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Abstract
Variational Quantum Algorithms (VQA) have been
identified as a promising candidate for the demon-
stration of near-term quantum advantage in solving
optimization tasks in chemical simulation, quan-
tum information, and machine learning. The stan-
dard training model requires a significant amount
of quantum resources, which led researchers to
explore classical shadows as an alternative that
consumes exponentially fewer quantum resources.
However, the existing approach only works when
dealing with local observables and shallow Alter-
nating Layered Ansatz (ALA), thus severely limit-
ing its potential in solving problems such as quan-
tum state preparation, where the ideal state might
not be approximable with an ALA. In this work, we
present a protocol based on shallow shadows that
achieves similar levels of savings for almost any
shallow ansatz studied in the literature, when com-
bined with observables of low Frobenius norm. We
show that two important applications in quantum
information for which VQAs can be a powerful op-
tion, namely variational quantum state preparation
and variational quantum circuit synthesis, are com-
patible with our protocol. We also experimentally
demonstrate orders of magnitude improvement in
comparison to the standard VQA model.

1 Introduction
The field of quantum computing has witnessed significant
progress over the past decade. In the current Noisy Inter-
mediate Scale Quantum (NISQ) [Preskill, 2018] era, quan-
tum devices are small and error-prone. Despite this, several
research groups have successfully demonstrated quantum ad-
vantage over classical computers in synthetic but well-defined
sampling problems [Arute et al., 2019; Zhong et al., 2020;
Madsen et al., 2022]. The next major breakthrough in this
field will involve extending these advantages to solve practi-
cally valuable problems.

Many proposals have been put forward, and one that stands
out is Variational Quantum Algorithms (VQAs) [McClean
et al., 2016]. These algorithms are specifically designed to
solve optimization problems involving quantum information,

stored as quantum states using quantum bits (i.e., qubits),
manipulated through quantum circuits, and measured us-
ing quantum observables. Many important functions involv-
ing these objects, such as the expectation values of observ-
ables with respect to different states, are notoriously hard
or intractable to evaluate on classical computers, as the re-
quired classical computational resources increases exponen-
tially in the number of qubits involved. By using parameter-
ized quantum circuits, such functions can be estimated with
polynomially many quantum resources on quantum devices,
thereby enabling optimization using iterative optimization al-
gorithms. Potentially useful applications include Variational
Quantum Eigensolver [Peruzzo et al., 2014], Quantum Sup-
port Vector Machines [Havlı́ček et al., 2019], Quantum Ap-
proximate Optimization Algorithm [Farhi et al., 2014], etc.

Unlike classical computing, the absence of quantum mem-
ory devices, combined with the no-cloning theorem, implies
that each use of a quantum state necessitates preparing it from
scratch. In the context of VQAs, we refer to the term sam-
ple complexity to denote the total number of executions of
the quantum preparation device required (equivalently, the to-
tal number of copies of quantum states consumed). In the
standard VQA model, this scales linearly with the total num-
ber of function evaluations needed throughout the optimiza-
tion. When additional factors such as hyperparameter tuning,
model and ansatz selection are introduced, the scale of this
number becomes notably significant. Moreover, in the near
term, only very few capable quantum computers would be
available, making the implementation of VQAs with reduced
sample complexity crucial.

Classical shadow tomography [Huang et al., 2020] pro-
vides an exponentially improved method to estimate linear
functionals that involve quantum states. This advancement
has been incorporated into the VQA training protocols, lead-
ing to an exponential reduction in quantum resources, as
demonstrated in [Basheer et al., 2023]. However, the method,
titled Alternating Layered Shadow Optimization (ALSO),
uses a version of shadow tomography that requires local tar-
get observables. This constraint restricts the ansatzes to re-
quire simple entanglement structures, such as the Alternating
Layered Ansatz (ALA) illustrated in Figure 1(a). This lim-
itation becomes significant when the optimal circuit or state
cannot be approximated with ALAs.

