anomaly detection on non-IID
graphs is worth investigating. Consequently, in this paper,
we study and evaluate their performance on various types of
real-world graph data, e.g., medical, biological, and social
network scenarios.

3 Methodology
3.1 Preliminary
Notation: A graph dataset can be represented as D =
{G1, . . . , GN}, which contains N graphs. Each graph Gi

in the graph set is composed of a node set Vi and an edge set
Ei, i.e., Gi = {Vi, Ei}. Ai ∈ {0, 1}ni×ni is an adjacency
matrix that is used to denote the topology ofGi, where ni de-
notes the number in the node set, i.e., ni = |Vi|. Xi ∈ Rni×d

is the initial attributed feature of Gi. In federated learning

setting, we use D = {D1, . . . , DC} to represent the dataset
distributed in C clients.
Graph Isomorphism Network: In this study, we utilize
Graph Isomorphism Network (GIN) [Xu et al., 2019], a
prevalent GNN backbone, to learn the graph-level represen-
tation for graph data. The representation learning in each
layer of a GIN involves neighborhood aggregation and mes-
sage propagation. Specifically, the aggregated neighborhood
features in the k-th layer, expressed as a(k)v , is derived by:

a(k)v = AGGREGATE({h(k−1)(u), u ∈ Ñ (v)}), (1)

where Ñ (v) indicates the neighboring node set of node v,
and AGGREGATE(·) is the aggregation function. The node
feature vector h(k)

v in the k-th layer is derived by the combi-
nation of the aggregated feature and the feature learned in the
(k − 1)-th layer as follows:

h(k)
v = σ(COMBINE(h(k−1)

v ,a(k)v )), (2)

where σ(·) is the activation function, such as ReLU. Notably,
the feature h

(0)
v is initialized by the attributed feature xv of

node v. Then, the representation of an entire graph G can be
obtained by combining the learned features of all its nodes:

hG = R(CONCAT(h(k)
v , k ∈ {1, . . . ,K}), v ∈ G), (3)

where K denotes the number of latent layers in GIN. R(·) is
the readout function that aggregates node features to derive
the graph-level representation. In this study, we opt for the
sum readout strategy [Xu et al., 2019]. CONCAT(·) signi-
fies the operation of feature concatenation across all layers.
For simplicity, GIN(·) is used to denote the GIN model com-
prising the above three key operations throughout this paper.

3.2 Self-Adversarial Generation for Detecting
Anomalous Graphs

In this paper, we propose to learn an anomaly detection model
via an adversarial framework between an anomalous graph
generator and a discriminator (anomaly detector). To this end,
we first propose to generate a set of anomalous graph D̃c via
a self-adversarial generation strategy using the local dataset
Dc in each client. To generate diverse anomalous graphs, we
leverage the variational inference [Kipf and Welling, 2016] to
guarantee the diversity in latent space. Specifically, we first
map the graph data into a latent space following Gaussian
distribution N (µc,σ

2
c ) by:

µc = GINµ(Xc,Ac), logσc = GINσ(Xc,Ac), (4)

where Xc and Ac denote the attributed features and adja-
cency matrix of dataset Dc. Then, µc and σc can explicitly
parameterize an inference model:

q(Z̃c|Xc,Ac) =

|Dc|∏
i=1

q(Z(i)
c |Xc,Ac), (5)

where q(Z̃
(i)
c |Xc,Ac) = N (Z̃

(i)
c |µ(i)

c , diag(σ(i)2

c )). To
guarantee the propagation of the gradient information dur-
ing the sampling process, we utilize the reparametrization
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trick [Kingma and Welling, 2013] to sample the latent rep-
resentation z̃c:

z̃c = µc + ϵ exp(σc), ϵ ∼ N (0,1), (6)

where ϵ is a random noise factor follows the standard normal
distribution N (0,1). Consequently, we can derive the gener-
ated adjacency matrix Ãc and attributed features X̃c by:

Ãc = T (Z̃cZ̃
⊤
c ), X̃c = MLP(Z̃c), (7)

where T : R → [0, 1] indicates a transformation function,
e.g, Sigmoid(·), and MLP(·) denotes a multi-layer perception
based decoder. For simplicity, we can use a generator G(·, ·)
to represent the above generation process.

