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Abstract
We show how to define and compute example-
based abductive explanations. Such explanations
are guaranteed to be 100% correct, fairly gen-
eral, and persuasive enough since they cover suf-
ficiently many reference instances furnished by
the explainee. We prove that the latter coverage
condition yields a complexity shift to the second
level of the polynomial hierarchy. We present a
CEGAR-based algorithm to derive such explana-
tions, and show how to modify it to derive most an-
chored example-based abductive explanations, i.e.,
example-based abductive explanations that cover as
many reference instances as possible. We also ex-
plain how to reduce example-based abductive ex-
planations to get subset-minimal explanations. Ex-
periments in the case of random forest classifiers
show that our CEGAR-based algorithm is quite ef-
ficient in practice.

1 Introduction
The field of “eXplainable AI (XAI)” has got started in the
recent past [Gunning, 2019] as a response to the need of un-
derstanding Machine Learning (ML) models that are opaque.
The goal of XAI is to help users of a black-box ML model
to determine whether the model itself and/or the predictions
that can be made from it are trustable enough. The generation
of local, post-hoc explanations is among the approaches that
have been developed to reach this goal. Depending on how
those explanations comply with their own expectations, users
may decide to accept or to reject the predictions made.

There exists a huge diversity of methods for deriving expla-
nations from instances and trained models (see e.g., [Molnar,
2019]). This diversity reflects the fact that various explana-
tions (in terms of nature and format) make sense and that no
consensus exists about what a “good” explanation should be.
Thus, many criteria for evaluating explanations (and/or the
XAI methods used to produce them) have been put forward
(see e.g., [Nauta et al., 2023; Amgoud and Ben-Naim, 2022;
Vilone and Longo, 2021; Zhou et al., 2021]). Because some
of those criteria are antagonistic, trade-offs must be looked
for. [Yang et al., 2019] presents three main criteria: fidelity,
generalizability, and persuasibility. Fidelity (also known as

correctness or faithfulness) indicates to which extent expla-
nations capture the actual behaviour of the model. General-
izability concerns the number of instances covered by the ex-
planation that is considered: the larger this number the more
general the explanation. Unlike the two other criteria that de-
pend only on the model and on the instances to be explained,
the persuasibility criterion also considers user satisfaction in
the evaluation of an explanation.

Several families of XAI methods have been pointed out so
far. Among them are formal XAI methods and example-based
XAI methods. Formal XAI methods consist in associating ML
models with circuits that have the same behaviour in terms of
inputs/outputs [Narodytska et al., 2018; Shih et al., 2018a;
2019], so that XAI queries about the models can be delegated
to the circuits. Formal XAI methods are, in essence, good
at fidelity. In example-based XAI methods [Molnar, 2019;
Kenny et al., 2021; Poché et al., 2023], explanations are
examples. As such, example-based XAI methods are good
at persuasibility. Indeed, studies of human reasoning have
shown that the use of examples is fundamental to understand
and explain: humans are prone to use examples as references
[Miller, 2019]. Thus, example-based explanations have been
widely used in the effort to improve interpretability.

In this paper, our goal is to take the best of both worlds
(formal XAI methods and example-based XAI methods) to
derive explanations for ML models that are not interpretable
by design, but are convincing enough for justifying their use
in safety-critical applications involving a binary classification
issue. To be more precise, we present a new model-specific
approach for deriving abductive explanations [Ignatiev et al.,
2019], i.e., explanations justifying why the decision made
on a given input instance has been made (whatever the de-
cision). Because sensitive applications are targeted, fidelity
is paramount. Thus, our approach is relevant to formal XAI:
it guarantees that the explanations that are generated are cor-
rect, in the sense that any instance covered by an explana-
tion is classified in the same way as the instance that trig-
gered the generation of the explanation. Generalizability is
ensured by translating instances into the space of Boolean
conditions used by the predictor [Audemard et al., 2023],
and by focusing on abductive explanations that are irredun-
dant, i.e., subset-minimal. Those explanations do not contain
characteristics we could get rid of them without questioning
correctness. Reference instances, which are supposed to be
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furnished by the explainee, are leveraged to ensure that the
abductive explanations for an instance x that are generated
are persuasive enough for him/her. This is done by focusing
on explanations that cover a preset amount k (or a maximal
number) of reference instances classified in the same way as
x without covering any reference instance classified in a dif-
ferent way.

The contribution of this paper is as follows. We de-
fine example-based abductive explanations suited to Boolean
classifiers based on (possibly dependent) attributes. We iden-
tify the computational complexity of deciding whether an in-
stance has an example-based abductive explanation that is
k-anchored, i.e., that covers at least k reference instances.
We show that that the problem is at the second level of
the polynomial hierarchy in the general case (and in the
specific case of random forests). Then, in order to derive
example-based abductive explanations, we take advantage of
the Counter-Example Guided Refinement Abstraction (CE-
GAR) paradigm [Clarke et al., 2003]. We present a CEGAR-
based algorithm to derive most anchored example-based ab-
ductive explanations, i.e., example-based abductive explana-
tions that cover as many reference instances as possible. We
also explain how to reduce example-based abductive expla-
nations to turn them into subset-minimal ones. Experiments
are made showing the algorithms to compute example-based
abductive explanations practical enough in the case of ran-
dom forests, despite the high complexity of the problems they
solve. Due to space limits, proofs are provided as a sup-
plementary material, available at www.cril.fr/expekctation/.
Additional empirical results and the code used in our experi-
ments are also furnished in this supplementary material.

