
Best Arm Identification with Retroactively Increased Sampling Budget for More
Resource-Efficient HPO

Jasmin Brandt1 , Marcel Wever2,3 , Viktor Bengs2,3 and Eyke Hüllermeier2,3
1Paderborn University, Germany

2LMU Munich, Germany
3Munich Center for Machine Learning, Germany

jasmin.brandt@upb.de, {viktor.bengs, marcel.wever, eyke}@ifi.lmu.de

Abstract

Hyperparameter optimization (HPO) is indispens-
able for achieving optimal performance in machine
learning tasks. A popular class of methods in
this regard is based on Successive Halving (SHA),
which casts HPO into a pure-exploration multi-
armed bandit setting under finite sampling bud-
get constraints. This is accomplished by consid-
ering hyperparameter configurations as arms and
rewards as the negative validation losses. While
enjoying theoretical guarantees as well as work-
ing well in practice, SHA has several hyperparam-
eters itself, one of which is the maximum budget
that can be allocated to evaluate a single arm (hy-
perparameter configuration). Although there are
already solutions to this meta hyperparameter op-
timization problem, such as the doubling trick or
asynchronous extensions of SHA, these are either
practically inefficient or lack theoretical guaran-
tees. In this paper, we propose incremental SHA
(iSHA), a synchronous extension of SHA, allowing
to increase the maximum budget a posteriori while
still enjoying theoretical guarantees. Our empirical
analysis of HPO problems corroborates our theoret-
ical findings and shows that iSHA performs more
reliably than existing SHA-based approaches.

1 Introduction
Hyperparameter optimization (HPO) is a crucial step in the
process of engineering machine learning (ML) applications,
as optimal performance can only be obtained if parameter-
ized ML algorithms are tuned to the task at hand [Feurer and
Hutter, 2019; Bischl et al., 2023]. Such a task is specified
in the form of a dataset D and a loss function ℓ. Typically,
HPO is carried out in a trial-and-error fashion by evaluating
ℓ on the given data D for various candidate hyperparameter
configurations (HPCs).

In the early days of HPO, grid search and random search
[Bergstra et al., 2011] have been the main tools. However,
they can be criticized for their disability in finding an optimal
hyperparameter configuration as well as their computational
cost. In the age of deep learning, a highly efficient HPO

method is inevitable, as evaluating hundreds or even thou-
sands of configurations is prohibitive. To address this chal-
lenge, several HPO methods have been proposed to improve
sampling or evaluation efficiency. For the former, the meth-
ods mainly focus on Bayesian Optimization [Hutter et al.,
2011], whereas for the latter, the HPO problem is extended
by a budget parameter. Using this parameter, the optimizer
can specify for which budget a hyperparameter configuration
should be evaluated. This area of the HPO literature is also
referred to as multi-fidelity optimization.

Probably the simplest procedure in this area is the succes-
sive halving algorithm (SHA) [Karnin et al., 2013], which is
rooted in the multi-armed bandit (MAB) literature [Lattimore
and Szepesvári, 2020]. It first evaluates a set of candidate
hyperparameter configurations (arms) for a minimum start-
ing budget R0, discards the worse half, and continues evalu-
ation with the better half for a doubled budget. This proce-
dure is repeated until a maximum budget of R is reached. By
concentrating the budget on more promising hyperparameter
configurations, the reliability of the evaluations is gradually
increased, but also their evaluation costs. In contrast, less
promising solutions are discarded early on with little budget.

Following the terminology of the multi-armed bandits,
SHA attempts to solve a best arm identification problem for
a given fixed sampling budget. [Jamieson and Talwalkar,
2016b] as well as [Li et al., 2018] have derived theoreti-
cal bounds on the necessary sampling budget to guarantee
to find an optimal or near-optimal arm (hyperparameter con-
figuration) with high probability. However, these theoretical
bounds have two problems regarding practical application:
Firstly, they depend on problem parameters that are unknown
in practice, and secondly, they are derived for worst-case sce-
narios and are therefore often too conservative. Accordingly,
the common approach is to set a budget in an ad-hoc manner
and later check whether it was sufficiently large to support the
reliability of the returned HPC. If this is not the case, the bud-
get is increased retrospectively, which is problematic as SHA
is not incremental by design, so that the entire algorithm must
be re-run. This is not only costly but also comes with a loss
of valuable knowledge already accumulated. Needless to say,
from an ecological perspective, this is undesired either, as the
computational resources, as well as the consumed energy for
optimizing the hyperparameters for the lower maximum bud-
get, is essentially wasted [Tornede et al., 2023].

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3742



Although there are two variants of SHA that do not need
to specify the maximum budget R in advance, these have
the decisive disadvantage that they come without theoretical
guarantees. Asynchronous SHA (ASHA) [Li et al., 2020]
is the first variant, in which decisions about candidate eval-
uations for larger budgets are made asynchronously, allow-
ing for higher parallelization. This variant has recently been
further developed into PASHA [Bohdal et al., 2023], which
progressively increases the budget if the ranking of the con-
figurations in the top two high-fidelity sets has not stabilized.
However, asynchronous decision-making comes at the risk of
mistakenly promoting HPCs to the next budget level. While
[Li et al., 2020] invoke the law of large numbers to argue that
this is not an issue, the problem remains in the case of finite
budget constraints, where only a limited number of hyperpa-
rameter configurations can be considered.

Contributions. We will focus on the HPO application for
the most part when presenting the necessary concepts and our
results. However, our theoretical results apply to the more
general bandit setting and can therefore be carried over to
applications other than HPO. Following the terminology of
the MAB literature, we are considering the best arm identi-
fication (BAI) problem for which the sampling budget is in-
creased retroactively. Our contributions can be summarized
as follows:
• We provide the first theoretical results for ASHA, analyz-

ing its capabilities in setups with constraints on the overall
budget. These findings are accompanied by empirical evi-
dence for a set of HPO benchmarks.