We then introduce a discriminator D(·, ·) that aims to dis-
tinguish the normal graphs from the generated anomalous
graphs. We project them into graph-level representations by:

Hc = F(Xc,Ac), H̃c = F(G(Xc,Ac)), (8)

where F(·, ·) denotes a weight-shared GNN model, e.g., GIN.
The learned graph-level representation Hc and H̃c serve as
the input to the discriminator. Then, we can optimize the
anomaly detection model via adversarial training of the fol-
lowing objectives, Lc

G (generator) and Lc
D (discriminator):

Lc
G = E

Xc,Ac∼PDc

− [D(F(G(Xc,Ac)))]

+ KL(q(Z̃c|Xc,Ac)||P (Z)),
(9)

Lc
D = E

Xc,Ac∼PDc

[D(F(G(Xc,Ac)))−D(F(Xc,Ac))]. (10)

The model training is a classical min-max optimization,
where the generator G takes the normal graphs as the in-
put and aims to produce a set of high-quality anomalous
graphs that resemble normal graphs to fool the discrimina-
tor. Conversely, the discriminator D aims to identify the
anomalous graphs as much as possible. P (Z) =

∏
i p(Zi) =∏

i N (Zi|0, I) is a prior latent distribution follows Gaussian
distribution. The KL(·||·) term penalizes the KL-divergence
between q(Z̃c|Xc,Ac) and P (Z), which encourages Z̃c to
be uniformly distributed in the latent space, thereby facilitat-
ing the diverse anomalous graphs generation. However, this
solution has the following challenging problems:

• Considering only the graph level may not comprehensively
reflect anomaly patterns, such as in the node level.

• The collaborative learning between different clients will
pose severe non-IID problems as the data distribution
across clients differs significantly.

3.3 Enhancing Anomaly Awareness with
Local-Global Mutual Information

To address the first challenge, in this paper, we introduce a
local-global anomaly awareness module based on mutual in-
formation (MI). For a normal graph G ∈ Dc, we can derive
a set of node-level representations {hv}v∈G and graph-level
representation HG during the graph representation learning.
Similarly, {h̃v}v∈G̃ and H̃G̃ can be derived for a generated

graph G̃ ∈ D̃c. From the local perspective, we propose to
maximize the MI between the node-level and graph-level rep-
resentations within a graph. Taking a normal graph as an in-
stance, this can be quantified by defining a local MI estimator
Ilocal as follows:

Ilocal(hv;HG) := EPG
[−sp(−J (hv,HG))], (11)

where PG is the normal graph distribution, sp(x) = log(1 +
ex) denotes the softplus function, and J (x,y) = JS(xyT )
represents a JS-divergence based transformation function.
Similarly, Ilocal(h̃v, H̃G̃) can be used to estimate the local
MI within a generated anomalous graph. Then, from the
global perspective, we aim to minimize the MI of the graph-
level representations between normal graphs and generated
anomalous graphs. To this end, we further introduce Iglobal,
a global MI estimator:

Iglobal(HG; H̃G̃) := EPG×G̃
[−sp(−J (HG, H̃G̃))], (12)

where EPG×G̃
is the joint distribution of normal and generated

graphs. Consequently, we propose the following objective
function aims at enhancing the awareness of the model to the
anomaly patterns across node level and graph level:

Lc
LGMI =

∑
G∈Dc

1

|Dc|
∑
v∈G

− Ilocal(hv,HG)

+
∑

G̃∈D̃c

1

|D̃c|

∑
v∈G̃

− Ilocal(h̃v, H̃G̃)

+
∑

G∈Dc

1

|Dc|
∑

G̃∈D̃c

Iglobal(HG, H̃G̃)

(13)

where |Dc| denotes the number of graphs in the c-th client.
This objective function is strategically designed: the two
Ilocal terms maximize the MI between node representation
and graph representation within individual normal or anoma-
lous graphs, while the Iglobal term minimizes MI across nor-
mal and anomalous graphs, thus improving the discrimination
ability to the normal and anomalous patterns.