2 Preliminaries
We suppose the reader familiar with basic notions of proposi-
tional logic. We consider a set X = {x1, . . . , xn} of Boolean
variables (representing the conditions used in a decision tree,
a random forest or a boosted tree). The variables in X do not
necessarily represent conditions that are logically indepen-
dent. Indeed, they can come from the same numerical or cat-
egorical attributes used at start for learning the classifier (for
example, we can find in X a variable x1 = (S > 30) related
to a numerical attribute S but also a variable x2 = (S > 20)
which is logically linked to it: x1 cannot be true while x2

would be false). A domain theory, in the form of a propo-
sitional formula (or a Boolean circuit) Σ over X , indicates
the dependencies between the Boolean variables in X (for in-
stance, we may have Σ = x1 ⇒ x2).

An instance x over X is an n-uple of Boolean values
(noted 0 and 1) that satisfies Σ. Thus, every x ∈ X can also
be viewed as a Boolean attribute. X is the set of all instances.
Requiring that every x ∈ X satisfies Σ ensures that only n-
uples corresponding to feasible instances are considered (for
instance, if n = 2 and x1 and x2 are as above, (1, 0) is not
an instance because it violates Σ). tx is the set of literals over
X making precise the characteristics of x (i.e., if xi = 1,
then tx contains the positive literal xi and if xi = 0, then tx
contains the negative literal xi). We say that a term t, i.e.,
a (conjunctively-interpreted) set of literals over X , covers an

instance x ∈ X if and only if t ⊆ tx. The empty term is
equivalent to >, the Boolean constant always true. For every
literal ` over X , we denote by ∼ ` the complementary literal.
Thus, when ` = xi, we have ∼ ` = xi, and when ` = xi, we
have ∼ ` = xi. `1i = xi and `2i = xi are the two literals over
the variable xi, and var(`1i ) = var(`2i ) = xi.

A binary classifier f over X is a mapping from X to
{0, 1}, associating a Boolean label f(x) with any input in-
stance x. f can be represented as a propositional formula
or a Boolean circuit over X . When f(x) = 1, x is a posi-
tive instance, and when f(x) = 0, x is a negative instance.
Stated differently, we have x ∈ Cf if and only if f(x) = 1
(Cf ⊆X is the concept characterized by f ).

We consider a set RC of labelled instances x ∈X and we
assume that the class associated with every x in RC is the
right class of x for the target concept C that f is expected to
capture. The elements of RC are reference instances (alias
anchors). That is, whenever x ∈ RC is labeled as positive,
the explainee is sure that x ∈ C, while when x ∈ RC is
labeled as negative, the explainee is sure that x 6∈ C. Thus,
we can split RC into two disjoint subsets, R+

C , containing the
elements of RC labeled as positive, and R−C , containing the
elements of RC labeled as negative. Note that RC is not nec-
essarily a subset of the training set used to learn f (we do
not assume that the explainee is aware of the dataset used to
train the classifier). Thus, there may exist instances x belong-
ing to RC that are labelled differently in the training set used
to learn f . In addition, there may exist instances x belong-
ing to R+

C (resp. to R−C ) that are such that f(x) = 0 (resp.
f(x) = 1)).

The purpose of abductive explanations [Ignatiev et al.,
2019] is to explain why the instance x that is considered as
input has been classified by f in the way it has been classified,
thus addressing the “Why?” question.

Definition 1. Given a binary classifier f over X , a set of
Boolean attributes connected via a domain theory Σ, and an
instance x ∈ X , an abductive explanation t for x given f
and Σ is a term t ⊆ tx such that for every instance x′ ∈ X
satisfying t ⊆ tx′ , we have f(x′) = f(x).

Equivalently, when f(x) = 1 (resp. f(x) = 0) an ab-
ductive explanation t for x given f and Σ is an implicant t
of Σ ⇒ f (resp. Σ ⇒ ¬f ) that covers x. Subset-minimal1
abductive explanations for x given f and Σ are also referred
to as sufficient reasons [Gorji and Rubin, 2022] (when Σ is
valid, one recovers the notion of sufficient reasons introduced
in [Darwiche and Hirth, 2020], also called PI-explanations
[Shih et al., 2018b]).

1Unlike [Ignatiev et al., 2020], the notion of abductive explana-
tions considered here does not require explanations to be minimal
w.r.t. set inclusion. When Σ is valid (i.e., all the attributes in X
are logically independent), the notion of abductive explanations we
use thus corresponds to the notion of weak abductive explanation
from [Huang et al., 2021]. However, both notions do not coincide
in the general case since our notion of abductive explanation takes a
domain theory into account.
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3 Example-Based Abductive Explanations
Anchored abductive explanations Let us start by defining
formally a notion of “sufficiently anchored” explanation for
the case f is a binary classifier over X , where “sufficiently”
is captured by considering a minimal number k of reference
instances that must be covered.