• We propose an incremental extension of SHA (iSHA) that
still allows one to increase the maximum allocatable bud-
get R retrospectively in a synchronous manner.

• A theoretical and empirical analysis of iSHA is provided,
finding iSHA to be theoretically sound relative to the orig-
inal SHA, while being provably more resource-efficient.

• In an extensive empirical study, we compare iSHA to the
original SHA, and PASHA embedded into the Hyperband
framework. We find iSHA to give more robust results
compared to PASHA, often yielding higher quality hy-
perparameter configurations, while being more resource-
efficient than SHA.

• We show a long-missing lower bound on the necessary
budget for finding a nearly-optimal arm under common as-
sumptions of the non-stochastic BAI problem.

2 (Near-)Optimal Arm Identification
The best arm identification problem in multi-armed bandits
(MABs) is a sequential decision-making problem in which an
agent has to choose in each time step t ∈ {1, . . . ,B} within
a fixed budget B ∈ N ∪ {∞} one out of n ∈ N possible op-
tions that we denote by their indices [n] ∶= {1, . . . , n} and
call arms in the following. After choosing (or pulling) one
arm, the agent directly observes a loss ℓ(i) for the chosen
arm i ∈ [n] given by a loss function ℓ ∶ [n] → R. The ob-
served loss after r pulls of arm i ∈ [n] will be denoted ℓr(i).
In the non-stochastic setting, which is the setting we consider,
the observed losses are not necessarily governed by an under-
lying stochastic distribution. Instead, a common assumption

is that the sequence of losses of an arm converges asymptot-
ically to a fixed final value [Jamieson and Talwalkar, 2016b;
Li et al., 2018; Brandt et al., 2023].

Assumption 2.1. ∀i ∈ [n] and for R ∈ N ∪ {∞} the loss
function converges against a limit value νi = limr→R ℓr(i).
Note, that the stochastic scenario in which (ℓk(i))k≥1 for
each i ∈ [n] is an i.i.d. sample from a stochastic distribu-
tion with E[ℓk(i)] = νi can be treated as a special case of our
setting [Jamieson and Talwalkar, 2016b].

Goal. Usually, the goal in best arm identification is to find
the arm with the smallest loss i∗ ∈ argmini∈[n] νi. We will re-
lax this goal to only identify a near-optimal arm where ”near-
optimal” is defined in the following way.

Definition 2.2. Let ϵ > 0, then we call î ∈ [n] an ϵ-optimal
arm if νî ≤ νi∗ + ϵ.
It is straightforward to extend the scenario to the case in
which we deal with a countably infinite set of stochastic ban-
dit arms indexed by i = 1,2, . . .
Hyperparameter Optimization. Hyperparameter opti-
mization (HPO) deals with the problem of finding a suitable
hyperparameter configuration λ of an ML algorithm A with
a corresponding hyperparameter space Λ for a given learning
task (e.g. image classification, regression analysis, etc.). For
a suitable loss function ℓ and a finite set of HPC samples,
say Λ̃, from the possibly uncountable infinite space Λ, we
can consider each HPO problem as a MAB problem, by
simply considering the HPCs as arms. An example of a loss
function is the validation error of a (supervised) learning
algorithm A with parameterization λ and resource allocation
r, which could be for instance the wall-clock time, number
of used data points, etc. Sampling or generating a finite set of
HPCs Λ̃ can be done in different ways, for example, simple
uniform sampling from Λ [Li et al., 2018] or by leveraging a
Bayesian search mechanism [Falkner et al., 2018].

3 Successive Halving and Hyperband
The successive halving algorithm (SHA) by [Karnin et al.,
2013] is applicable for the non-stochastic best arm identifi-
cation problem with a finite set of arms under a fixed bud-
get constraint. By sampling n hyperparameter configurations
(HPCs) uniformly at random, it has already been applied suc-
cessfully to HPO by [Jamieson and Talwalkar, 2016a]. Start-
ing from a minimum budget R0 for which all the n available
arms are evaluated, it iteratively discards the worse half and
continues to evaluate the remaining arms with double the bud-
get. This procedure is repeated until either only a single arm
is left or a maximum allocatable budget R is reached (max-
imum for a single arm). Typically, the number of arms n is
chosen such that at least one candidate reaches the final it-
eration of the algorithm. A budget level for which arms are
evaluated is also referred to as rung in the following. Further-
more, we write that an arm is promoted to the next rung if it
was not discarded and thus considered in the next iteration of
SHA. While SHA allows allocating exponentially more bud-
get on the more promising arms, its final performance cru-
cially depends on its parameterization. The parameters n, R

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3743



and R0 need to be chosen with care and depending on the
task. With regard to HPO, starting with a too low initial bud-
get R0, we face the problem of rejecting actually promising
arms (HPCs) too early, namely those that require more bud-
get, e.g., more data or more training iterations, to perform
well enough to remain in the set of promising candidates.
The Hyperband (HB) algorithm [Li et al., 2018] comes with a
heuristic of how to choose different values for n and R0, and
subsequently uses SHA as a subroutine. Even if it can gener-
ally be used for a bandit problem with an infinite number of
arms, its design is tailored to HPO. HB allows different allo-
cation strategies to be considered for the tradeoff between (i)
considering many arms (HPCs) n starting with a rather small
R0, and (ii) giving some arms (HPCs) more budget from the
beginning. The latter is motivated by the fact that in ma-
chine learning, some HPCs may require a larger amount of
resources to show off their better performance. We refer to
each call of SHA as a bracket [Li et al., 2018], for which the
set of arms (HPCs) is sampled uniformly at random and given
to SHA as an input.