The recently proposed shallow shadow technique [Bertoni
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et al., 2023] describes a tomography procedure similar to
classical shadow tomography but designed for easy imple-
mentation in NISQ devices. Even better, it does not rely
directly on the locality of the observables. Building upon
this, we introduce Ansatz Independent Shadow Optimization
(AISO) in this work – a method that achieves an exponen-
tial reduction in quantum resources for VQA training. AISO
is compatible with almost any shallow (depth logarithmic
in the number of qubits) quantum circuit structure found in
the literature when used in conjunction with observables of
low Frobenius norm. We demonstrate these resource savings
for two important problems in quantum information where
VQAs are applicable: Variational Quantum State Preparation
(VQSP) and Variational Quantum Circuit Synthesis (VQCS).
Both problems involve determining the optimal circuit pa-
rameters for an ansatz that best approximates unknown quan-
tum states or circuits.

The benefits of AISO can be summarized as follows:

1. Exponential reduction in input state copies: AISO
achieves arbitrarily precise estimates of all function
evaluations encountered during iterative optimization of
the VQA cost function while consuming exponentially
fewer copies of the input state compared to standard
VQA. This enables more iterations, better approxima-
tions, and facilitates extensive hyperparameter tuning.

2. Ansatz-agnostic implementation on quantum hardware:
Our method ensures a reduction in input state copies for
almost any shallow ansatz studied in the literature. Addi-
tionally, the operations executed on the quantum device
remain independent of the chosen ansatz.

3. Optimization with different ansatzes: The combination
of the above two advantages implies that, for a given
unknown input state or circuit, optimization can be per-
formed over various types of ansatzes, using the same
shallow shadows generated in an ansatz agnostic man-
ner, unlike standard methods where multiple ansatzes
must be implemented individually. This flexibility al-
lows one to choose the most suitable ansatz with sub-
stantial savings in the utilization of quantum devices.

4. Compatibility with VQCS: Solving VQCS requires the
utilization of maximally entangled states. Due to the
requirement of ansatzes with limited entanglement for
ALSO, it is not suitable for efficiently implementing
VQCS. In contrast, AISO is ansatz independent, allow-
ing its effective use in VQCS.

The advantage is experimentally demonstrated in both
use cases of interest, where we show that AISO signifi-
cantly outperforms standard VQA with the same number of
copies across four different ansatzes: Alternating Layered
Ansatz [Cerezo et al., 2021], Multi-Entanglement Renormal-
ization Ansatz (MERA) [Bridgeman et al., 2015], Hardware
Efficient Ansatz (HEA) [Leone et al., 2022], and Tree Tensor
Networks (TTN) [Shi et al., 2006] (cf. Figure 1).

We also establish that the sample complexity of AISO, and
consequently shallow shadows, can be enhanced when the in-
put state being sampled is from a 2-design instead of a 1-
design [Harrow and Low, 2009]. Finally, we discuss how

AISO aligns with many heuristic methods commonly used to
tackle trainability issues, such as barren plateaus, that may
arise during optimization.

2 Related Works
Classical shadows have been used to improve the sample
complexity of VQAs in [Basheer et al., 2023]. This method,
termed ALSO, utilizes a form of shadow tomography relying
on local target observables and assumes that the ansatz has a
weak entanglement structure, such as an ALA. Consequently,
for applications such as VQSP, results can be poor if the op-
timal state is not approximable by ALAs. Additionally, this
method is unsuitable for VQCS since it necessitates working
with the maximally entangled state. In contrast, our method
AISO uses shallow shadows, allowing it to be used with al-
most any shallow ansatz studied in the literature, addressing
both VQSP and VQCS.

In [Schreiber et al., 2022], classical shadows have been
employed to reduce the number of quantum computer calls
(i.e., sample complexity) in quantum machine learning appli-
cations. Given an already learned VQA model, the approach
uses a quantum computer to generate classical shadows so
that predictions can be made of the learned model using a
classical computer. It is important to note that, in this ap-
proach, the learning procedure is still carried out on a quan-
tum computer. In contrast, in AISO, the entire learning pro-
cedure takes place on a classical computer.

New classical optimization algorithms, as introduced
in [Boyd and Koczor, 2022; Wierichs et al., 2020; Stokes
et al., 2020], demonstrate faster convergence rates with sig-
nificantly fewer iterations than traditional gradient descent.
For applications involving shallow circuits and low Frobe-
nius norm observables, AISO, being agnostic towards the
choice of classical optimizer, can enhance the performance
of these methods by significantly reducing the required num-
ber of state copies.