Definition 2. Let f be a binary classifier over X , a set of
Boolean attributes connected via a domain theory Σ. Let x ∈
X be an instance such that f(x) = 1 (resp. f(x) = 0),
RC be a set of reference instances, and k be a non-negative
integer. A k-anchored abductive explanation t for x given f
and Σ is an abductive explanation for x given f and Σ that
covers at least k instances x′ from R+

C (resp. R−C ) and no
instance from R−C (resp. R+

C).

Let us illustrate the previous definition using a simple ex-
ample (that will serve as a running example throughout the
paper).

Example 1. Suppose that X = {a, b, c, d}, Σ = >,
and that f = (a ∧ b) ∨ (c ∧ d) ∨ (a ∧ c ∧ d) ∨
(b ∧ c ∧ d). f is represented by the Karnaugh map
[Karnaugh, 1953] given in Figure 1. Suppose also that
R+

C = {(0, 0, 1, 1), (1, 0, 1, 0), (1, 1, 0, 0), (1, 1, 0, 1)} and
that R−C = {(0, 0, 0, 0), (0, 0, 1, 0), (0, 1, 1, 0)}. Those ref-
erence instances are provided as superscripts in the Kar-
naugh map. Observe that though (0, 0, 0, 0) ∈ R−C , we have
f((0, 0, 0, 0)) = 1. Let x = (1, 0, 0, 0). We have f(x) = 1.
x has three subset-minimal abductive explanations given f
and Σ, namely {c, d}, {a, b}, and {a, c}.

• {c, d} covers one element of R+
C ((1, 1, 0, 0)) and one

element of R−C ((0, 0, 0, 0)). While it is an abductive ex-
planation for x given f and Σ and it covers one element
of R+

C , the fact that it also covers one element of R−C
prevents {c, d} from being a k-anchored abductive ex-
planation for x given f and Σ, whatever k.

• {a, b} covers one element of R+
C ((1, 0, 1, 0)) and no el-

ement of R−C , thus {a, b} is a 1-anchored abductive ex-
planation for x given f and Σ.

• Finally, {a, c} covers two elements of R+
C ((1, 1, 0, 0)

and (1, 1, 0, 1)) and no element of R−C , thus {a, c} is a
2-anchored abductive explanation for x given f and Σ.

Accordingly, {a, c} can be viewed as a better explanation
than {a, b} since it covers more instances than {a, b} that
are classified in the same way as x. {a, b} can be viewed
as a better explanation than {c, d} because {c, d} covers an
instance classified by f in a different way than x.

Obviously enough, every k-anchored abductive explana-
tion for x given f and Σ also is a k′-anchored abductive ex-
planation for x given f and Σ, for every k′ ≤ k. Furthermore,
every instance x has an abductive explanation given f and Σ
that does not cover any instance from RC classified by f in
a different way: tx is such an abductive explanation. Hence,
every x has a 0-anchored abductive explanation given f and
Σ. Note nevertheless that the set of abductive explanations for

f c d

a b
00 01 11 10

00 10 0 11 00

01 1 0 0 00

11 11 11 0 0

10 1 1 1 11

Figure 1: A Karnaugh map for f . Each cell corresponds to an in-
stance from X , labelled by 1 when it is positive, and by 0 when it
is negative. Instances from RC are provided as superscripts. The
instance x = (1, 0, 0, 0) to be explained is underlined and red
coloured.

x given f and Σ and the set of 0-anchored abductive expla-
nations for x given f and Σ do not coincide in general: every
0-anchored abductive explanation for x given f and Σ is an
abductive explanation for x given f and Σ, but the two sets
are not always equal. Indeed, on the previous example, {c, d}
is an abductive explanation for x given f and Σ but it is not a
0-anchored abductive explanation for x given f and Σ since
it covers (0, 0, 0, 0) and (0, 0, 0, 0) ∈ R−C while f(x) = 1.

As soon as k > 0, the existence of a k-anchored abductive
explanation for x given f and Σ is not ensured in general.
Thus, on the previous example, x has no 3-anchored abduc-
tive explanation given f and Σ.

In the general case, deciding whether an instance x has
a k-anchored abductive explanation given f and Σ is at the
second level of the polynomial hierarchy:2

Proposition 1. Given a domain theory about X (represented
by a propositional formula or a Boolean circuit Σ), a binary
classifier f over X (represented by a propositional formula
or a Boolean circuit), an instance x ∈ X , a set RC ⊆ X of
reference instances and an integer k > 0, deciding whether
an instance x ∈ X has a k-anchored abductive explanation
given f and Σ is Σp

2-complete in the general case (and this
complexity holds in the restricted case when f is represented
by a random forest).
Most anchored abductive explanations Instead of consid-
ering that the value of the bound k to be used has been pro-
vided by the explainee, we can determine its maximal value
via an optimization process. In that case, one is interested
in generating abductive explanations for x among the most
anchored ones:
Definition 3. Given a domain theory about X (represented
by a propositional formula or a Boolean circuit Σ), a binary
classifier f over X (represented by a propositional formula

2In the supplementary material, we identify some conditions that
makes the problem “only” NP-complete. Those conditions are sat-
isfied when f is a decision tree.
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or a Boolean circuit), and an instance x ∈ X , a set RC

of reference instances, and a non-negative integer k, a most
anchored abductive explanation t for x given f and Σ is a
k-anchored abductive explanation for x given f and Σ such
that k is maximal (i.e., no k+ 1-anchored abductive explana-
tion for x given f and Σ exists).