4 Related Work
The pure-exploration and best arm identification problem in
MABs has been studied intensively with a stochastic feed-
back mechanism (see [Gong and Sellke, 2023] for a more re-
cent overview). Especially in the case of a fixed budget, there
is some work in this direction [Carpentier and Valko, 2015;
Abbasi-Yadkori et al., 2018; Shen, 2019; Azizi et al., 2022;
Kato et al., 2022]. However, the non-stochastic setting, as
considered in our work, has so far only been investigated in
[Jamieson and Talwalkar, 2016a; Li et al., 2018] and [Brandt
et al., 2022]. The first two with a special focus on HPO simi-
lar to our work and the latter with a focus on algorithm selec-
tion/configuration [Rice, 1976].
Considering HPO as a black-box optimization problem, var-
ious methods can be used to tackle this problem [Feurer and
Hutter, 2019; Bischl et al., 2023]. Grid search and random
search are rather straightforward solutions. However, both
are rather expensive, and thus, methods emerged to improve
sample efficiency and evaluation efficiency. While the former
methods are mostly centered around Bayesian optimization
[Frazier, 2018; Hutter et al., 2011], the latter emerged in the
branch of multi-fidelity optimization.
In multi-fidelity optimization, the goal is to distribute the bud-
get for evaluating HPCs in a way that more budget is concen-
trated on the more promising HPCs and less so on inferior
candidates. The successive halving algorithm (SHA), ini-
tially proposed by [Karnin et al., 2013] and later used by
[Jamieson and Talwalkar, 2016b; Jamieson and Talwalkar,
2016a] for HPO, devises a powerful HPO method, which has
been incorporated as a subroutine in the well-known HPO
method Hyperband [Li et al., 2018]. Hyperband has been
extended in various directions such as improving its sam-
pling efficiency [Falkner et al., 2018; Awad et al., 2021;
Mallik et al., 2023] and introducing shortcuts in the evalu-
ation process [Mendes et al., 2021].
But also SHA has been subject to improvements. [Li et al.,
2020] extend SHA to asynchronous SHA (ASHA), which

Algorithm 1 Incremental Successive-Halving Algorithm
(iSHA)

1: Input: S initial set of HPCs, r, maximum resource R,
reduction factor η, (Ck)k sequence of HPCs promoted in
previous run, (Lk)k old sequence of losses

2: Initialize: S0 ← S, ñ = ∣C0∣, n = ∣S0∣+ ∣C0∣, s = logη(R)

3: for k ∈ {0,1, . . . , s} do
4: nk = ⌊n/ηk⌋ − ⌊ñ/ηk⌋ , rk = rηk
5: pull each arm in Sk for rk times
6: if k ≤ s − 1 then
7: Sk+1 ← keep the best ⌊n/ηk+1⌋ − ⌊ñ/ηk+1⌋ arms

from Sk ∪Ck/Ck+1
8: else
9: Sk+1 ← keep the best ⌊n/ηk+1⌋ arms from Sk ∪Ck

10: end if
11: end for
12: Output: Remaining configuration

Figure 1: Illustration of how iSHA continues a previously conducted
SHA run.

helps to better leverage parallel computing resources by pro-
moting candidates asynchronously to the next rung. Simul-
taneously, the maximum budget R can be adapted on-the-
fly. Progressive ASHA (PASHA) proposed by [Bohdal et
al., 2023] builds on ASHA and incorporates a mechanism
to only introduce higher rungs where necessary. While both
ASHA and PASHA have been extensively studied empiri-
cally, a thorough (theoretical) analysis of the costs of the
asynchronous promotion scheme is still lacking. Also, these
empirical studies have considered comparably large setups
with vast amounts of resources. In our study, we consider
small-scale setups and analyze the behavior of ASHA and
PASHA in that scope.

5 Incremental Successive Halving
Due to the static budget setting in SHA, the execution of
SHA cannot simply be continued for an adapted parameteri-
zation, e.g., a higher maximum allocatable budget R. By re-
running SHA from scratch, however, knowledge about pre-
viously evaluated hyperparameter configurations (HPCs) is
discarded and resources already allocated are wasted. As an-
other extreme, ASHA and PASHA allow to dynamically in-
crease the maximum allocatable budget R, devising a scheme

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3744



for asynchronous promotions to higher rungs. However, as
we show in Sections 6 and 7.2, the asynchronous promotions
in ASHA and PASHA can be erroneous and thus impede the
identification of the optimal hyperparameter configurations.

With incremental successive halving (iSHA), we propose a
middle ground for budget-constrained scenarios, i.e., scenar-
ios in which we cannot rely on the law of large numbers as re-
quired by [Li et al., 2020]. Similar to ASHA and PASHA, we
allow the maximum allocatable budget to be increased after
an SHA run, making SHA in principle stateful. Algorithm 1
translates this into pseudocode. Differences from the original
SHA are highlighted in blue. While Algorithm 1 also covers
the case of ASHA, adding a single configuration at a time, we
assume ∣S∣ + ∣C0∣ = ∣C0∣ ⋅ η for our theoretical and empirical
analysis, where C0 are the configurations in the beginning of
the previous run, S are the new configurations and η ≥ 1 is a
reduction factor.

In Figure 1 we see the mechanism underlying iSHA to con-
tinue a previously conducted run of SHA that resulted in the
rungs C0,C1 and C2. The initially sampled set of HPCs C0 is
padded with newly sampled HPCs S0 to initially achieve the
same number of HPCs as if SHA had been restarted. How-
ever, only the new configurations are executed (following the
typical SHA budget allocation) and finally compared with the
previous configurations from C0. The already promoted con-
figurations in C1 from the previous SHA run will remain and
only the required number of configurations will be promoted,
i.e., S1, such that the size of the union of C1 and S1 matches
the size of the second rung if SHA had been restarted. This
mechanism is then iteratively continued for subsequent rungs.

Intuitively speaking, the strategy of iSHA is to continue a
previous SHA run in the most efficient, and thus, resource-
saving way. However, similarly to ASHA and PASHA, this
efficiency may come at the cost of a potential drop in per-
formance, as previously made decisions cannot be revoked.
More specifically, in the worst case, all promotions of the
previous run would not have occurred if we had known the
complete set of candidate HPCs from the start. Only filling
up the rungs leaves less space for the desired candidates to be
promoted to the highest rung.