A new related work appears after the completion of ours.
In [Cerezo et al., 2023], the authors conjecture that VQA
models that can avoid barren plateaus are also classically sim-
ulable (with quantum experiments polynomial in the number
of qubits). Strong evidence is also provided to support their
conjecture. In their terms, our approach actually shows that
VQA problems with shallow ansatz and low Frobenius norm
observables are also classically simulable, but it is still un-
clear if these models are barren plateau-free.

3 Background
In this section, we review quantum computing, shallow shad-
ows, and VQAs.

3.1 Quantum Computing
Throughout this work, we use the ‘ket’ and ‘bra’ notations to
denote column vectors |ψ⟩ and their conjugate transposes ⟨ψ|
respectively. |i⟩ ∈ Cd is the ith standard basis vector. We use
L(Cd) to denote the set of all linear operators that act on Cd,
and for any operator A, A† is its conjugate transpose.

A quantum state is defined as a positive semidefinite op-
erator ρ ∈ L(Cd) with tr(ρ) = 1. In quantum computing, a
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(a) ALA (b) MERA (c) HEA (d) TTN (e) Subcircuit used in our experiments.

Figure 1: Ansatzes used in our simulations. In (a), (b), (d), each connected pair of black boxes represent a two-qubit subcircuit. In (c), each
black box is a single qubit subcircuit while the two-qubit gate is the CNOT gate.

qubit is the analog of a bit in classical computing and can ad-
mit any quantum state in L(C2) as its value. The state of an
n-qubit system can be described using states that act on the
tensor product of n two-dimensional vector spaces, denoted
as C2 ⊗ · · · ⊗ C2 ∼= C2n .

A quantum gate acting on n qubits is a unitary operator
U ∈ L(C2n). Such a gate transforms the state of an n-qubit
system from ρ to UρU †. The Pauli gates are defined as

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
. (1)

Let P = {1, X, Y, Z}. For γ ∈ {1,−1, i,−i}, we write
P(γ)
n for the set of all n-fold tensor products of the ele-

ments in P , with the scalar γ multiplied to them. Clearly,
Pn = P(1)

n ∪P(−1)
n ∪P(i)

n ∪P(−i)
n forms a group under matrix

multiplication. The n-qubit Clifford gates are those contained
in the normalizer of Pn in the group of unitary operators act-
ing on C2n . A quantum circuit is defined as a composition of
multiple quantum gates.

To extract information from a quantum system in a state
ρ, we perform a measurement using an observable, defined
as any Hermitian operator O. Let the spectral decomposi-
tion of O be O =

∑
i λi |ui⟩ ⟨ui|. The measurement yields

an outcome λi with probability ⟨ui| ρ |ui⟩. Subsequently, the
post-measurement state becomes |ui⟩. In addition, the ex-
pected value of this random procedure is tr(ρO), concisely
written as ⟨O⟩ρ. Measurements using diagonal observables
are called standard basis measurements.

Pure states are rank one states. In this case, gate operations
and measurements can be fully described by any normalized
eigenvector in its support.

Clifford

Figure 2: The structure of the unitary ensemble used to generate
shallow shadows.

3.2 Shallow Shadows
For an arbitrary state ρ and known observables
O1, O2, . . . , OM , it requires O(2n · M) copies of ρ to
estimate ⟨Oi⟩ρ for each i using conventional quantum
tomography techniques. Using classical shadow tomog-
raphy [Huang et al., 2020], the dependence on M can be
reduced exponentially. Furthermore, for certain classes of
observables, the dependence on n is O(poly(n)), and thus
the total number of copies required in these cases can be
reduced to O(poly(n) · logM).

To generate a shadow, we first apply a circuit U sampled
from an ensemble U of n-qubit circuits, and then measure
the resultant state according to the standard basis to obtain an
n-bit string u. A classical shadow is computed classically as

ρ̂U,u = ∆−1
U (U † |u⟩ ⟨u|U), (2)

where

∆U (ρ) = EU∼U
∑

u∈{0,1}n

⟨u|UρU † |u⟩U † |u⟩ ⟨u|U. (3)

Furthermore, ρ̂U,u gives an unbiased estimator of ρ and hence
⟨Oi⟩ρ̂U,u

is an unbiased estimator of ⟨Oi⟩ρ for all i.
The number of such shadows required for precise estima-

tion is dominated by the state-dependent shadow norm of the
traceless part of the observables, defined as

∥Õ∥2ρ,U = EU∼U
∑

u∈{0,1}n

⟨u|UρU † |u⟩ ⟨Õ⟩2ρ̂U,u
, (4)

where Õ = O− tr(O)
2n 1. Using this, the sample complexity of

the protocol is given by the following theorem.