A straightforward observation is that since every instance x
has a 0-anchored abductive explanation given f and Σ, every
instance x also has a most anchored abductive explanation
for x given f and Σ.

Example 2 (Example 1 cont’d). On the previous example,
x has a unique most anchored abductive explanation given
f and Σ, namely {a, c}, and this explanation is 2-anchored.
It can be observed that {a, c} is a subset-minimal abductive
explanation for x given f and Σ.

However, in the general case, it is not ensured that the
most anchored abductive explanations for x given f and Σ
are among the subset-minimal abductive explanations for x
given f and Σ. This comes from the condition stating that no
instance from RC classified by f in a different way than x
can be covered by a k-anchored abductive explanation for x
given f and Σ.

Example 3 (Example 1 cont’d). Considering the previous ex-
ample, if (1, 0, 0, 1) was added to R−C , none of the subset-
minimal abductive explanations for x given f and Σ (i.e.,
{a, c}, {a, b}, and {c, d}) would be a 0-anchored abductive
explanation for x given f and Σ: after such an update of
R−C , the most anchored abductive explanations for x given
f and Σ would be {a, c, d} and {a, b, d} (those explanations
are 1-anchored abductive explanations for x given f and Σ)
but they are not among the subset-minimal abductive expla-
nations for x given f and Σ.

Obviously enough, as a by-product of Proposition 1, the
computation of a most anchored abductive explanation for x
given f and Σ is Σ2

p-hard in the general case. Indeed, once
a most anchored abductive explanation t for x given f and
Σ has been computed, one can decide in polynomial time for
any k whether x has a k-anchored abductive explanation for
x given f and Σ: it is enough to count the number max of
instances of R+

C covered by t when f(x) = 1 (resp. the
number max of instances of R−C covered by t when f(x) =
0) and to compare max with k to determine whether x has a
k-anchored abductive explanation for x given f and Σ. This
is the case if and only if max ≥ k.

4 Computing Example-Based Explanations
We now show how to derive a subset-minimal most anchored
abductive explanation for a given instance x given f and Σ.
Our algorithm is based on linear search where more and more
anchored explanations are successively looked for. Thus, the
algorithm consists in looking first for an a-anchored abduc-
tive explanation with a = 1, and if such an explanation t is
found, to remove redundant literals from it to derive a subset-
minimal explanation tsmin ; then one computes from tsmin

the largest integer i such that tsmin is an i-anchored abduc-
tive explanation, and the algorithm resumes with a = i + 1.

Of course, an algorithm to compute a k-anchored abductive
explanation for x given f and Σ for a fixed k can be easily
derived as a by-product of the latter algorithm (it is enough to
stop the linear search whenever a ≥ k). If subset-minimality
is not requested, one can also not run the code that remove
redundant literals, at least at the last step (for the previous
steps, the shifts from a to i + 1 that are made possible via
subset-minimization prove computationally useful in general
for improving the linear search).

Let us first explain how to compute an a-anchored abduc-
tive explanation for x given f and Σ, where a is any posi-
tive integer. Our approach relies on a two-phase procedure
reminiscent to the well-established Counter-Example Guided
Refinement Abstraction (CEGAR) paradigm [Clarke et al.,
2003]. Given a ∈ N∗, our approach iteratively generates a
candidate t and then tests whether t actually is an a-anchored
abductive explanation given f and Σ. Each candidate t is de-
rived from a model of a CNF formula Φ generated from x, RC ,
and k. By construction, when x is such that f(x) = 1 (resp.
f(x) = 0), a candidate t is a term satisfying t ⊆ tx such
that at least a instances of R+

C (resp. R−C ) are covered while
avoiding any instances from R−C (resp. R+

C) . For each candi-
date t generated, the verification process then checks whether
t is an abductive explanation for x given f and Σ. Since each
test corresponds to an instance of a coNP-problem, one uses
an NP oracle to achieve each of them. The generation step is
repeated until every candidate has been considered but none
of them has been retained (this shows that no a-anchored ab-
ductive explanation for x given f and Σ exists) or a candidate
that qualifies as an a-anchored abductive explanation for x
given f and Σ has been found.

The CNF formula Φ used to characterize the candidates t
is based on additional Boolean variables. For each `i ∈ tx
such that var(`i) = xi (an element of X = {x1, . . . , xn}),
a variable s`i is introduced. For any model ω of Φ, s`i is
set to 1 in ω precisely when the literal `i ∈ tx belongs to
the candidate t associated with ω. Let Rx

C be the subset of
RC consisting of instances classified by f in the same way
as x. We have Rx

C = R+
C when x is a positive instance and

Rx
C = R−C when x is a negative instance. New variables

associated with elements of Rx
C are also considered. To be

more precise, a variable px′ is introduced for each reference
instance x′ from Rx

C . For any model ω of Φ, px′ is set to 1
in ω precisely when the candidate t associated with ω covers
both x and x′.

