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Abstract
The presence of noisy labels in a training dataset
can significantly impact the performance of ma-
chine learning models. In response to this issue, re-
searchers have focused on identifying clean samples
and reducing the influence of noisy labels. Recent
works in this field have achieved notable success
in terms of generalizability, albeit at the expense of
extensive computing resources. Therefore, reduc-
ing computational costs remains a crucial challenge.
Concurrently, in other research areas, there has been
a focus on developing fine-tuning techniques to ef-
ficiently achieve high generalization performance.
Despite their proven efficiently achievable general-
ization capabilities, these techniques have seen lim-
ited exploration from a label noise point of view. In
this research, we aim to find an effective approach
to fine-tune pre-trained models for noisy labeled
datasets. To achieve this goal, we empirically in-
vestigate the characteristics of pre-trained models
on noisy labels and propose an algorithm, named
TURN. We present the results of extensive testing
and demonstrate both efficient and improved denois-
ing performance on various benchmarks, surpassing
previous methods.

1 Introduction
Despite the remarkable performance of deep neural networks
(DNNs), their effectiveness decreases significantly when
trained with inaccurate supervision. Additionally, manu-
ally correcting noisy labels or acquiring clean labels anew
is challenging due to the large-scale nature of datasets. To
address this issue, researchers have developed various ap-
proaches within the field of Learning with Noisy Labels (LNL).
These approaches encompass robust training loss [Zhang and
Sabuncu, 2018; Wang et al., 2019], regularization [Cheng
et al., 2023; Ko et al., 2022], and semi-supervised learning
methods [Li et al., 2020; Liu et al., 2020].

However, recent studies in the field of LNL have shown an
increase in computational complexity. As demonstrated in Ta-
ble 1, one of the notable algorithms called UNICON [Karim
et al., 2022] incurs a substantial training time increase of
622% compared to the vanilla approach. This is primarily

Algorithm Vanilla GCE ELR ELR+ DivideMix UNICON
Cost (Min.) 108.6 110.7 118.9 248.8 574.1 675.6

Table 1: Training time on CIFAR-100 dataset with symmetric 60%
noise case from scratch.

due to the utilization of noisy labeled samples. Notably, the
most computationally expensive aspect is the careful detec-
tion and integration of noisy labeled samples. For example,
UNICON employs an expensive contrastive loss, resulting
in higher computational costs. The motivation behind such
a costly incorporation of noisy labels is to enhance the gen-
eralization performance, which can be derived from a larger
training dataset.
We are motivated by the conjecture that pre-trained mod-

els (PTMs), widely recognized for their strong generaliza-
tion performance with fast adaptation, have the potential to
effectively address the limitations of previous denoising algo-
rithms. Recent research supports this intuition by demonstrat-
ing that PTMs can quickly adapt to new target datasets using
few-shot correctly labeled samples and achieve generalization
performance across a wide range of tasks [He et al., 2022;
Assran et al., 2022]. This ability is attributed to their robust
feature extraction capabilities. Therefore, the use of PTMs
in LNL methods can contribute to improving generalization
performance in a few epochs while simultaneously reducing
computational costs by minimizing the involvement of poten-
tially noisy labels.

However, there has been limited research on the application
of PTMs to noisy labeled datasets and the effective utilization
of their valuable knowledge in such scenarios. Therefore,
there is a need to investigate methods that are both efficient
and effective in leveraging the robust feature extractor of PTMs
in the presence of noisy labels.
This research introduces a robust method to transfer the

knowledge of PTMs to a target dataset that probably has noisy
labels. To this aim, two adaptation methods are explored:
full fine-tuning (FFT) and linear probing (LP). In the FFT
approach, all parameters of the PTM are updated, while in the
LP tune only the last fully-connected (FC) layer with frozen
feature extractor.
Contribution. The main observations and contributions of
this research are summarized as follows:
• It is confirmed that when a high (low) proportion of noisy
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Figure 1: Illustration of the proposed algorithm. We leverage pre-trained models to tune the model by using the noisy-labeled dataset. The
proposed algorithm consists (1) Linear probing, and (2) Iteratively cleansing.

labels is present, the feature extractor becomes distorted
(empowered) when tuned using FFT, respectively. Since
we lack sufficient information on the noisy ratio, develop-
ing a proper algorithm is needed. 1

• The proposed method, fine-TUning pre-trained models for
Robustness under Noisy labels (TURN), consists of two
adaptation steps (as described in Figure 1): LP and then
FFT. The LP step aims to adapt the model to the target task
without compromising the integrity of the feature extractor,
enabling the effective detection of noisy samples. The FFT
step further enhances the feature extractor by updating
entire trainable parameters, followed by dataset cleansing.