Theorem 1. [Huang et al., 2020] Let U be an ensem-
ble of circuits such that ∆−1

U exists, and O1, O2, . . . , OM

be n-qubit observables. For any δ, ϵ ∈ (0, 1), let T1 =

2 log(2M/δ) and T2 = (34/ϵ2)maxi ∥Õi∥2ρ,U . Let ρ
be a state with classical shadows (generated using U )
ρ̂1, ρ̂2, . . . , ρ̂T1T2 , where ρ̂i = ρ̂Ui,ui . Define ⟨Ôi⟩ρ =
µT1,T2({⟨Oi⟩ρ̂j , 1 ≤ j ≤ T1T2}), where µT1,T2 is the
median-of-means estimator (median of T1 means of T2 val-
ues each). Then, with probability at least 1 − δ, we have
|⟨Ôi⟩ρ − ⟨Oi⟩ρ| ≤ ϵ for all i.
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Define shadow norm as ∥·∥U := maxσ:state ∥·∥σ,U . In The-
orem 1, we can also replace ∥Õi∥ρ,U with ∥Õi∥U [Huang et
al., 2020], which removes the dependency on ρ and provides
the worst-case sample complexity of the protocol.

In [Huang et al., 2020], it was shown that when the ensem-
ble is the Clifford group over n qubits, the shadow norm of
the observables, and hence the sample complexity, are pro-
portional to the Frobenius norm. But the implementation re-
quires very deep circuits, ruling itself out for NISQ devices.

[Bertoni et al., 2023] proposed an ensemble of shallow-
depth circuits Ud (with depth d), given in Figure 2, that
achieves similar performance guarantees. Each two-qubit
subcircuit here is a uniformly randomly sampled two-qubit
Clifford gate. The shadow can be classically computed and
stored in the matrix product state form, with cost O(2d). For-
mally, we have

Theorem 2. [Bertoni et al., 2023] If d = Θ(log n), then
∥O∥2

1/2n,Ud
≤ 4∥O∥2F for any observable O with tr(O) = 0,

where ∥ · ∥F is the Frobenius norm.

The term ∥O∥2
1/2n,Ud

in Theorem 2 is called the locally
scrambled shadow norm. For any ensemble D1 of states, if
Eρ∼D1

(ρ) = 1/2n (also called state 1-designs when all states
are pure), we have ∥O∥2

1/2n,U = Eρ∼D1
∥O∥2ρ,U . Hence, we

can view ∥O∥1/2n,U as a quantity that intuitively character-
izes the sample complexity of a shadow protocol for a “typi-
cal” state or the performance of the protocol on average, sim-
ilar to how the shadow norm describes the worst-case perfor-
mance. This is more apparent when all states in D1 are pure.
Then, sampling from D1 is equivalent in mean to sampling
uniformly (according to the spherical measure) from the set
of all pure states. Throughout this work, we set d = Θ(log n).

3.3 Variational Quantum Algorithms
Parameterized quantum circuits can be used to encode various
optimization problems that one encounters in quantum infor-
mation. The circuit structure used is called an ansatz. We use
U(θ) to denote a parameterized circuit, where θ is a vector
of parameters. In standard VQA, we use U(θ) to estimate the
value of a target function and then optimize the parameters
by feeding the output to a classical iterative optimizer.

For any ansatz U , we define ρ(θ) := U(θ)ρU(θ)†. Our
focus in this paper is on the function defined (over θ) as

⟨O⟩ρ(θ) = tr(U(θ)ρU(θ)†O), (5)

where ρ is the input quantum state and O is an output ob-
servable, and we aim to find the parameters that maximize
it. One can estimate ⟨O⟩ρ(θ) for any θ by repeated measure-
ments, after the application of U(θ) on ρ. Given this abil-
ity, the gradient of ⟨O⟩ρ(θ) can also be estimated using stan-
dard methods such as finite differencing or quantum-specific
approaches such as the parameter shift rule [Mitarai et al.,
2018]. Problems in quantum information that can be reduced
to an instance of optimization of Eq. (5) include variational
quantum eigensolver [Peruzzo et al., 2014], quantum autoen-
coder [Romero et al., 2017], as well as VQSP and VQCS.