3.4 Effective Collaborative Learning with Dual
Knowledge Distillation

The second challenge points out the widely-existed hetero-
geneity and non-IID characteristics of graph data distributed
across clients. This potentially adversely affects collabora-
tive learning between clients, and results in unsatisfactory
anomaly detection performance. To this end, we propose a
dual knowledge distillation mechanism to preserve the per-
sonalization of local clients, thereby alleviating the influence
of non-IID problems. Specifically, we regard the anomaly de-
tection model defined in Section 3.2 and 3.3 as the teacher
model, and introduce a student model that aims to distill
knowledge from the teacher model and participate in collab-
orative learning. The network structure of the student model,
as shown in Figure 1, is similar to the teacher model but with
simplified hidden layers. Besides, the generator is not in-
cluded in the student model as our goal is to distill knowledge
about normal graphs.
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The classical knowledge distillation [Hinton et al., 2015;
Zhang et al., 2023] generally performs on the predicted log-
its. For a graph dataset Dc in a client, we can obtain the
predicted logits Yc,t and Yc,s from the discriminator Dt and
Ds of teacher and student models as follows:

Yc,t = Dt(H
t
c), Yc,s = Ds(H

s
c), (14)

where Ht
c and Hs

c denote the graph representations learned in
teacher and student models. Then, the logits distillation loss
can be formalized as:

ℓclogit =
1

|Dc|

|Dc|∑
i=1

KL

(
softmax

(
Y

(i)
c,t

τ

)
, softmax

(
Y

(i)
c,s

τ

))
, (15)

where KL(·, ·) denotes the Kullback-Leibler divergence, τ
is the temperature factor that determines the smoothness of
knowledge distillation, and softmax(yi/τ) = exp(yi/τ)∑

j exp(yj/τ)

is the softmax function.
However, the logits distillation is conducted in the output

space and hardly distills the knowledge in the local-global
anomaly awareness module in the latent space. Therefore,
we further introduce an embedding distillation that focuses on
distilling knowledge in graph representation learning. Due to
the inconsistent architecture between the student and teacher
model, we leverage a relation distillation strategy [Park et al.,
2019] instead of direct embedding distillation. Specifically,
we define a distance function ψdis(·, ·) to measure the Euclid-
ian distance between two embeddings as follows:

ψdis(H
(i)
t ,H

(j)
t ) =

1

η

∥∥∥H(i)
t −H

(j)
t

∥∥∥
2
, (16)

where we opt for the non-squared Euclidean norm to prevent
the overemphasis on large distances. H(i)

t ∈ R|Dc|×Ktd
′

de-
notes the concatenated features across Kt latent layers with
d′ dimensions in the teacher model for simplicity, and the
same definition for H

(i)
s ∈ R|Dc|×Ksd

′
. Besides, we let

η = 1
|Dc|

∑|Dc|
i=1

∑|Dc|
j=1 ||H(i)

t −H
(j)
t ||2 to normalize the dis-

tance. Thus, for a graph datasetDc in a client, the embedding
relation distillation loss can be defined as:

ℓcemb =
1

|Dc|

|Dc|∑
i=1

|Dc|∑
j=1

lH

(
ψdis(H

(i)
t ,H

(j)
t ), ψdis(H

(i)
s ,H(j)

s )
)
. (17)

lH denotes the Huber loss that is robustness to outliers. It is
formalized by:

lH(x, y) =

{
1
2 (x− y)2 for |x− y| ≤ 1,

|x− y| − 1
2 otherwise.