• Experimental results demonstrate the efficiency and robust-
ness of the proposed method compared to existing LNL
methods on various datasets, including synthetically noisy-
labeled datasets like CIFAR-100, as well as real-world
datasets such as WebVision and Clothing1M.

2 Preliminary
Learning with noisy labels. Let us denote the training dataset
as Dtrain = {(xi, ȳi)}Ni=1, comprising N pairs of input images
xi and their corresponding labels ȳi 2 {1, . . . , C}. In real-
world scenarios, the given label ȳi can be corrupted due to
various factors, such as human errors in crowd-sourced label-
ing systems. We use yi to denote the ground truth label for
(xi, ȳi), which is not accessible during the training phase. It
is widely acknowledged that models trained on noisy labeled
datasets Dtrain using conventional classification loss functions,
such as cross-entropy loss (LCE), often exhibit poor perfor-
mance on test data. This limitation poses challenges when
deploying such models in real-world scenarios. Therefore,

1A similar observation was noted in a previous study [Cheng et
al., 2023], but their findings were only focused on a SimCLR model
trained on the target dataset. However, we expand this to the models
trained on different datasets (e.g., ImageNet) and various PTMs.

training robust models capable of effectively handling noisy
labeled datasets becomes essential.
Pre-trained model and fine-tuning. In recent times, several
PTMs have been proposed for image-related tasks, encom-
passing models trained using supervised learning (SL) [Doso-
vitskiy et al., 2021; Liu et al., 2021; Liu et al., 2022], self-
supervised learning (SSL) [He et al., 2022; Assran et al.,
2022], and multimodal learning [Radford et al., 2021]. They
have become accessible and demonstrated significant perfor-
mance in classification tasks. To harness the power of the
pre-trained feature extractor, two primary tuning methods are
commonly employed: linear probing (LP) and full fine-tuning
(FFT). We represent the classification model with a PTM as
g(f(x; ✓);�), where g(·;�) denotes the linear classifier with
its parameter �, and the feature extractor f(·; ✓) has its parame-
ter ✓. In LP, ✓ remains frozen and only � is trained. In contrast,
FFT involves tuning all trainable parameters, including both
✓ and �. The advantages and disadvantages of LP and FFT
are fundamentally distinct. LP has the strength of inexpensive
computational cost thanks to the limited number of trainable
parameters, but has rigid adaptability. On the other hand, FFT
has strong adaptability, but requires a large amount of training
resources.

3 Motivating Observation
In this section, our objective is to analyze the behavior of
the feature extractor when tuned on severely or slightly noisy
labels. We particularly focus on identifying the conditions that
lead to improvements in the feature extractor. The key obser-
vations that form the basis of our investigation are summarized
as follows.
(Obs 1) The presence of a high proportion of noisy labels can
significantly distort the feature extractor when FFT is applied.
(Obs 2) Conversely, when the noise ratio is not severe, FFT
can effectively enhance the feature extractor, allowing it to
construct class-wise clusters accurately.
Inspired by these observations, we propose a denoising algo-
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Figure 2: Illustration about tuning characteristics under noisy labeled dataset. We plot t-SNE results before and after FFT on the noise ratio of
90% and 10% datasets. Simply speaking, 60% shows well-clustered features while 90% shows poorly-clustered result.

rithm for PTMs, which is elaborated in Section 4. In subse-
quent paragraphs, we provide detailed explanations for these
two motivations.2