4 Ansatz Independent Shadow Optimization
In this section, we explain the main idea and theoretical re-
sults behind AISO.

For any quantum circuit V and any qubit i, we define the
number of times a gate touches or crosses the qubit wire as
RV,i. Formally, this is the number of 2-qubit gates being ap-
plied on any qubits j, k such that j ≤ i ≤ k. Let RV =
maxiRV,i. We require our ansatz U to have RU ∈ O(log n).
Most shallow ansatzes used in the literature satisfy this. Let
⟨O⟩ρ(θ(1)), ⟨O⟩ρ(θ(2), . . . , ⟨O⟩ρ(θ(C)) be function evaluations
that one encountered while optimizing Eq. (5) using an itera-
tive optimization algorithm.

Define WO(θ) = U(θ)†OU(θ). Each function evaluation
can be seen as estimating the expectation of ρ with these pa-
rameterized observables because

⟨O⟩ρ(θ) = tr(U(θ)ρU(θ)†O) = ⟨WO(θ)⟩ρ. (6)

Moreover, the Frobenius norm remains invariant since
∥O∥2F = ∥V OV †∥2F for any unitary V .

Now, using Theorems 1 and 2, we can estimate all C func-
tion evaluations using shallow shadows, and the AISO proto-
col goes as follows.

1. Choose precision and confidence parameters ϵ, δ ∈
(0, 1). Let m ≥ 1/δ. Generate T1T2 shallow shadows
of ρ, where

T1 ≥ 2 log

(
2(m− 1)C

mδ − 1

)
, T2 ≥ 136

ϵ2
m∥O∥2F . (7)

Let them be ρ̂U1,u1
, ρ̂U2,u2

, . . . , ρ̂UT1T2
,uT1T2

.
2. Use the iterative optimization algorithm to optimize the

target function

⟨ŴO(θ)⟩ρ := µT1,T2
({⟨WO(θ)⟩ρ̂Uj,uj

1 ≤ j ≤ T1T2}).
(8)

Now, we shall prove that when T1 and T2 satisfy Eq. (7).
the AISO protocol achieves the desired precision and confi-
dence.
Theorem 3. Let ρ be an n-qubit pure state sampled from a
state 1-design D1. For any δ, ϵ ∈ (0, 1), m > 1/δ, and any
C > 0, let T1 and T2 satisfy Eq. (7). Then, for any parameter
vectors θ(1), . . . , θ(C), with probability at least 1−δ, we have
|⟨WO(θ

(c))⟩ρ − ⟨ŴO(θ
(c))⟩ρ| ≤ ϵ for all 1 ≤ c ≤ C, where

⟨WO(θ
(c))⟩ρ and ⟨ŴO(θ

(c))⟩ρ are defined in Eq.s (6) and
(8), respectively.

The rationale behind AISO’s ability to yield exponential
savings in estimating the cost function can be intuitively
grasped as follows. In standard VQA, estimating C eval-
uations requires preparing U(θ(c)) for all c and conducting
multiple measurements for each. Therefore, the total number
of required copies would be O(C). One key limitation arises
from the inability to reuse measurement results, as each mea-
surement is conducted specifically to estimate ⟨WO(θ

(c))⟩ρ
for a particular c. In contrast, in AISO, all quantum measure-
ments made are independent of θ(c), and these measurements
are used when estimating all the expectations.
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(a) State preparation (b) Circuit Synthesis

Figure 3: Tensor networks to compute ⟨WO(θ)⟩ρ̂.

Although the constants in Eq. (7) appear large, due to the
use of union bounds as well as a few loose constants, in prac-
tice significantly lesser copies than what is suggested there
suffice. We explore this in detail in our experimental results.

The cost of classical computation is dominated by the cost
of computing ⟨ŴO(θ)⟩ρ classically. Thus we have the fol-
lowing theorem.

Theorem 4. In AISO, for any quantum ansatz U with RU ∈
O(log n), ⟨ŴO(θ)⟩ρ can be classically evaluated with cost
O(poly(n) · logC · ∥O∥2F ) for VQSP and VQCS. The over-
all classical computational cost for C function evaluations is
thus O(poly(n) · C logC · ∥O∥2F ).