The CNF formula Φ consists of the conjunction of three CNF
formulae (1), (2), and (3).∧

x′∈Rx
C

∧
`i∈tx\tx′

¬s`i ∨ ¬px′ (1)

CNF(
∑

x′∈Rx
C

px′ ≥ a) (2)

∧
x′∈RC\Rx

C

∨
`i∈tx\tx′

s`i (3)

The CNF formula (1) is composed of binary clauses indi-
cating how the variables s`i (i ∈ [n]) and px′ (x′ ∈ Rx

C) are
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connected. Basically, whenever px′ is set to 1, every literal `i
belonging to tx but not to tx′ must be set to 0 in order to en-
sure that the candidates t to be considered cover both x and
x′. This is ensured by considering the clause ¬s`i ∨ ¬px′

within (1), that forces s`i to be set to 0 when px′ is set to 1.
The CNF formula (2) ensures that any candidate t covers

at least a instances from Rx
C . Primarily, the cardinality con-

straint
∑

x′∈Rx
C
px′ ≥ a is considered, and this constraint

is turned into a CNF formula using state-of-the-art encoding
techniques, as presented in [Roussel and Manquinho, 2021].

Finally, for being a candidate, t must not cover any instance
x′ from RC \ Rx

C . We have that t does not cover x′ when
there is at least one literal `i ∈ tx such that ∼ `i ∈ tx′ and `i
belongs to t. To implement this, for each x′ from RC \ Rx

C
a clause consisting of all the selector variables s`i associated
with the literals `i such that `i ∈ tx and ∼ `i ∈ tx′ must be
satisfied.
Example 4 (Example 1 cont’d). To avoid too heavy nota-
tions, let us index the instances from Rx

C = R+
C as follows:

(0, 0, 1, 1)︸ ︷︷ ︸
1

, (1, 0, 1, 0)︸ ︷︷ ︸
2

, (1, 1, 0, 0)︸ ︷︷ ︸
3

, (1, 1, 0, 1)︸ ︷︷ ︸
4

.

Suppose that a = 1. The formula Φ for the running example
is then composed of the following clauses:
¬sa ∨ ¬p1 ¬sc ∨ ¬p1 ¬sd ∨ ¬p1 ¬sc ∨ ¬p2
¬sb ∨ ¬p3 ¬sb ∨ ¬p4 ¬sd ∨ ¬p4

CNF(p1 + p2 + p3 + p4 ≥ 2)

sa sa ∨ sc sa ∨ sb ∨ sc

By construction, every model ω of Φ characterizes a candi-
date t that consists of the literals `i of tx such that ω(s`i) = 1.
t covers at least a elements of Rx

C and no element of RC\Rx
C .

If there is no such model ω, i.e., if Φ is unsatisfiable, then no
a-anchored abductive explanation for x given f and Σ ex-
ists. In the remaining case, in order to determine whether
t qualifies as a true a-anchored abductive explanation for x
given f and Σ, we need to verify whether t |= Σ ⇒ f holds
when f(x) = 1 (and whether t |= Σ ⇒ ¬f holds when
f(x) = 0). This is equivalent to examining whether the for-
mula Γ = t ∧ Σ ∧ ¬f is unsatisfiable when f(x) = 1 (and
whether Γ = t ∧ Σ ∧ f is unsatisfiable when f(x) = 0).
If this verification condition holds, i.e., if Γ is unsatisfiable,
then t is an a-anchored abductive explanation for x given f
and Σ. Accordingly, the algorithm may stop if a is consid-
ered by the explainee as sufficiently large (i.e., a has reached
a preset bound k).

Clearly enough, the resulting explanation t is not guaran-
teed to be subset-minimal (it is not in general). If we are inter-
ested in deriving from t a subset-minimal a-anchored abduc-
tive explanation tsmin for x given f and Σ, a simple greedy
algorithm can be used. This greedy algorithm consists in con-
sidering the literals `i of t in a specific order and to test itera-
tively whether (t \ {`i}) ∧ Σ ∧ ¬f is still unsatisfiable when
f(x) = 1 (and whether (t \ {`i}) ∧ Σ ∧ f is still unsatisfi-
able when f(x) = 0). If this is the case and t \ {`i} does
not cover any instance from RC \ Rx

C , literal `i can be defi-
nitely removed from t (i.e., in the algorithm, t is replaced by

t\ {`i}), otherwise it is kept and it will be kept when the next
literals of t will be processed. At the end, when all the literals
belonging to t at start have been processed, the resulting term
tsmin is a subset-minimal a-anchored abductive explanation
for x given f and Σ. Note that there is no need to test that
whether tsmin covers at least a elements of Rx

C since this is
necessarily the case (tsmin is a subset of t, so that every in-
stance covered by t also is covered by tsmin ). Though it is
guaranteed that tsmin is a subset-minimal a-anchored abduc-
tive explanation for x given f and Σ, it turns out that tsmin

can be more than a-anchored, thanks to the removal of redun-
dant literals that took place when computing it.

From tsmin , we can compute in linear time the number i
of elements of Rx

C that are covered by tsmin . Thus, when
the goal is to compute a most anchored abductive explanation
for x given f and Σ, the algorithm may resume with a =
i + 1 as the next bound to be tested. Whenever i > a, the
corresponding shift in the linear search is useful to get rid of
computationally expensive, yet useless steps.
Example 5 (Example 1 cont’d). Suppose that the model
ω of Φ has been found, such that ω satisfies sa,¬sb,
sc, sd, ¬p1,¬p2, p3,¬p4. The corresponding candidate t =

{a, c, d} is a 1-anchored abductive explanation for x given f
and Σ.