Experimental Setting. In our investigation, we performed
experiments to evaluate the performance of several popular
PTMs on a dataset with noisy labels. The considered PTMs
include ViT-B/16 [Dosovitskiy et al., 2021], ConvNeXt-T [Liu
et al., 2022], CLIP-ViT-B [Radford et al., 2021], and MAE-
ViT-B [He et al., 2022]. To generate the noisy labeled dataset,
we employ the symmetric label-flipping technique on the
CIFAR-100 dataset. This technique randomly flips the labels
of either 90% or 10% of the samples, resulting in different
levels of label noise. We investigate the impact of noisy la-
bels by visualizing the embedding of randomly sampled 10
classes from the test dataset using t-SNE [Van der Maaten
and Hinton, 2008] plots. Each model is trained for 5 epochs
following [Kumar et al., 2022].
(Obs 1) In the severe noise case, applying FFT results in
distortion of the feature extractor. The distortion of the
feature extractor occurs due to the incorrect supervision signals
by the noisy labels. To gain a deeper understanding of this
phenomenon, we employ t-SNE plots. In Figure 2, the middle
row illustrates the initial feature extractor of each PTM, while
the bottom row displays the features after applying FFT with
90% noisy labels. It can be seen that the features become
mixed and less distinguishable. This effect is particularly
evident when the initial clusters of the PTMs are already poorly
defined, i.e., MAE. As a result, the application of FFT on a

2There was an observation of the impact of FFT and LP for
PTMs [Kumar et al., 2022]. Its main focus is on scenarios where
PTMs are fine-tuned on Dtrain ⇠ (X ,Y) and tested on out-of-
distribution dataset, i.e., Dtest ⇠ (X 0,Y), where X 0 6= X . In
contrast, we mainly focus on noisy label case, where the input images
x in the training and testing datasets follow identical distribution
while the labels in the training dataset is inaccurate.

severely noisy dataset leads to a trained feature extractor that
fails to adequately capture the intrinsic characteristics of the
samples.
(Obs 2) FFT improves the feature extractor when the tar-
get dataset has slight label noise. When dealing with minor
label noise in the target dataset, applying FFT to the feature ex-
tractor yields improvements in constructing class-wise clusters
effectively. The upper row of Figure 2 reveals that the models
under examination exhibit a better construction of class-wise
clusters compared to the middle row. This observation sug-
gests that fine-tuning the feature extractor on a dataset with
slight label noise can enhance its performance, enabling it to
capture more meaningful features from each sample.

4 Proposed Method: TURN
Based on the findings in Section 3, we can extract crucial
strategies for the effective use of PTMs in noisy label datasets.
First, if the training dataset is significantly contaminated with
label noise (i.e., Obs 1), it is critical to avoid directly incor-
porating these noisy labels, as they can negatively impact the
valuable feature extractor of PTMs. Hence, a buffer, such as
LP, is needed to manage these highly noisy instances, as it al-
lows the feature extractor to remain frozen. Second, when the
training dataset exhibits relatively low label noise (i.e., Obs
2), FFT should be employed for task adaptation. This is due
to the need for the feature extractor to be adjusted to the target
dataset after FFT in the presence of minor noise. However, a
key challenge remains: the lack of specific information on the
noise label, including the intensity of the noise ratio. There-
fore, the suggested approach to protect the feature extractor
is a two-step procedure involving LP, followed by FFT. This
section introduces our proposed two-step method, referred
to as TURN (fine-TUning pre-trained models for Robustness
under Noisy labels), aimed at addressing these challenges.
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Algorithm 1 Pseudo code of TURN
Input: Dataset Dtrain = {(xi, ȳi)}Ni=1, Linear classifiers

g(z;�), Pre-trained feature extractor f(x; ✓), GMM
threshold ⌧ , Linear probing epoch ELP, Full fine tun-
ing epoch EFFT

Output: Fine-tuned model g(f(·))
/* Step 1: Linear probing */
Extract feature zi = f(xi; ✓) for all samples (xi, ȳi) 2 Dtrain
for e < ELP do

Train the linear classifier g(zi;�) under GCE Loss:
LGCE(g(zi;�), ȳi)

end
/* Step 2: Select clean samples and FFT */
for e < EFFT do

Extract per-sample loss for all samples in Dtrain
Construct clean subset Dclean by using GMM with
threshold ⌧