Note that since the circuit is being implemented classically,
RU has no physical relevance here. The space complexity of
the protocol is dominated by the storage of shallow shadows.
Each shadow is an MPS with maximum bond dimension at
most 2d−1. This means that each shadow can be stored us-
ing at most n2d complex numbers and hence the total space
complexity is at most nT1T22d. So, when d = O(log n), the
space complexity is O(poly(n) · T1T2).

5 Applications
In this section, we discuss how AISO can be used to tackle
two important problems in quantum information.

5.1 Variational Quantum State Preparation
In VQSP, our goal is to find a circuit that is capable of (ap-
proximately) preparing a pure state ρ = |ψ⟩ ⟨ψ|, given ac-
cess to multiple copies of it. That is, we would like to find
a parameter vector θ that minimizes the infidelity between
U(θ)† |0⟩ and |ψ⟩, defined as 1 − | ⟨ψ|U(θ)† |0⟩ |2, where
U is a heuristically chosen ansatz. Infidelity assumes values
in [0, 1] and is widely used in quantum information to mea-
sure how far apart two states are, with 1 implying orthogo-
nality and 0 implying equality. Note that the minimization
of infidelity is the same as the maximization of ⟨|0⟩ ⟨0|⟩ρ(θ).
Since |0⟩ ⟨0| has unit Frobenius norm, this objective function
is compatible with AISO. Moreover, with AISO, it becomes
possible to explore optimal parameters for a diverse range
of circuit ansatzes through multiple optimization procedures
while minimizing the number of required copies.

Last but not least, for any shallow shadow ρ̂, ⟨WO(θ)⟩ρ̂ can
be computed classically efficiently by contracting the tensor

network given in Figure 3(a). Even though the example given
here is the ALA, using Theorem 4, one can easily replace
it with any ansatz with RU ∈ O(log n). The reasoning is
explained in detail in the proof of Theorem 4 in the Appendix.

5.2 Variational Quantum Circuit Synthesis
VQCS is a natural extension of VQSP to quantum circuits.
Here, our goal is to learn the parameters of an n-qubit ansatz
U(θ) that best approximates a given unknown quantum gate
V . Similar to how we use infidelity for quantum states, we
can use the Hilbert-Schmidt cost function defined for uni-
taries in [Khatri et al., 2019]. For any θ, this is computed
as H(θ) = 1 − |tr(U(θ)†V )|2/4n and minimizing H gives
us the set of parameters that (approximately) prepares V .

To see why, first note that any quantum gate W can be
uniquely identified using a representation given as W ⊗W ,
where W is the complex conjugate of W . This can be de-
rived from its action on the vectorized version of elements in
L(C2n). Then we see that H(θ) is proportional to ∥U(θ) ⊗
U(θ)− V ⊗ V ∥2F . To evaluate H(θ) for any θ, we start with
the maximally entangled state on two n-qubit systems, de-
fined as |Φ⟩ = 1/

√
2n

∑2n−1
i=0 |i⟩ |i⟩. Then, we apply V on

the second register to obtain |V ⟩ = 1/
√
2n

∑2n−1
i=0 |i⟩ |v•i⟩,

where |v•i⟩ is the ith column of V . Then, one can see
that H(θ) = 1 − ⟨|U(θ)⟩ ⟨U(θ)|⟩|V ⟩⟨V |. Therefore, we
can use shallow shadows of |V ⟩ to estimate H(θ). Since
∥ |U(θ)⟩ ⟨U(θ)| ∥F = 1 for all θ, the number of shadows,
or equivalently, the number of applications of V , is indepen-
dent of n.

In terms of classical computational complexity,
⟨|U(θ)⟩ ⟨U(θ)|⟩ρ̂ for any shallow shadow ρ̂ can be computed
by contracting the tensor network given in Figure 3(b), the
cost of which is polynomial in n. The explanation regarding
the usage of ALA in this figure is the same as the one for
VQSP. From now on, when discussing the sample complexity
of VQCS, the “number of copies” will mean the number
of copies of |V ⟩ consumed (equivalently, the number of
applications of V ).