Nevertheless, we prove in the next section that we are still
able to identify near-optimal solutions with a high probability,
which will be confirmed by empirical results in Section 7.2
later on. Furthermore, we demonstrate that this robustness
gives iSHA an edge over ASHA and PASHA when it comes
to the quality of returned hyperparameter configurations in
settings with limited budget.

6 Theoretical Results
We split the theoretical results into four parts. First, we
present a lower bound for the necessary budget for the ϵ-
optimal arm identification problem. Second, we provide a
theoretical analysis of ASHA. Third, we give some theoreti-
cal guarantees for iSHA, our extension of SHA, and fourth,
we extend these guarantees to an incremental extension of
Hyperband.
As a prerequisite for the theoretical results, we ease the no-
tation by simply writing ℓi,t instead of ℓt(i). Since by as-

sumption 2.1 there exists a limit value of the loss function for
every arm, we denote the corresponding convergence speed
by γ(t) ≥ supi ∣ℓi,t − νi∣, ∀t ∈ N.

6.1 Lower Bound
Although there is already literature tackling the problem of
ϵ-optimal arm identification in MABs like [Li et al., 2018], a
lower bound for the necessary budget was missing until now.

Theorem 6.1 (Lower bound for ϵ/2-optimal arm identifica-
tion). If an algorithm Alg correctly identifies an ϵ/2-optimal
arm for any loss function ℓ, then there exist slightly modified
limits {ν̃i}i∈[n] with ∣νi − ν̃i∣ ≤ ϵ/2 for each i ∈ {1, . . . , n}
such that Alg needs at least n ⋅ γ−1 (max{νn−ν1

2
, ϵ
4
}) total

pulls of arms in expectation.

The proof is deferred to Section D.

6.2 Theoretical Analysis of ASHA
We now analyze ASHA [Li et al., 2020], which, to the best
of our knowledge, is the only algorithm with a similar goal of
more efficient resource use as our proposed iSHA.

Theorem 6.2 (Necessary Budget for ASHA). Fix n arms and
assume ν1 ≤ . . . ≤ νn. Let

zASHA = n(⌊logη(n)⌋ + 1) ⋅max{maxk∈[K] η
−k

⋅ γ−1(ν⌊∣rungk−1 ∣/η⌋+1
−ν1

2
),

η−K max
i∈rungK/{1}

γ−1(νi−ν1

2
)},

where K ≤ ⌊logη(n)⌋ is the top rung of ASHA. If ASHA’s
total number of pulls exceeds zASHA, then the best arm is
returned.

The dependence is linear-logarithmic in n, and the limit
gap from the best arm to the other arms occurs in the inverted
convergence rate γ−1. The first term in the maximum makes
sure that the best arm reaches the top rung K, while the sec-
ond term makes sure that the best arm will eventually be re-
turned. In view of the lower bound in Theorem 6.1, ASHA is
nearly optimal.

As a corollary of Theorem 6.2 (see the proof in Section C),
we obtain the following result regarding the mechanism of
the sampling process pursued by ASHA.

Corollary 6.3 (Worst Case Promotion Costs). Assume all
rungs to be full, i.e., no promotion is possible, and the top
rung K only contains the current incumbent arm. If at that
time a new best arm (HPC) î is sampled, then promoting î to
the sole solution of the new top rung K + 1 requires the sam-
pling of ηK − 1 additional arms (HPCs) and a total of ηK+1
many jobs.

From these results, we can draw two major conclusions.
The more arms (HPCs) have already been considered in
ASHA when î enters the pool of considered hyperparameter
configurations, i.e., the later in the process, the more budget
needs to be spent to promote î to the top rung. Particularly,
in a scenario with a limited budget, e.g., limited by the over-
all budget (total number of pulls) or by the number of arms

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3745



to be sampled, ASHA fails to return î, if the required budget
for promoting the best configuration exceeds the remaining
budget. A similar result can be shown for PASHA, since its
sampling mechanism is similar to ASHA.

6.3 Theoretical Analysis of iSHA
For iSHA (Algorithm 1), we first prove a lower bound on the
necessary budget to return a nearly optimal arm (configura-
tion), when n/ñ = η which corresponds to ∣S∣+ ∣C0∣ = ∣C0∣ ⋅η.
The proof is given in Appendix B.1.
Theorem 6.4 (Necessary Budget for iSHA). Fix n arms from
which ñ arms were already considered in a previous run, and
assume ν1 ≤ ⋅ ⋅ ⋅ ≤ νn as well as r ∈ (R/ηs)s=0,...,logη(R). For
any ϵ > 0 let

ziSHA =η⌈logη(n)⌉
⋅ max
i=2,...,n

i(1 +min{R,γ−1 (max{ ϵ
4
, νi−ν1

2
})}).

If iSHA’s total number of pulls exceeds ziSHA, then an arm ı̂
is returned that satisfies νı̂ − ν1 ≤ ϵ/2.

As the dependency on n and the gap is similar as for
ASHA, we conclude from Theorem 6.1 that iSHA is nearly
optimal as well. Further, we can specify the improvement of
iSHA over the costly re-run of SHA.
Theorem 6.5 (Improvement of number of pulls of iSHA in
comparison to SHA). Fix a maximal budget per arm of R, r
and η. Assume that we have already run SHA on ñ arms with
R, r, and η. Now sample n−ñ new arms with n = ñη, and (re-
)run SHA and iSHA over s rounds with the above variables.
Then, for η− = η − 1 and s+ = s + 1 we have

#{total pulls of iSHA}
#{total pulls of SH} ≤ 1 −

(s+)(ñR+ηs)(η−)−(ηs+−1)(2R+n)
(s+)(nR+ηs)(η−)−(ηs+−1)(R+n) .