Train the model g(f(xj ; ✓);�) under
LCE(g(f(xj ; ✓)�), ȳj) on Dclean = {(xj , ȳj)}

end

4.1 Algorithm Description
In this section, we provide a detailed explanation of the pro-
posed algorithm. Briefly speaking, The algorithm consists of
two main steps. In Step 1, the algorithm utilizes LP with an
initialized fully connected layer, denoted as g(z;�), where z
represents the output of the frozen feature extractor f(x; ✓) for
each input image x. Subsequently, in Step 2, the algorithm it-
eratively cleanses the training dataset and performs FFT on the
entire model g(f(x; ✓);�) using a subsampled dataset Dclean.
The procedure of TURN is described in Algorithm 1.
Step 1: Linear probing. The first step of the algorithm
serves two main objectives. Firstly, the objective is to obtain a
classifier that can detect noisy labels, which is consistent with
the approach taken by previous works that utilize a warm-up
phase before detecting noisy labels [Li et al., 2020; Karim et
al., 2022; Kim et al., 2021]. Second, during the training of the
classifier for detecting noisy labels, it is crucial to ensure that
the feature extractor is not distorted by noisy labels. To address
this, we employ LP, which helps protect the feature extractor
from being affected by severe label noise. As mentioned in
Section 3, there is evidence that the feature extractor can be
improved through FFT when applied to datasets with a small
proportion of noisy labels. However, since the exact degree of
label noise is unknown, we adopt a conservative approach by
freezing the feature extractor until we have a classifier capable
of detecting noisy labels.
Additionally, applying LP enhances efficiency, which is a

key consideration derived from the inherent strengths of LP,
as described in Section 2. Therefore, we employ the following
implementation technique. Since the feature extractor remains
frozen in this step, the extracted features of the input images
remain unchanged. As a result, we pre-extract the features zi
of input images xi as zi = f(xi; ✓) in advance, minimizing
computational overhead during the subsequent steps.

Z = {zi|f(xi; ✓)} 8(xi, ȳi) 2 Dtrain.

Next, we update the parameters � for ELP epochs by utiliz-

ing the Generalized Cross Entropy loss [Zhang and Sabuncu,
2018], denoted as LGCE = 1�g(zi;�)

q

q , where q is a hyperpa-
rameter. GCE loss is used to mitigate the influence of noisy
labels during linear classifier training. This step is crucial for
effectively training the linear classifier, as it helps to clean the
dataset in preparation for the subsequent steps.
Step 2: Cleansing and FFT In Step 2, the main objective is
to improve the performance of the model by adapting it to the
target dataset. As mentioned in Section 3, applying FFT to a
dataset with a slight noise label enables the feature extractor
to better adapt to the target dataset. Therefore, the remaining
part of this step focuses on obtaining a sufficiently cleansed
dataset. This stage is divided into two substeps: cleansing
and FFT. In the cleansing phase, clean samples are selected
from the given noisy dataset, while discarding the remaining
samples. Following the cleansing phase, FFT is carried out on
the selected clean subset, to improve the performance of the
model on the target dataset. These two substeps are carried
out for EFFT epochs iteratively. This is because a model that
is trained better exhibits a greater ability to distinguish noisy
labels.

Note that we can achieve efficiency by discarding the noisy
labeled samples during the FFT procedure, leveraging the in-
herent strength of PTMs. As mentioned above, PTMs are
highly capable of adapting to clean datasets using few-shot
learning techniques. This allows the model to achieve success-
ful performance even with a small portion of clean training
samples. In the subsequent sections, we will provide a com-
prehensive description of each substep involved in the FFT
process.
� Step 2-1: Selection of clean samples. To identify clean
samples, we utilize a clustering algorithm based on the Gaus-
sian Mixture Model (GMM), a commonly employed in pre-
vious research works [Li et al., 2020; Kim et al., 2021;
Ahn and Yun, 2023]. This algorithm begins by calculating the
loss for each sample, which is determined based on its noisy
labels. This process allows us to distinguish between clean
and noisy samples in the dataset.

`i = LCE(g(f(xi; ✓);�), ȳi) where (xi, ȳi) 2 Dtrain.