(18)

Combining the two terms, we can define the loss function of
the dual knowledge distillation module as follows:

Lc
KD = ℓclogit + ℓcemb. (19)

Subsequently, the overall objective function of the pro-
posed LG-FGAD is formalized by:

Ltotal =
1

C

C∑
c=1

|Dc|
|D|

(
Lc
G + Lc

D + βLc
LGMI + γLc

KD

)
(20)

where C denotes the number of clients, |D| denotes the total
number of graph across all clients. β and γ are two trade-off
parameters. We summarize the effect of each loss as follows:

1. Lc
G and Lc

D are loss functions for optimizing the generator
and discriminator in the adversarial model.

2. Lc
LGMI aims to maximize/minimize the MI between nor-

mal and generated anomalous graphs from the local and
global perspectives.

3. Lc
KD distills knowledge from the teacher model through

both relation and logits distillation, which aims to handle
the non-IID problem.

Let {W(c)
t }Cc=1 and {W(c)

s }Cc=1 be the parameter sets of
teacher model and student model in C clients. During the
collaborative learning in each communication round, we let
only the student parameter sets {W(c)

s }Cc=1 uploaded to the
server, while keeping the teacher parameter sets {W(c)

t }Cc=1
in the local clients for preserving the client personalization.
Therefore, the collaborative learning between clients on the
server can be formalized as:

W̄s =
C∑

c=1

|Dc|
|D|

W(c)
s , (21)

where W̄s represents the aggregated parameter set in the
server, and it will be distributed to each client to update the lo-
cal student model, which is eventually used to detect anoma-
lies. The total training process of LG-FGAD is included in
the Appendix A.

3.5 Theoretical Complexity Analysis
Assume we have N graphs with maximal m nodes and |E|
edges across all graphs, the number of GIN layers is L, and
the maximal dimensions between the original attribute and
latent representation is represented by d̄. Besides, let the
maximal latent dimension of the MLP-based discriminator
denoted by dh, and Kt and Ks be the number of latent lay-
ers in the teacher and student models. We then analyze the
time and space complexity of LG-FGAD in a single client as
follows:

• Time complexity: The time complexity of a GIN back-
bone is O(NL(md̄2 + |E|d̄)), and for the MLP-based dis-
criminator is O(d̄dh). Therefore, the time complexity of
the overall framework is O(NL(md̄2 + |E|d̄) + (Kt +
Ks)d̄dh), where includes the teacher model (anomaly gen-
erator, weight-shared GIN backbone, and discriminator)
and the student model (GIN backbone and discriminator).

• Space complexity: For the GIN backbone, the space com-
plexity is O(Ld̄(1 + d̄)), which includes the weight and
bias matrices in each GIN layer. Similarly, O((Kt +
Ks)d̄(1 + dh)) is the space complexity of teacher and stu-
dent models. Therefore, the overall space complexity is
O(Ld̄(1 + d̄) + (Kt +Ks)d̄(1 + dh)).

Moreover, we also analyze the complexity of communication
in collaborative learning. According to the definition in our
model, only the student model is involved in collaborative
learning. Therefore, the communication complexity in terms
of time and space within a single communication round are
O(NL(md̄2+|E|d̄)+d̄dh) and O(Ld̄(1+d̄)+Ksd̄(1+dh))
respectively.
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Methods IMDB-BINARY MUTAG DD AIDS

AUC F1-Score AUC F1-Score AUC F1-Score AUC F1-Score

Self-train 41.58±1.34 42.45±1.29 70.00±3.54 70.00±0.00 52.39±1.31 62.88±1.76 79.48±0.32 72.64±0.58

FedAvg [McMahan et al., 2017] 40.96±3.44 45.95±1.66 85.83±2.36 85.00±0.00 30.83±0.44 34.16±1.52 61.26±0.54 58.80±0.60
FedProx [Li et al., 2020] 41.86±0.32 45.70±1.96 84.17±2.36 85.00±0.00 30.81±0.43 33.91±1.45 61.18±0.37 58.80±0.60