Again, as a corollary of Theorem 6.5 (see Section Appendix
B.2), we obtain the following result regarding the “limit
case”, i.e., if we would increase the maximum size R in-
finitely often, or, equivalently, the number of possible rungs s
infinitely often.
Corollary 6.6. If we run iSHA and SHA infinitely often with
(i) an ever-increasing maximum size R, and

(ii) such that the newly sampled number of configurations in
each new run of iSHA fulfills ∣S∣ + ∣C0∣ = ∣C0∣ ⋅ x, where
C0 is the number of configurations in the previous run
and x > 1,

then the ratio of total pulls of iSHA and total pulls of SHA
converges to 1 − x−1.
In our setting, we use x = η, so that the improvement ratio
is 1 − η−1. Note that a comparison similar to Theorem 6.5
or Corollary 6.6 is difficult to make for ASHA or PASHA,
since both do not include the parameter R. Finally it is worth
mentioning that no similar statement as Corollary 6.3 holds
for iSHA, since î can be still (and very likely will be) returned
as an output for the available budget.

6.4 Incremental Hyperband
Like the original version of SHA and its extensions ASHA
and PASHA, we can also employ iSHA as a subroutine in

Hyperband. To this end, Hyperband needs to be made incre-
mental itself, as done in Algorithm 4 in the appendix, which
we call incremental Hyperband (iHB). In the following, we
provide a theoretical analysis of this incremental version of
Hyperband with iSHA as a subroutine. Figure 3 in the ap-
pendix illustrates how every Hyperband bracket is updated
after increasing the maximum budget R.

Recall, that for ϵ > 0, we aim to find an ϵ-optimal con-
figuration λ̂ which was defined as νλ̂ − νλ∗ ≤ ϵ. for λ∗ ∈
argminλ∈Λνλ. To ensure that the search is possible by sam-
pling merely a finite subset of HPCs, we make the following
assumption similar to [Brandt et al., 2023]:

Assumption 6.7. The proportion of ϵ-optimal configurations
in Λ is α ∈ (0,1).

Note that we now have at least one ϵ-optimal configuration
in a sampled set of configurations with probability at least 1−
δ, if the sample size is at least ⌈log1−α(δ)⌉ for a fixed failure
probability δ ∈ (0,1). With this, we can state the following
theorem, the proof of which is given in Appendix B.3.

Theorem 6.8. Let η,R,α and δ be fixed such that

R ≥max{ ⌈log1−α(δ)⌉ (η−) + 1, ηγ̄−1(Lη,Lη,R
+ 4

+ ⌊Lη,R⌋
2
− ∑

⌊Lη,R⌋+1

k=1
logη(k)

⌊Lη,R⌋+1 )}

for γ̄−1 ∶=maxs=0,...,⌊Lη,R⌋maxi=2,...,ns i(1+

min{R,γ−1(max{ ϵ
4
, νi−ν1

2
})})

and Lη,R = logη(R), then iHB finds an ϵ-optimal configura-
tion with probability at least 1 − δ.

To conclude, despite the incremental extension of Hyper-
band, we can maintain the theoretical guarantees of the orig-
inal Hyperband. Although promotions in iSHA are also to
some extent performed asynchronously, we can still identify
a nearly best arm when doing promotions in a batch, provided
a sufficiently large batch size.

7 Empirical Evaluation
In addition to the theoretical results of the previous section,
we evaluate iSHA empirically and compare it to PASHA [Bo-
hdal et al., 2023] and SHA [Jamieson and Talwalkar, 2016a].
We are especially interested in the following two research
questions:

RQ1 Is iSHA able to retain the quality of returned HPCs as
compared to applying SHA from scratch?

RQ2 How does the proposed iSHA compare to the state-of-
the-art algorithms ASHA and PASHA?

7.1 Experiment Setup
In our experimental evaluation, we compare iSHA to
two asynchronous extensions of SHA, namely ASHA and
PASHA. For the comparison, we integrate all SHA variants
as subroutines in Hyperband to answer the research ques-
tions RQ1 and RQ2. To this end, we conduct extensive ex-
periments tackling numerous HPO tasks, considering various

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3746



Benchmark Model # Inst. Objective Fidelity

lcbench neural network 34 val accuracy epochs
rbv2 svm SVM 106 acc fraction

rbv2 ranger random forest 119 acc fraction
rbv2 xgboost XGBoost 119 acc fraction

nb301 neural network 1 val accuracy epochs

Table 1: List of considered benchmarks from YAHPO-Gym with the
type of learner, number of considered datasets, objective function,
and the type of budget that can be used as a fidelity parameter.

Benchmark / ϵ 0.001 0.005 0.01 0.05

lcbench 0.0004±0.0011 0.0042±0.0147 0.0095±0.0284 0.0919±0.1599
nb301 0.0001±0.0000 0.0001±0.0000 0.0078±0.0000 0.8962±0.0000

rbv2 svm 0.0092±0.0397 0.0554±0.1296 0.126±0.1995 0.4927±0.2995
rbv2 ranger 0.0026±0.0095 0.0365±0.1323 0.0732±0.1967 0.5336±0.3778

rbv2 xgboost 0.0123±0.0308 0.0213±0.0560 0.0316±0.0845 0.1541±0.2306

Table 2: Mean (± standard deviation) proportion of 10,000 randomly
sampled hyperparameter configurations that are within an ϵ distance
of the best hyperparameter configuration’s performance.

types of learners and two different fidelity parameters: the
number of epochs and the fraction of the training data used
for fitting a model.

As a benchmark library, we use YAHPO Gym [Pfisterer et
al., 2022], which provides fast-to-evaluate surrogate bench-
marks for HPO with particular support for multi-fidelity op-
timization, rendering it a perfect fit for our study. From
YAHPO Gym, we select the benchmarks listed in Table 1.
All the benchmarks consist of several datasets, which are re-
ferred to as benchmark instances, allowing for a broad com-
parison. Due to space limitations, we only present a summary
of the results here, whereas detailed results can be found in
Appendix E.