Considering the literals of t in sequence as folllows a, c, d,
the greedy algorithm tests first whether {c, d} is a 1-anchored
abductive explanation for x given f and Σ. This is not the
case since this term covers the instance (0, 0, 0, 0) from RC \
Rx

C . Thus, at the next iteration, the greedy algorithm tests
whether {a, d} is a 1-anchored abductive explanation for x
given f and Σ. This is not the case since this term covers
the model (1, 1, 1, 0) of ¬f while f(x) = 1. At the following
iteration, the greedy algorithm tests whether {a, c} is a 1-
anchored abductive explanation for x given f and Σ. The test
succeeds, so the subset-minimal explanation tsmin = {a, c}
is returned.

Finally, one can realize that tsmin actually is a 2-anchored
abductive explanation for x given f and Σ since it covers
not only the instance (1, 1, 0, 0) from R+

C (just as the can-
didate t = {a, c, d} one started with), but also the instance
(1, 1, 0, 1) from R+

C . Thus, once tsmin has been identified,
there is no need to resume the search while looking for a 2-
anchored abductive explanation for x given f and Σ, since
such an explanation has already been identified. The next step
is thus to consider whether a 3-anchored abductive explana-
tion for x given f and Σ, which is not the case for the running
example (so the algorithm stops and tsmin is returned).

Now, if the verification condition is not met, indicating that
the candidate t is not a true a-anchored abductive explanation
for x given f and Σ, we need to search for an alternative
candidate. To be sure that the spurious candidate term t will
not be considered again during the generation step, one needs
to block it. This could be achieved by simply adding to Φ a
clause composed of the complementary literals to those satis-
fied by the model ω of Φ that characterizes t. However, this
approach would be rather inefficient as it requires the addi-
tion to Φ of very large clauses, and each clause eliminates
only a single model of Φ. A more robust approach consists
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in adding to Φ a constraint asserting that any subset of the
candidate term t cannot be a valid a-anchored abductive ex-
planation for x given f and Σ. Thus, the next candidates
must include at least one literal not belonging to t. This can
be ensured by adding to Φ a single clause given by (4):∨

`i∈tx\t

s`i (4)

Example 6 (Example 1 cont’d). Assume that a = 1 and that
at the first iteration, the model ω1 of Φ satisfying sa,¬sb,
¬sc,¬sd, ¬p1, p2, p3, p4 has been computed. The associated
candidate t1 = {a} is s.t. Γ = t1∧>∧¬f ≡ a∧¬f is satis-
fiable, as {a, b, c,¬d} is a model of Γ. Thus, the verification
condition does not hold. t1 = {a} is deemed a spurious can-
didate, prompting the addition to Φ of the clause sb∨ sc∨ sd.

At the second iteration, suppose that the model ω2 of
Φ∧ (sb ∨ sc ∨ sd) has been found, where ω2 satisfies sa,¬sb,
sc,¬sd, ¬p1,¬p2, p3, p4. The associated candidate is t2 =
{a, c}. Since t2 ∧ ¬f is unsatisfiable, the verification condi-
tion holds, showing that t2 = {a, c} is a 1-anchored abduc-
tive explanation for x given f and Σ. The derivation from t2
of a subset-minimal 1-anchored abductive explanation for x
given f and Σ via the greedy algorithm leads to keep t2 as a
whole (t2 does not contain any redundant literal). Then we
can count the number of elements of Rx

C that are covered by
t2 and realize that t2 actually is a subset-minimal 2-anchored
abductive explanation for x given f and Σ.

5 Experiments
We made some experiments is order to figure out how our
algorithm for deriving subset-minimal most anchored abduc-
tive explanations scales up. We focused on binary classifiers
f represented by random forests.
Experimental setup The empirical protocol we consid-
ered was as follows. We have focused on 14 datasets is-
sued from three well-known repositories, namely OpenML1

(openml.org), UCI2 (archive.ics.uci.edu/ml/), and UCR3

(timeseriesclassification.com). Multi-class datasets (balance
and arrowhead) have been converted into datasets for binary
classification using the one-vs-one approach. Ten random
forests have been learned per dataset using scikit-learn.
All the hyperparameters have been set to their default values
(100 trees per forest). Categorical features have been one-hot
encoded. Numerical features, have been binarized on-the-fly
by the random forest learning algorithm. A 10-fold cross val-
idation process has been achieved. All the experiments have
been conducted on a computer equipped with Intel(R) XEON
E5-2637 CPU @ 3.5 GHz and 128 Gib of memory.

Table 1 summarizes information about the datasets used
and the random forests learned. The first four columns give
respectively the dataset name (with a superscript indicating
the repository from which it comes), the number of features
(#F ), the number of instances (#I) and the average number
of Boolean conditions (#V ) used in the 10 random forests.
The fifth column (%L) indicates the percentage of instances
of the dataset that are labelled as negative. Finally, the last
column gives the mean F1-score of the forests that have been
learned.