After obtaining the per-sample loss, the next step involves
fitting the GMM model using the calculated losses {`i}Ni=1.
From this GMM model, we extract two Gaussian distributions
for each class c, i.e., pcl and pch. Here, p

c
l represents the dis-

tribution with a lower mean value compared to pch. Utilizing
these per-class distributions, we construct the clean dataset
using the following procedure,

Dclean =
C[

c=1

U(Dc
clean, n),

where Dc
clean = {(xi, ȳi)|pcl (`i) > ⌧ where ȳi = c}. In this

formulation, the threshold hyperparameter ⌧ is used, and
the function U(D, n) denotes the uniform sampling func-
tion, which randomly selects n samples uniformly from the
set D. It is worth noting that an equal number of sam-
ples is selected for each class from the set considered clean.
This selection strategy is based on the principle emphasized
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in [Karim et al., 2022], which highlights the importance
of maintaining a uniform distribution. Therefore, we set
n = minc2{1,...,C} |Dc

clean|, where |D| represents the cardi-
nality of the set D.
� Step 2-2: FFT on the selected dataset Dclean. In Step 2-1,
a clean subset is extracted from the noisy target dataset. This
subset is obtained by reducing the proportion of noisy labels,
thereby creating an environment conducive to performing FFT.
With a reduced influence of noisy labels, the FFT process can
be executed, allowing the model to adapt more effectively to
the underlying clean samples present in the training dataset.

5 Experiments
In this section, we present empirical evaluations that showcase
the superior performance of TURN. We begin by providing a
detailed description of the LNL benchmarks and implementa-
tion in Section 5.1. Subsequently, in Section 5.2, we present
the experimental results obtained from extensive evaluations.
Further analyses to gain a deeper understanding of TURN are
described in Appendix.

5.1 Experimental Setting
Datasets. We conduct an evaluation on the synthetically
noised CIFAR-100 dataset, and real-world noisy labeled
dataset, the Clothing 1M and WebVision datasets. For the
CIFAR dataset, we introduce uniform random noise into a
portion of the labels to simulate symmetric noise, asymmetric
noise which flips the labels to specific classes [Liu et al., 2020].
To incorporate instance-dependent noise, we adopt the noise
generation methodology described in [Cheng et al., 2021].
Architectures and baselines. In our evaluation, we consider
several PTMs for each dataset, including ViT-B/16 [Dosovit-
skiy et al., 2021], ConvNeXt-T [Liu et al., 2022], MAE-ViT-
B [He et al., 2022], MSN-ViT-B [Assran et al., 2022], CLIP-
ViT-B [Radford et al., 2021], and ResNet-50 [He et al., 2016].
In the case of CLIP model, we utilize the visual model. Among
these architectures, we compare our proposed TURN with var-
ious previous methods, including Vanilla (trained on cross-
entropy loss), GCE [Zhang and Sabuncu, 2018], ELR [Liu et
al., 2020], DivideMix [Li et al., 2020], and UNICON [Karim
et al., 2022]. Additionally, we apply both FFT and LP to
all algorithms for comparison. However, it is worth noting
that DivideMix and UNICON require a significant number of
feed-forwards for each sample, approximately 4 times and 8
times, respectively, with various data augmentation techniques.
Due to the computational limitation, we utilize LP for both
DivideMix and UNICON. For further details, please refer to
Appendix B.
Implementation. To optimize the hyperparameters for each
model, we utilize the Ray [Liaw et al., 2018] hyperparam-
eter tuning tool. This allows us to identify the appropriate
settings for parameters such as learning rate, weight decay,
optimizer, and batch size. For each PTM, specific optimized
hyperparameters and their search spaces are described in the
Appendix A. Regarding the hyperparameter for TURN, namely
GMM threshold, ⌧ = 0.6, we adopt the value suggested in the
DivideMix paper [Li et al., 2020], which initially introduced
the GMM-based clean sample selection. For baselines, we

run 5 epochs for FFT and 20 epochs for LP, while TURN is
optimized 20 epochs of LP with 4 epochs for FFT in Step 2 to
spend smaller computational cost compared to the baselines.