In Table 2, we show the mean fraction of 10,000 randomly
sampled hyperparameter configurations to be at most ϵ worse
than the best hyperparameter configuration. As can be seen,
the considered benchmarks are of varying difficulty and the
size of the ϵ-optimal fraction also varies substantially in size
across the datasets contained in the corresponding benchmark
suites as indicated by the standard deviation.

Furthermore, we set the initial max size Rt−1 = 16 and in-
crease it after the first run by a factor of η to Rt = ηRt−1,
as this is a budget that is supported by all benchmark sce-
narios. Since ASHA and PASHA automatically increase the
maximum budget depending on the observed performances,
we only ensure an upper limit of Rt for both to ensure a fair
comparison. As a termination criterion, we use that the num-
ber of HPCs would exceed the pool size of the Hyperband
bracket. For benchmarks considering a fraction of the train-
ing dataset as a fidelity parameter, we translate a budget r by
r/Rt into a fraction between 0 and 1.

Furthermore, we repeat each combination of algorithm,
η, and benchmark instance for 30 seeds, resulting in a total
amount of 30 × 3 × 2 × 379 = 68,220 hyperparameter op-
timization runs. We run all experiments on a single work-
station equipped with 2xIntel Xeon Gold 5122 and 256GB
RAM. The code is publicly available via GitHub1.

1https://github.com/mwever/incremental-successive-halving

0.0 0.1 0.2 0.3 0.4 0.5
Relative Saved budget

0.010

0.005

0.000

Pe
rf

or
m

an
ce

 D
iff

er
en

ce

ASHA PASHA iSHA

0.0 0.1 0.2 0.3 0.4 0.5
Relative Saved budget

0.015

0.010

0.005

0.000

0.005

0.010

Pe
rf

or
m

an
ce

 D
iff

er
en

ce

ASHA PASHA iSHA

Figure 2: Scatter plots relating the performance on the y-axis and
the consumed budget on the x-axis to the performance achieved and
budget consumed by SHA. Note that the ranges for the performance
and budget vary from η = 2 (top) to η = 3 (bottom). Higher values
are better for both relative saved budget and relative performance.

7.2 Empirical Results
In Figure 2 we present the performance of the finally cho-
sen hyperparameter configuration and the budget saved by
ASHA, PASHA, and iSHA relative to the performance of
the solution returned and the budget consumed by re-running
SHA from scratch for the higher maximum budget Rt.
Hence, a relative performance of 0.0 means that the solution
quality matches the one returned by SHA, which is also indi-
cated by the red dashed line, a larger (smaller) value means a
performance improvement (degradation) w.r.t. SHA. The rel-
ative saved budget denotes the percentage of the budget that
any of the approaches saves in contrast to the re-run of SHA.
Therefore, a relative saved budget of 0 means that the con-
sumed budget is on par with the budget of SHA. A higher rel-
ative saved budget correspondingly means that the approach
was more efficient than SHA.

As can be seen, iSHA robustly yields competitive perfor-
mance to re-running SHA from scratch for a larger maxi-
mum assignable budget R, while substantially reducing the
consumed budget to roughly 75% for η = 2 and 84.5% for
η = 85%. Regarding RQ1, we can confirm that iSHA retains
the quality of returned HPCs.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3747

https://github.com/mwever/incremental-successive-halving


Performance Budget
Approach Impr Degr Tie Mean Std

η
=
2 PASHA 12 72 295 0.6926 0.007

ASHA 9 81 289 0.7520 0.0
iSHA 4 5 370 0.7520 0.0

η
=
3 PASHA 49 114 216 0.7908 0.0

ASHA 11 75 293 0.8448 0.0
iSHA 4 14 361 0.8448 0.0

Table 3: Aggregated statistics across benchmark instances compar-
ing the performance and budget to natively applying SHA. Differ-
ences in accuracy larger than 0.001 are considered for improvements
or degradations.

On the contrary, the performances of ASHA and PASHA
show way more variance, including variations. Since higher
rungs are only introduced in PASHA whenever necessary, i.e.,
if the soft ranking over the configurations of the last two rungs
changes, PASHA has the potential to reduce the consumed
budget even more than iSHA or ASHA do. However, there is
no guarantee that this will maintain performance. As can be
seen for η = 3, PASHA is clearly less robust than ASHA sug-
gesting that the progressive nature of PASHA is introducing
even more variance.

This is again confirmed by the results in Table 3, where we
simply count the number of benchmark instances for which
an improvement, degradation, or tie w.r.t. the performance of
re-running SHA is obtained. While PASHA gives the most
improvements in terms of performance for both values of η, it
also comes with the most performance degradations for η = 3
which outnumber the improvements by a factor of 2 to 3,
whereas for η = 2 degradations occur more frequently than
improvements by a factor of 4 to 5. Furthermore, we pro-
vide the average and the standard deviations for the relative
budget consumed across the benchmark instances. On aver-
age, for both values of η, iSHA and ASHA reduce the budget
consistently but PASHA can reduce the budget even more.

While, of course, performance improvements are desirable,
the selection of the returned solution is made on the same set
of candidates in all approaches, including SHA. Therefore,
improvements cannot be interpreted as an advantage of one
method over SHA but as random noise effects as these deci-
sions highly depend on the order of hyperparameter config-
urations being considered in the successive halving variant.
Assuming the original behavior of SHA to be the ground truth
behavior, we can thereby define a consistency metric between
ASHA, PASHA, iSHA and the ground truth behavior of SHA.
In Table 4, we present consistencies of ASHA, PASHA, and
iSHA to SHA. Fixing a benchmark, the consistency is calcu-
lated as follows:

(∣M ∣)−1 ⋅∑i
[[∣µSHA(i) − µxSHA(i)∣ ≤ 0.001]],

where [[⋅]] is the indicator function, µSHA(i) is the full bud-
get performance for the returned hyperparameter configura-
tions by SHA on instance i and µxSHA(i) the performance
of another considered approach xSHA and M is the number
of instances in the respective benchmark. In this comparison,
iSHA stands out to be by far the most consistent approach.