GCFL [Xie et al., 2021] 56.98±5.56 45.44±2.25 83.33±3.11 78.33±4.71 38.56±0.13 30.06±1.10 74.31±0.91 70.86±1.76
FedStar [Tan et al., 2023] 54.76±1.28 52.40±1.04 85.42±10.82 83.33±10.27 55.88±0.92 55.95±1.98 86.75±2.11 82.77±1.23

LG-FGAD 66.40±3.55 63.10±3.15 87.50±4.37 85.00±0.00 81.66±0.16 75.72±0.27 99.57±0.06 97.55±1.34

Table 1: AUCs and F1-Scores (mean (%) ± std (%)) under the single-dataset setting. Note that the best performance is marked in Bold.

Methods MOLECULES BIOCHEM SMALL MIX

AUC F1-Score AUC F1-Score AUC F1-Score AUC F1-Score

Self-train 61.26±2.91 57.66±0.00 50.81±0.22 53.68±0.57 59.64±0.11 61.30±0.77 51.94±0.42 54.71±0.00

FedAvg [McMahan et al., 2017] 54.41±3.21 55.57±1.46 47.49±1.04 51.24±1.42 48.90±0.60 52.77±0.64 47.96±0.61 53.89±0.83
FedProx [Li et al., 2020] 57.93±2.14 55.91±0.44 46.04±0.49 51.71±1.59 48.89±0.50 52.42±0.27 46.79±0.63 53.50±0.88

GCFL [Xie et al., 2021] 58.86±1.09 57.80±1.20 51.44±1.18 54.88±1.67 53.93±0.51 57.68±0.02 51.46±0.96 55.35±1.14
FedStar [Tan et al., 2023] 57.03±2.02 55.54±0.86 47.80±0.48 53.21±0.84 51.09±2.00 55.28±1.92 51.68±1.61 54.89±1.11

LG-FGAD 70.84±0.47 65.72±0.59 67.98±0.16 61.52±0.81 66.39±0.91 62.22±1.30 62.26±0.97 56.52±0.39

Table 2: AUCs and F1-Scores (mean (%) ± std (%)) under the multi-dataset setting. Note that the best performance is marked in Bold.

4 Experiment
4.1 Experimental Setup
Datasets. We conduct experiments on two types of datasets
to evaluate the anomaly detection performance:
• Single-dataset (IID): We experiment on four single-

datasets: IMDB-BINARY, MUTAG, DD, and AIDS. In this
setting, the dataset is distributed across multiple clients, and
each client possesses a unique subset of that dataset.

• Multi-dataset (Non-IID): We experiment on four multi-
datasets, including MOLECULES (molecule), BIOCHEM
(biology), SMALL (small molecule and protein) and MIX
(mixed data types), each of the multi-datasets contains sev-
eral sub-datasets with different data distributions. In this
setting, multiple datasets are distributed to different clients,
and each client holds a specific sub-dataset.

The datasets used in the experiment are from publicly avail-
able real-world graph benchmarks TUDataset2, and their con-
struction details are illustrated in Appendix B.
Baseline Methods. As the anomaly detection on non-IID
graphs is still under-explored, we construct baselines via the
combination of DeepSVDD [Ruff et al., 2018] with state-of-
the-art FL methods (FedAvg [McMahan et al., 2017], Fed-
Prox [Li et al., 2020]) and FGL methods (GCFL [Xie et al.,
2021], FedStar [Tan et al., 2023]). Note that the network
structure of the GIN backbone used in each baseline is the
same as our method to ensure a fair comparison.
Network Structure. We leverage a 4-layer GIN network
as the backbone for each baseline, and the latent dimension is
fixed to 64. The teacher GIN backbone of LG-FGAD is the
same for fairness and followed by a 4-layer MLP discrimina-
tor, while the student network employs the 2-layer GIN and
3-layer MLP discriminator to simplify the mode complexity.