Dataset #F #I #V %L F1-score

balance2 4 337 28.0 85 90.72(±2.09)
compas1 11 6172 69.5 54 61.03(±2.23)
breasttumor1 37 286 114.9 58 62.6(±10.63)
divorce2 54 170 116.5 51 97.59(±3.9)
cleveland1 22 303 663.3 54 80.47(±6.83)
wine3 234 111 851.2 51 97.31(±4.22)
arrowhead3 249 146 879.4 45 85.39(±10.56)
australian1 38 690 1564.0 56 85.92(±5.69)
biodegradation1 41 1055 5730.7 66 90.98(±2.1)
dexter1 20000 600 7892.9 50 93.38(±2.76)
spambase2 57 4601 15005.5 61 96.24(±0.48)
gisette1 5000 7000 24464.6 50 97.54(±0.6)
mnist381 784 13966 32638.6 51 98.67(±0.41)
christine1 1636 5418 43587.5 50 71.34(±2.16)

Table 1: Dataset characteristics and classification performance of
the random forests learned.

Our goal was to evaluate the algorithm for computing a
subset-minimal most anchored abductive explanation, pre-
sented in Section 4. For each dataset and each random for-
est learned, a set RC of reference instances has been selected
uniformly at random from the training set. The number of
reference instances retained in RC varied to consider 5%,
10% or 20% of the instances. Several encodings of random
forests into CNF formulae exist (e.g., [Audemard et al., 2020;
Izza and Marques-Silva, 2021]), we used the one presented
in [Audemard et al., 2022]. A domain theory has been con-
sidered connecting the non-independent Boolean conditions
used in the forests. Ten instances picked up uniformly at ran-
dom in the corresponding test set have been considered. Thus,
a total number of 100 instances per dataset has been consid-
ered. For each of them, the algorithm presented in Section 4
has been run in order to compute a most anchored abductive
explanation and the number k of reference instances it cov-
ers. The SAT solver glucose [Audemard and Simon, 2009]
has been used to address the various (un)satisfiability tests
encountered at each run. A timeout (TO) of 60s has been
considered per instance.

Experimental results Table 2 synthesizes the empirical re-
sults. The three main columns gather the results obtained for
the three percentages used (5%, 10%, and 20%). Each main
column is divided into six parts. The number of instances x
for which the time limit has been reached during the search
for a 1-anchored explanation is given in columns kTO

=0 . The
number of instances x for which our algorithm has proved
that no 1-anchored explanation exists is given by columns
kTO
=0 . The number of instances x for which our algorithm

has found during the search an explanation that is at least 1-
anchored is given by columns k>0. Accordingly, we have
kTO
=0 + kTO

=0 + k>0 = 100. Columns kAVG
>0 indicate the mean

number of reference instances covered by the most anchored
explanation that has been derived before the time limit, pro-
vided that this number is > 0. Columns time give the mean
runtime (in seconds) used to compute a most anchored ex-
planation when found before the time limit, and columns TO
indicate the number of timeout (out of 100) that have been
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Dataset 5% 10% 20%

kTO
=0 kTO

=0 k>0 kAV G
>0 time TO kTO

=0 kTO
=0 k>0 kAV G

>0 time TO kTO
=0 kTO

=0 k>0 kAV G
>0 time TO

balance 0 8 92 4.9(±2.0) 0.1(±0.0) 0 0 2 98 9.2(±3.9) 0.1(±0.0) 0 0 0 100 17.9(±6.6) 0.1(±0.0) 0
compas 0 50 50 6.3(±6.6) 0.2(±0.1) 0 0 52 48 6.6(±4.8) 0.3(±0.1) 0 0 68 32 8.6(±6.0) 0.6(±0.1) 0
breasttumor 0 34 66 1.7(±0.9) 0.2(±0.3) 0 0 24 76 2.5(±1.6) 0.3(±0.3) 0 0 12 88 3.6(±2.5) 0.4(±0.5) 0
divorce 0 0 100 5.3(±1.1) 0.1(±0.0) 0 0 0 100 14.8(±0.6) 0.1(±0.0) 0 0 0 100 32.8(±3.2) 0.2(±0.0) 0
cleveland 0 6 94 4.1(±1.6) 1.5(±1.0) 0 0 4 96 7.9(±3.2) 2.9(±2.2) 0 0 2 98 13.6(±6.0) 6.2(±5.2) 0
wine 0 26 74 1.9(±0.8) 0.2(±0.1) 0 0 14 86 2.6(±1.1) 0.3(±0.1) 0 0 6 94 3.8(±1.7) 0.6(±0.5) 0
arrowhead 0 18 82 2.8(±1.3) 0.3(±0.1) 0 0 18 82 6.2(±2.1) 0.5(±0.2) 0 0 18 82 11.5(±3.3) 6.3(±4.8) 0
australian 0 2 98 6.1(±2.1) 44.1(±19.6) 54 0 2 98 10.2(±4.2) 53.0(±14.2) 74 0 0 100 16.6(±8.3) 55.7(±12.9) 86
biodegradation 2 6 92 2.5(±1.4) 40.8(±22.7) 52 4 6 90 3.1(±1.6) 51.3(±15.6) 67 4 6 90 4.3(±2.1) 59.8(±1.3) 90
dexter 0 30 70 2.5(±1.9) 14.3(±16.4) 6 0 28 72 3.2(±2.3) 33.1(±23.1) 22 0 26 74 4.3(±3.2) 51.4(±16.5) 56
spambase 18 8 74 1.6(±0.9) 60.0(±0.0) 92 28 8 64 1.9(±1.3) 60.0(±0.0) 92 24 6 70 2.5(±1.6) 58.7(±7.8) 92
gisette 0 18 82 2.6(±0.7) 60.0(±0.0) 82 0 14 86 2.5(±0.7) 60.0(±0.0) 86 0 10 90 2.0(±0.6) 60.0(±0.0) 90
mnist38 17 0 83 1.0(±0.2) 60.0(±0.0) 100 12 0 88 1.1(±0.3) 60.0(±0.0) 100 19 0 81 1.1(±0.3) 60.0(±0.0) 100
christine 5 90 5 1.0(±0.0) 60.0(±0.0) 10 14 86 0 −−−− −−−− 14 73 27 0 −−−− −−−− 73