η ASHA PASHA iSHA

2 0.7625 0.7783 0.9763
3 0.5699 0.7731 0.9525

Table 4: Consistency of the performance of hyperparameter configu-
rations returned by ASHA, PASHA, and iSHA with the performance
of those returned by SHA.

From these results, we can conclude that iSHA is a robust
and more resource-efficient incremental version of SHA, and
the theoretical guarantees given in the previous section can
be validated in practice as well. PASHA is able to reduce the
consumed budget drastically. However, the reduced budget
comes at the risk of losing consistency and lack of perfor-
mance guarantees. In turn, ASHA reduces the consumed bud-
get in the same way as iSHA does but also performs poorly in
terms of consistent behavior with the original SHA version.

8 Conclusion and Future Work

In this paper, we proposed an extension to the well-known
HPO method Successive Halving (SHA), called Incremental
Successive Halving (iSHA), aiming to improve its efficiency
when the max size hyperparameter R of SHA needs to be in-
creased post-hoc. We derived theoretical guarantees on the
quality of the final choice, as well as on the saved budget,
when a previous SHA run is continued. Furthermore, we pro-
vide the first theoretical analysis of asynchronous SHA, em-
phasizing the price that needs to be paid for the asynchronous
promotions. In an empirical study, we also find that iSHA
yields results similar to the much more expensive baseline
variant of SHA and often better results than the current state-
of-art among the asynchronous variants of SHA. In fact, our
approach only requires the budget of the sole run with the
increased max size.

It is worth noting that we considered a synchronous sce-
nario to have a fair comparison with our proposed method.
When a (GPU) cluster is available, the asynchronous nature
of both ASHA and PASHA might lead to a parallelization
speedup for HPO. However, for many practitioners who do
not have such a cluster available, but for instance only one
GPU, the speedup of an asynchronous approach is lost. In
such a case, a more reliable, incremental and synchronous
method such as iSHA is exactly the desired approach.

In future work, we plan to combine our SHA extensions
with more sophisticated strategies for sampling hyperparame-
ter configurations, as for example done by [Awad et al., 2021]
or [Falkner et al., 2018] and HyperJump, to improve iHB’s ef-
ficacy and efficiency even further. Another interesting avenue
of future research is outlined by PriorBand, where a prior
distribution is incorporated for sampling new hyperparame-
ter configurations [Mallik et al., 2023].

Ethical Statement

There are no ethical issues.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3748



Acknowledgments
This work was partially supported by the research training
group “Dataninja” (Trustworthy AI for Seamless Problem
Solving: Next Generation Intelligence Joins Robust Data
Analysis) funded by the German federal state of North Rhine-
Westphalia.

Contribution Statement
Jasmin Brandt and Marcel Wever had an equal contribution
on this paper. While Jasmin Brandt was responsable for the
theoretical parts, Marcel Wever did the empirical analysis.
All authors were involved in devoloping the ideas and writing
the paper draft in multiple iterations.

References
[Abbasi-Yadkori et al., 2018] Yasin Abbasi-Yadkori, Peter

Bartlett, Victor Gabillon, Alan Malek, and Michal Valko.
Best of Both Worlds: Stochastic & Adversarial Best-arm
Identification. In Proceedings of the 31st Conference On
Learning Theory, volume 75 of Proceedings of Machine
Learning Research, pages 918–949. PMLR, 06–09 Jul
2018.

[Awad et al., 2021] Noor H. Awad, Neeratyoy Mallik, and
Frank Hutter. DEHB: Evolutionary Hyberband for Scal-
able, Robust and Efficient Hyperparameter Optimization.
In Proceedings of the 30th International Joint Conference
on Artificial Intelligence, pages 2147–2153, 2021.

[Azizi et al., 2022] Mohammad Javad Azizi, Branislav Kve-
ton, and Mohammad Ghavamzadeh. Fixed-Budget Best-
Arm Identification in Structured Bandits. In Proceedings
of the Thirty-First International Joint Conference on Artifi-
cial Intelligence, IJCAI, pages 2798–2804. ijcai.org, 2022.

[Bergstra et al., 2011] James Bergstra, Rémi Bardenet,
Yoshua Bengio, and Balázs Kégl. Algorithms for
Hyper-Parameter Optimization. In Advances in Neural
Information Processing Systems, pages 2546–2554, 2011.

[Bischl et al., 2023] Bernd Bischl, Martin Binder, Michel
Lang, Tobias Pielok, Jakob Richter, Stefan Coors, Janek
Thomas, Theresa Ullmann, Marc Becker, Anne-Laure
Boulesteix, et al. Hyperparameter Optimization: Foun-
dations, Algorithms, Best Practices and Open Challenges.
Wiley Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery, 13, 2023.

[Bohdal et al., 2023] Ondrej Bohdal, Lukas Balles, Martin
Wistuba, Beyza Ermis, Cédric Archambeau, and Giovanni
Zappella. PASHA: Efficient HPO and NAS with Progres-
sive Resource Allocation. In The 11th International Con-
ference on Learning Representations, 2023.

[Brandt et al., 2022] Jasmin Brandt, Viktor Bengs, Björn
Haddenhorst, and Eyke Hüllermeier. Finding Optimal
Arms in Non-stochastic Combinatorial Bandits with Semi-
bandit Feedback and Finite Budget. In Advances in Neural
Information Processing Systems, 2022.

[Brandt et al., 2023] Jasmin Brandt, Elias Schede, Björn
Haddenhorst, Viktor Bengs, Eyke Hüllermeier, and Kevin

Tierney. AC-Band: A Combinatorial Bandit-Based Ap-
proach to Algorithm Configuration. Proceedings of the
AAAI Conference on Artificial Intelligence, 37(10):12355–
12363, 2023.