6 Simulation Results
Here we elaborate on the experimental results by comparing
the sample complexity of AISO and the standard VQA in the
two use cases discussed above.

The depth d of the shallow shadow ensemble (cf. Fig-
ure 2) is set to 3 throughout the experiments. The viability
of AISO in solving both problems is tested across four dif-
ferent ansatzes that are widely used in the literature, whose
structures are given in Figure 1(a,b,c,d). Except in HEA, all
two-qubit gates can be arbitrary two-qubit subcircuits. The
specific ones used in our simulation are given in Figure 1(e).
Also, for VQCS, each two-qubit subcircuit is a combination
of two of these. In HEA, the two-qubit gate used is the CNOT
gate.

For VQSP, we have used the Simultaneous Perturbation
Stochastic Approximation [Spall, 1992] (SPSA), where the
converging sequences used are, respectively, cr = ar =
r−0.4 and the total number of iterations is 5000. On the other
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Figure 4: Simulation results for state preparation. Here, the red curve represents AISO (104) while the orange, green, and blue curves
represent VQA (5× 105), VQA (106) and VQA (2.5× 106) respectively.

0 200 400 600 800
Evaluation number

10 3

10 2

10 1

100

H
ilb

er
t-

Sc
hm

id
t C

os
t

0 200 400 600 800
Evaluation number

10 2

10 1

100
H

ilb
er

t-
Sc

hm
id

t C
os

t

0 200 400 600 800
Evaluation number

10 3

10 2

10 1

100

H
ilb

er
t-

Sc
hm

id
t C

os
t

0 200 400 600 800
Evaluation number

10 3

10 2

10 1

100

H
ilb

er
t-

Sc
hm

id
t C

os
t

(a) ALA (b) MERA (c) HEA (d) TTN

Figure 5: Simulation results for circuit synthesis. Here, the red curve represents AISO (104) while the orange, green, and blue curves
represent VQA (105), VQA (106) and VQA (107) respectively.

hand, the results of VQCS have used Powell’s method [Pow-
ell, 1964] with a maximum of 103 function evaluations al-
lowed. We denote by AISO/VQA (T ) the AISO/VQA algo-
rithm that uses T copies in total. This means that VQA (T )
will consume T/104 copies per function evaluation in SPSA
and T/103 copies in Powell’s method. This is because SPSA
requires two function evaluations to produce estimates of the
gradient.

The unknown target states considered in the VQSP are 8-
qubit states, which are also compatible with the correspond-
ing ansatzes being used. In each setting, the experiment
is carried out across five different states and the results are
shown in Figure 4. Here, we have plotted the mean of in-
fidelity values achieved at different iterations across the five
different experiments that were carried out. The shaded re-
gion comprises the mean plus and minus 0.3 times the stan-
dard deviation of the five different infidelities.

In Figure 4, VQA (5×105), which utlizes 5×105 copies in
total, consumes 50 state copies per function evaluation. Sim-
ilarly, the other VQA algorithms consume 100 and 250 state
copies per evaluation. One can see that AISO closely matches
or outperforms the results of VQA by consuming only 104

copies in total.
Moving on to VQCS, similar experiments are carried out

for 4-qubit quantum gates (meaning 8-qubits used in total).
The results are summarized in Figure 5. Here, the minimum
H(θ) in each interval of 102 function evaluations out of the
total allowed 103 is plotted. The three VQA algorithms used
here consume 102, 103 and 104 copies per function evaluation
respectively. It is clear from the plots that AISO can match the
performance of standard VQA similarly using considerably
fewer copies to what we saw in the case of VQSP.

In Figures 6 and 7, we present the superiority of AISO over

VQA in a different light. On the x-axis, we plot different
infidelity or Hilbert-Schmidt cost values, and on the y-axis,
we plot the number of copies required to achieve them, which
are exponentially better for AISO.

7 Improved Bounds Using 2-Design
Assumption

In this section, we analyze the assumption of the input state
in more detail. The assumption that the state is sampled
from a 1-design merely says that the input state is the max-
imally mixed state. So, to further understand the notion of
a “typical input state” and to get closer to the notion of the
input state being an average state or a randomly generated
state, we make a stronger assumption on the distribution.
More precisely, we assume that the input state is sampled
from a state 2-design D2. These are ensembles such that
sampling from them is equivalent to sampling a pure state
uniformly (according to Haar measure) up to two statisti-
cal moments. 2-designs are extensively used in quantum in-
formation to generate pseudorandomness and to analyze av-
erage case complexities [Dankert et al., 2009; Scott, 2008;
Ambainis et al., 2009].