2https://chrsmrrs.github.io/datasets/

Parameter Settings. We describe the parameter settings in
the experiment here.
• For the proposed LG-FGAD, we use Rmsprop as the opti-

mizer and fixed learning rate α = 0.001. Besides, we adopt
the optimal search grid strategy with all parameters vary-
ing in the range [1e−3, 1e2]. Regarding some fixed hyper-
parameters embedded in the architecture, the coefficient of
the KL-Divergence regularization term is fixed as 1e−4,
and the temperature of knowledge distillation is set to 1.0.
The range of gradient clipping is limited to [−0.01, 0.01].

• For baseline methods, we use Adam as the optimizer, and
the learning rate is set to α = 0.001. The percentile to
draw the final decision boundary in DeepSVDD for AIDS
is fixed at 0.3, and others are fixed at 0.001. Other parame-
ter settings follow the default setting in related papers. Note
that the batch size and the training epochs are set to 128 and
200 for our method and other baselines, respectively.

Evaluation Metrics. We utilize two popular metrics, i.e.,
Area Under the Curve (AUC) and F1-Score, for performance
evaluation. Besides, to ensure the persuasiveness of the re-
sults, we report the performance with means and standard de-
viations by executing each algorithm 10 times.
Implementation. We implement LG-FGAD based on Py-
Torch Geometric [Fey and Lenssen, 2019] library in practice.
All experiments in this paper are run on the platform with
NVIDIA Tesla A100 GPU and AMD EPYC 7532 CPU.

4.2 Comparison with State-of-the-art Methods
To provide comprehensive evaluation, we conduct experi-
ments on various graph data types in real-world scenarios
(e.g., molecule, biology, and social network). Tables 1 and 2
present the anomaly detection performance under two differ-
ent settings, where we compare the proposed LG-FGAD with
several state-of-the-art FL and GFL based graph anomaly de-
tection methods. We can observe that LG-FGAD obtains
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Figure 2: The t-SNE visualization of our method and three baselines
on MOLECULES.

remarkable anomaly detection performance in the single-
dataset setting and the more challenging multi-dataset setting.
For instance, LG-FGAD outperforms the runner-up FedStar
on IMDB-BINARY by more than 10% in AUC and F1-Score,
and also 10% higher in both metrics on MOLECULES. Be-
sides, the baseline methods show different levels of effective-
ness for different data types. For instance, GCFL outperforms
FedStar on IMDB-BINARY in AUC, and the opposite ob-
servation is found on DD. While LG-FGAD exhibits great
adaptivity to different data types, consistently outperforms
other baselines on both metrics. To provide a more intuitive
comparison, we leverage t-SNE [Van der Maaten and Hin-
ton, 2008] to visualize the graph representations learned by
LG-FGAD and other baselines, which is presented in Fig-
ure 2. Compared with other baselines, it is evident that the
latent embeddings of anomalous and normal graphs in LG-
FGAD are more discriminative and clearly separated in the
latent space.

4.3 Parameter Sensitivity Analysis
Impact of Hyper-Parameters β and γ. Figure 3 illus-
trates the impact of varying β and γ on the anomaly detec-
tion performance across IMDB-BINARY and MOLECULES
datasets. Note that we vary the values of β and γ in a wide
ranges, i.e., [1e−3, 1e2]. Regions shaded closer to red indi-
cate higher performance, whereas those closer to blue sig-
nify lower ones. It can be observed that optimal perfor-
mance generally obtains within a moderate range of these
hyper-parameters, excessively large or small values tend to
degrade the effectiveness of the model. Furthermore, LG-
FGAD maintains relatively stable performance across a broad
spectrum of β and γ values. These observations fully demon-
strate the stability of LG-FGAD.

Impact of Client Number C. Figure 4 shows the impact
of varying client number C on the anomaly detection per-
formance of LG-FGAD and FedStar. Note that the value

(a) IMDB-BINARY

(b) MOLECULES

Figure 3: Impact of parameters β and γ on IMDB-BINARY and
MOLECULES.