Table 2: Empirical results.

reached before the normal termination of the algorithm (i.e.,
when a subset-minimal most anchored explanation for x has
been computed).

The datasets in Table 2 are sorted according to their diffi-
culty, assessed by the value of #V in Table 1, that appears
strongly correlated to the performance of our algorithm, as
reflected by columns time and TO. Looking at columns
TO, it turns out that the optimal value of k has systemati-
cally been found (i.e., no timeout) for half the datasets, i.e.,
up to the arrowhead dataset whatever the percentage used,
and the time needed to determine this optimal value was very
short (columns time). Furthermore, with a single exception,
our algorithm has been able to point out useful information
about at least 72% of the instances (even when the algorithm
did not terminate normally). Indeed, for many instances x

(their numbers being given in columns kTO
=0 ), the algorithm

succeeded in showing that no k-anchored explanation (with
k > 0) exists for x. For many other instances x (their num-
bers being given in columns k>0), the algorithm succeeded
in showing that a k-anchored explanation (with k > 0) exists
for x. It can be checked that the sum kTO

=0 + k>0 exceeds
72 for each dataset, whatever the percentage used, except for
christine when the percentage used was 20%. Finally, our
experiments has shown that the datasets used exhibit a signif-
icant discrepancy as to the number of instances that only have
0-anchored explanations.

6 Other Related Work
Our notion of anchored explanations should not be confused
with the notion of dataset-based abductive explanations (aka
sample-based explanations) introduced recently in [Cooper
and Amgoud, 2023]. The (weak) dataset-based abductive
explanations for x given f as pointed out in [Cooper and
Amgoud, 2023] correspond to the abductive explanations for
x given f in the sense of Definition 1 provided that the
sole instances that are feasible are those in RC . A strong
point of (weak) dataset-based abductive explanations is that
they can be identified, derived and minimized w.r.t. set-
inclusion, in polynomial time. Furthermore, their computa-
tion does not require to have a representation of the classi-
fier f available (an oracle for computing f is enough, thus
black-box classifiers can be taken into account). The main

downside of such explanations is that their correctness is not
guaranteed. For instance, considering Example 1 again, a
subset-minimal dataset-based abductive explanation for x =
(1, 0, 0, 0) is {a}. Indeed, when the two instances (1, 1, 1, 1)
and (1, 1, 1, 0) are considered as impossible because they
do not belong to RC , one may assume that the correspond-
ing decisions for them is 1. However, this does not com-
ply with the decisions produced by the classifier. Indeed,
f((1, 1, 1, 1)) = f((1, 1, 1, 0)) = 0 showing that {a} does
not properly explain the behaviour of the classifier f when it
predicts a positive decision for x since f(x) = 1.

7 Conclusion and Perspectives
We have defined example-based abductive explanations
suited to binary classifiers. We proved that deciding whether
a k-anchored abductive explanation for an instance exists
is at the second level of the polynomial hierarchy when
k > 0, which precludes the existence of efficient algo-
rithms for generating such explanations. Nevertheless, we de-
signed a CEGAR-based algorithm to derive subset-minimal
most anchored abductive explanations. To evaluate its per-
formance in practice, we focused on binary classifiers rep-
resented by random forests. Empirical results showed that
despite the intrinsically high complexity of the problem it
solves, our CEGAR-based algorithm is practical enough for
“mildly hard” datasets, i.e., those leading to random forests
based on up to a thousand Boolean conditions.

Several perspectives for further research can be pointed
out. Thus, we plan to improve our CEGAR-based algorithm.
A way to do it consists, during the generation phase, in look-
ing for candidates t such that the number of literals of tx be-
longing to t is as high as possible. That way, clause (4) added
at the refinement phase would restrict the remaining part of
the search space in a more drastic way. Candidates t could
be generated using a time-efficient local search approach (in
that case the maximality of the number of literals of tx be-
longing to t would not be ensured) or using a MaxSAT solver
(in that case, the optimality would be guaranteed at the price
of a generation phase that would be computationally more de-
manding). In addition, it would be interesting to evaluate the
empirical performance of our CEGAR-based algorithm when
other binary classifiers than random forests are used.
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