[Carpentier and Valko, 2015] Alexandra Carpentier and
Michal Valko. Simple regret for infinitely many armed
bandits. In Proceedings of the 32nd International
Conference on Machine Learning, ICML, volume 37 of
JMLR Workshop and Conference Proceedings, pages
1133–1141. JMLR.org, 2015.

[Falkner et al., 2018] Stefan Falkner, Aaron Klein, and
Frank Hutter. BOHB: Robust and Efficient Hyperparame-
ter Optimization at Scale. In Proceedings of the 35th Inter-
national Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 1436–
1445. PMLR, 2018.

[Feurer and Hutter, 2019] Matthias Feurer and Frank Hutter.
Hyperparameter Optimization. In Automated Machine
Learning - Methods, Systems, Challenges, The Springer
Series on Challenges in Machine Learning, pages 3–33.
Springer, 2019.

[Frazier, 2018] Peter I. Frazier. A Tutorial on Bayesian Op-
timization. CoRR, abs/1807.02811, 2018.

[Gong and Sellke, 2023] Xiao-Yue Gong and Mark Sellke.
Asymptotically Optimal Pure Exploration for Infinite-
Armed Bandits. CoRR, abs/2306.01995, 2023.

[Hutter et al., 2011] Frank Hutter, Holger H. Hoos, and
Kevin Leyton-Brown. Sequential Model-Based Optimiza-
tion for General Algorithm Configuration. In Learning
and Intelligent Optimization - 5th International Confer-
ence, volume 6683 of Lecture Notes in Computer Science,
pages 507–523. Springer, 2011.

[Jamieson and Talwalkar, 2016a] Kevin Jamieson and
Ameet Talwalkar. Non-stochastic Best Arm Identification
and Hyperparameter Optimization. In Proceedings of the
19th International Conference on Artificial Intelligence
and Statistics, volume 51 of Proceedings of Machine
Learning Research, pages 240–248. PMLR, 2016.

[Jamieson and Talwalkar, 2016b] Kevin G. Jamieson and
Ameet Talwalkar. Non-stochastic Best Arm Identifica-
tion and Hyperparameter Optimization. In Proceedings
of the 19th International Conference on Artificial Intelli-
gence and Statistics, AISTATS, volume 51 of JMLR Work-
shop and Conference Proceedings, pages 240–248, 2016.

[Karnin et al., 2013] Zohar Karnin, Tomer Koren, and Oren
Somekh. Almost Optimal Exploration in Multi-Armed
Bandits. In International Conference on Machine Learn-
ing, pages 1238–1246. PMLR, 2013.

[Kato et al., 2022] Masahiro Kato, Kaito Ariu, Masaaki
Imaizumi, Masatoshi Uehara, Masahiro Nomura, and
Chao Qin. Optimal Fixed-Budget Best Arm Identification
using the Augmented Inverse Probability Weighting Es-
timator in Two-Armed Gaussian Bandits with Unknown
Variances. CoRR, abs/2201.04469, 2022.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3749



[Lattimore and Szepesvári, 2020] Tor Lattimore and Csaba
Szepesvári. Bandit Algorithms. Cambridge University
Press, 2020.

[Li et al., 2018] Lisha Li, Kevin Jamieson, Giulia DeSalvo,
Afshin Rostamizadeh, and Ameet Talwalkar. Hyper-
band: A Novel Bandit-Based Approach to Hyperparame-
ter Optimization. Journal of Machine Learning Research,
18(185):1–52, 2018.

[Li et al., 2020] Liam Li, Kevin Jamieson, Afshin Ros-
tamizadeh, Ekaterina Gonina, Jonathan Ben-Tzur, Moritz
Hardt, Benjamin Recht, and Ameet Talwalkar. A System
for Massively Parallel Hyperparameter Tuning. Proceed-
ings of Machine Learning and Systems, 2:230–246, 2020.

[Mallik et al., 2023] Neeratyoy Mallik, Edward Bergman,
Carl Hvarfner, Danny Stoll, Maciej Janowski, Marius Lin-
dauer, Luigi Nardi, and Frank Hutter. PriorBand: Practical
Hyperparameter Optimization in the Age of Deep Learn-
ing. arXiv preprint arXiv:2306.12370, 2023.

[Mendes et al., 2021] Pedro Mendes, Maria Casimiro, and
Paolo Romano. HyperJump: Accelerating HyperBand via
Risk Modelling. arXiv preprint arXiv:2108.02479, 2021.

[Pfisterer et al., 2022] Florian Pfisterer, Lennart Schneider,
Julia Moosbauer, Martin Binder, and Bernd Bischl.
YAHPO Gym - An Efficient Multi-Objective Multi-
Fidelity Benchmark for Hyperparameter Optimization. In
International Conference on Automated Machine Learn-
ing, AutoML 2022, volume 188 of Proceedings of Machine
Learning Research, pages 3/1–39. PMLR, 2022.

[Rice, 1976] John R. Rice. The Algorithm Selection Prob-
lem. Advances in Computers, 15:65–118, 1976.

[Shen, 2019] Cong Shen. Universal Best Arm Identification.
IEEE Trans. Signal Process., 67(17):4464–4478, 2019.

[Tornede et al., 2023] Tanja Tornede, Alexander Tornede,
Jonas Hanselle, Felix Mohr, Marcel Wever, and Eyke
Hüllermeier. Towards green automated machine learning:
Status quo and future directions. Journal of Artificial In-
telligence Research, 77:427–457, 2023.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3750


	Introduction
	(Near-)Optimal Arm Identification
	Successive Halving and Hyperband
	Related Work
	Incremental Successive Halving
	Theoretical Results
	Lower Bound
	Theoretical Analysis of ASHA
	Theoretical Analysis of iSHA
	Incremental Hyperband

	Empirical Evaluation
	Experiment Setup
	Empirical Results

	Conclusion and Future Work