(a) (b)

Figure 4: Parameter sensitivity of different numbers of clients on
AIDS dataset between FedStar and Ours.

of C ranges from 2 to 20. It is evident that both methods
suffer from performance decline in an excessive C value,
e.g., 20. More importantly, LG-FGAD consistently outper-
forms state-of-the-art FedStar, and has significantly less per-
formance fluctuation with different C, which further demon-
strates the robustness of the proposed LG-FGAD.

Impact of the Student GNN Layers. Figure 5 presents the
influence of different numbers of the student GNN layers.
The experimental results reveal that an overly shallow net-
work may lead to limited information mining capability. Con-
versely, excessively deep networks require additional training
epochs to fully optimize the objective function. Optimal re-
sults are generally achieved with a moderate number of lay-
ers, which tends to offer stability. Furthermore, improved
performance is observed when the student network employs
more layers than the teacher network, as it may potentially
generate additional information. However, this benefit is off-
set by significantly increased communication costs.

4.4 Ablation Study
To verify the individual contributions of each component in
LG-FGAD, we conduct a comprehensive ablation study. This
study involves the construction of three degradation models
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(a) (b)

Figure 5: The impact of different numbers of student GNN layers on
the IMDB-BINARY dataset.

Methods MUTAG MOLECULES

AUC F1-Score AUC F1-Score

Base Model 82.50±5.00 63.81±6.67 56.26±0.00 56.34±0.07
w/o LLGMI 86.25±1.25 83.50±2.50 64.68±5.87 62.26±4.16
w/o LKD 85.75±1.25 85.00±5.00 68.22±0.54 64.08±0.52

LG-FGAD 87.50±4.37 85.00±0.00 70.84±0.47 65.72±0.59

Table 3: Ablation study results (mean(%) ± std(%)).

of LG-FGAD, each removing specific components:

1. Base Model: This variant excludes both the local-global
anomaly awareness and dual knowledge distillation mod-
ules, remaining solely the adversarial model.

2. w/o LLGMI: This variant removes the local-global
anomaly awareness module.

3. w/o LKD: This variant removes the dual knowledge distil-
lation module.

Table 3 shows the performance of LG-FGAD and its variants
on MUTAG and MOLECULES, where the experimental set-
ting is the same as described in Section 4.1. The base model
exhibits sub-optimal performance on both datasets, suggest-
ing that the mere presence of the GAN-structured model is in-
sufficient for effective anomaly detection on non-IID graphs
distributed in multiple clients. Furthermore, a certain perfor-
mance decrease is observed when removing the correspond-
ing module. i.e., w/o LLGMI or w/o LKD, which fully demon-
strates the effectiveness of each component.

4.5 Experimental Complexity Analysis
Here, we analyze the space and time complexity of LG-
FGAD, reflected by 1) the number of parameters involved in
the collaborative learning and 2) Time spent in each com-
munication round. Figure 6 shows the experimental results,
where other baselines are included for comparison. It can be
observed that the proposed LG-FGAD significantly reduces
the parameter size and communication time compared with
other baselines, e.g., GCFL, FedAvg, and FedProx.

5 Conclusion
We presented LG-FGAD, a novel method for federated graph
anomaly detection. By introducing a local-global anomaly

(a) (b)

Figure 6: Space and time complexity (200 communication rounds).

awareness module and a dual knowledge distillation mecha-
nism, LG-FGAD effectively enhances the discriminator abil-
ity of the model from both local and global perspectives. Im-
portantly, LG-FGAD not only preserves client personaliza-
tion but also improves communication efficiency in collab-
orative learning. Empirical results across diverse real-world
datasets, including medical, biological, and social networks,
demonstrated the superiority of the proposed LG-FGAD.
Nevertheless, one limitation of this work is that it does not
currently incorporate differential privacy, which, however, is
beyond the scope of this work and could be a future work.
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