5.2 Classification Result
CIFAR datasets. For CIFAR-100 dataset, we include four
noisy label cases {Symm 0.6, Symm 0.9, Asym 0.4, Inst 0.4}.
The results shown in Table 2 demonstrate that TURN, when ap-
plied to various PTMs, consistently delivers high performance
across different types and severities of noisy labels. Further-
more, the proposed method exhibits the superiority of the FFT
and LP tuning mechanisms. Specifically, the ViT-B/16 model
consistently outperforms others. As discussed in Section 3,
in cases of severe label noise (i.e., Symm 90% noise), the
LP-based approach generally yields more stable performance
compared to FFT. Conversely, in cases of less severe label
noise (e.g., Symm 60% noise), FFT tends to outperform LP.
This tendency can be understood by Obs 1 that FFT under
severe noise can distort the feature extraction. However, TURN
approach consistently outperforms both cases. Therefore, it
can be concluded that the sequential combination of LP fol-
lowed by FFT is a valuable way for tuning PTMs on noisy
datasets.
Real-world tasks. We evaluate the performance of TURN on
larger datasets, namely Clothing1M and WebVision. The re-
sults in Table 3 consistently demonstrate that TURN improves
performance on these datasets. This highlights the ability of
TURN to handle noisy labels in real-world scenarios. However,
some models, like MAE, MSN, and ResNet on Clothing1M,
show a drop in performance due to the fine-grained nature
compared to the training dataset (i.e., ImageNet). Nonetheless,
our algorithm performs better by utilizing FFT in the second
step.

5.3 Further Analysis
We deliver further analyses to answer the following keywords:
(1) efficiency, (2) hyperparameter sensitivity (3) larger model
case, and (4) ablation study. They are included in Appendix.
Larger model analysis. We also examine the performance
of the proposed algorithm using larger models (ViT-L/16 and
CLIP-ViT-L/14) on the CIFAR-100 dataset with 90% sym-
metric case. As shown in Table 4, the proposed algorithm
consistently outperforms the other FFT and LP cases. Notably,
when using larger models, the performance tends to improve
compared to the results in Table 2. However, it is important
to consider that larger models require more computation re-
sources and time for tuning due to the increased number of
model parameters.
Hyperparameter sensitivitiy. In the proposed method, we
analyze three types of hyperparameters: (1) the number of
epochs for LP denoted as ELP, (2) the number of epochs for
FFT denoted as EFFT, and (3) the GMM threshold ⌧ . Our
experiments on CIFAR-100 with 90% symmetric noise reveal
that increasing the number of epochs for LP improves per-
formance until reaching 20 epochs, beyond which the gain
becomes negligible. Similarly increasing the number of FFT
epochs up to 5 provides similar performance due to the sim-
ilar sample size per epoch. Moreover, increasing the GMM
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Tuning
Type Alg. CIFAR-100

Symm. 0.6 Symm. 0.9 Asym. 0.4 Inst. 0.4 Symm. 0.6 Symm. 0.9 Asym. 0.4 Inst. 0.4
ViT-B/16 ConvNeXt-T

CE 88.45±0.59 62.31±1.51 61.25±1.52 64.42±0.14 79.12±0.32 54.72±1.01 68.31±0.52 57.61±0.40
FFT GCE 89.82±1.32 46.51±0.62 83.73±0.31 1.31±0.60 81.53±0.52 62.31±0.82 79.52±0.73 1.17±0.21

ELR 88.52±0.18 63.52±0.52 77.83±0.52 83.34±0.27 78.93±0.68 51.52±0.74 74.62±0.42 67.14±0.32
CE 81.20±0.49 64.17±0.62 61.15±1.24 61.62±0.04 70.67±0.69 53.14±0.26 54.83±0.14 62.15±0.31
GCE 83.19±0.91 81.21±0.15 76.32±0.63 43.11±0.20 73.76±1.32 65.21±0.83 70.26±0.25 5.00±0.05

LP ELR 81.23±0.24 65.58±0.62 64.37±0.83 69.43±0.00 70.95±0.16 52.38±0.83 57.15±0.52 61.31±0.21
DMix 84.31±0.28 80.72±0.52 82.62±0.73 84.26±0.32 74.92±0.92 68.25±1.14 72.41±0.25 65.73±0.52
UNC 83.15±0.46 80.23±1.25 83.51±1.18 84.32±0.31 71.12±0.71 60.35±0.76 63.92±0.29 69.25±0.3

LP-FFT Ours 90.62±0.42 84.35±1.13 88.13±1.00 87.57±0.15 83.83±0.52 70.01±1.32 81.28±1.12 73.40±0.13
MAE-ViT-B MSN-ViT-B