In this regime, we derive two results, starting with an upper
bound on the variance of the state-dependent shadow norm
when the state is sampled from a state 2-design.

Theorem 5. Let D2 be a state 2-design and d = Θ(log n).
Then, for any observable O, we have

Varσ∼D2

(
∥O∥2σ,Ud

)
≤ 64∥O∥2F . (9)

Using this result, we can derive a result similar to Theo-
rem 3, with better constants.
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Figure 6: Resource needs for different infidelity objectives. Here, the red curve represents AISO, while the blue curve represents VQA.
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Figure 7: Resource needs for different Hilbert Schmidt Cost objectives. Here, the red curve represents AISO, while the blue curve represents
VQA.

Theorem 6. Let d = Θ(log n) and ρ be an n-qubit pure
state sampled from a state 2-design D2. For any δ, ϵ ∈ (0, 1),
m > 1/

√
δ, and any C > 0, let

T1 ≥ 2 log

(
2(m2 − 1)C

m2δ − 1

)
, T2 ≥ 136

ϵ2
(2m+ 1)∥O∥2F .

(10)

For any parameter vectors θ(1), . . . , θ(C), with probability at
least 1 − δ, we have |⟨WO(θ

(c))⟩ρ − ⟨ŴO(θ
(c))⟩ρ| ≤ ϵ for

all 1 ≤ c ≤ C, where ⟨WO(θ
(c))⟩ρ and ⟨ŴO(θ

(c))⟩ρ are
defined in Eq.s (6) and (8), respectively.

Hence, we see that the lower bound on T1 in Eq. (10) is a
constant time better than the lower bound on T1 in Eq. (7).
By replacing the function evaluations in Theorem 6 with ex-
pectations with arbitrary observables, one can see that similar
advantages can be gained for regular shallow shadow estima-
tion also when the input is sampled from a 2-design.

8 Dealing with Barren Plateaus
Global observables may lead to barren plateaus (regions
with gradients exponentially small in the number of qubits)
occurring in the training landscape [Cerezo et al., 2021;
Liu et al., 2022], which makes evaluating them using quan-
tum devices extremely difficult. Although the gradients are
evaluated classically in AISO, since we may encounter global
observables and require O(1/ϵ2) shadows to additively ap-
proximate the gradients to precision ϵ, in some cases, we
might end up requiring exponentially many shadows for
meaningful approximations. However, several heuristic ap-
proaches have been proposed, which have been experimen-
tally shown to reduce barren plateaus in many cases. We

note that our method is compatible with almost all barren
plateau mitigating methods that have been proposed in the
literature. For example, [Patti et al., 2021; Mele et al., 2022;
Rad et al., 2022; Skolik et al., 2021; Grimsley et al., 2023a;
Grimsley et al., 2023b; Friedrich and Maziero, 2022; Verdon
et al., 2019; Grant et al., 2019; Kulshrestha and Safro, 2022;
Zhang et al., 2022] are methods that ultimately use the quan-
tum device only to estimate ⟨WO(θ)⟩ρ at certain carefully
chosen inputs θ. So, it is clear that if we use shadows to es-
timate them, then exponential advantages similar to the ones
discussed in this paper can be achieved.

9 Conclusion and Future Direction
In this work, we proposed AISO — a training algorithm that
leverages shallow shadows to achieve an exponential reduc-
tion in quantum resources required to train VQA cost func-
tions. AISO is a very general approach that works with al-
most all of the popular shallow quantum circuit structures in
the literature, when used in combination with observables of
low Frobenius norm. It allows one to do more iterations of
the classical optimizer, more hyperparameter tuning, and ex-
periment with various ansatzes and optimizers with very few
executions of the quantum device. We demonstrated this ad-
vantage in two important use cases of interest in quantum in-
formation: Variational Quantum State Preparation and Varia-
tional Quantum Circuit Synthesis.

For future work, we aim to design similar resource-
efficient and ansatz-agnostic protocols for local observables,
by leveraging classical machine learning with classical shad-
ows similar to [Huang et al., 2021].
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