CE 60.21±0.52 7.58±0.23 55.48±0.52 50.70±0.32 67.42±0.28 5.52±0.13 57.35±0.74 62.24±0.41
FFT GCE 58.47±0.92 3.06±0.41 60.54±0.85 1.00±0.00 65.51±0.77 7.16±0.32 61.58±0.52 1.00±0.00

ELR 63.24±0.62 7.84±0.13 61.47±0.52 48.24±0.52 67.19±0.63 5.00±0.24 70.58±0.75 58.14±0.42
CE 48.31±0.86 20.29±0.15 38.98±0.53 44.62±0.75 60.01±0.65 22.82±0.62 47.72±0.86 63.85±0.53
GCE 49.82±0.73 14.13±0.72 48.27±0.65 1.79±0.36 47.75±0.86 14.15±0.83 42.49±0.82 1.45±0.74

LP ELR 47.88±0.72 17.26±0.62 39.32±0.83 46.52±0.53 60.21±0.46 20.72±0.65 51.04±0.25 61.13±0.54
DMix 59.46±0.93 24.89±0.86 55.64±0.72 51.28±0.43 70.28±0.52 42.58±0.67 65.51±0.85 61.45±0.26
UNC 37.13±0.52 21.32±0.57 34.21±0.86 39.15±1.24 67.15±0.98 51.82±0.96 61.02±0.74 66.32±1.23

LP-FFT Ours 64.33±0.26 28.83±0.75 65.97±1.00 56.53±1.32 79.52±0.73 54.35±0.64 75.33±0.24 69.13±1.42
CLIP-ViT-B ResNet-50

CE 80.17±0.50 26.84±0.94 64.31±0.85 72.66±0.30 66.12±1.32 0.75±0.61 51.98±1.07 56.12±2.58
FFT GCE 81.56±1.01 3.18±0.68 78.35±0.87 1.13±0.12 55.78±0.42 5.14±1.52 57.04±0.87 1.21±0.25

ELR 76.24±0.51 32.27±1.18 75.38±1.17 71.66±0.56 65.38±0.69 8.51±1.59 61.21±1.10 56.60±1.55
CE 74.24±0.91 52.17±1.18 53.99±1.79 63.09±1.33 67.19±0.52 49.17±1.70 53.52±2.00 54.95±2.22
GCE 79.66±1.13 65.49±1.35 72.91±0.36 19.87±0.43 65.21±1.52 49.32±0.76 58.24±2.19 57.58±1.80

LP ELR 73.92±1.21 51.94±0.60 56.57±2.67 65.11±1.72 65.14±0.93 49.53±1.09 55.08±1.49 54.51±1.21
DMix 77.97±0.99 69.55±0.90 75.17±1.70 71.12±0.38 71.03±0.92 56.54±0.54 62.85±1.45 60.40±1.18
UNC 73.54±0.52 59.55±1.07 67.37±1.38 72.47±2.68 70.03±1.53 58.08±0.92 66.41±0.89 67.79±0.61

LP-FFT Ours 84.12±0.82 72.55±1.45 78.41±0.89 80.96±1.97 73.32±0.93 59.64±0.60 69.38±1.00 69.78±0.76

Table 2: Comparison with LNL algorithms in test accuracy (%) on CIFAR-100 dataset with symmetric, asymmetric, and isntance noise. We
run six architectures under the same noisy label setting. The best results are highlited in bold. We report average performance of three random
trials for each experiment.

threshold results in a correct subset of improved performance.
Therefore, careful tuning of these hyperparameters can con-
tribute to enhanced performance.

Component analysis. To evaluate the impact of each compo-
nent of TURN, we conducted experiments on the CIFAR-100
dataset under 90% symmetric case. Specifically, we exam-
ined three components: (1) LP, (2) Cleansing, and (3) FFT.
Regarding Cleansing, we explored different types: None (no
cleansing), Once (cleansing once right before FFT), and Mul-
tiple (cleansing at the beginning of Step 2). The results, as
shown in Table 5, indicate that the configuration involving
all components achieves the best performance. Additionally,
LP acts as a buffer to prevent the feature extractor from being
distorted, as evidenced by the performance drop observed in
the first row. When cleansing is omitted, a significant decrease
in performance is also observed.

Training time. To assess the efficiency of the proposed al-
gorithm, we examine the correlation between training time
and test accuracy as depicted in Figure 3d. We run FFT
on the CIFAR-100 benchmark under 90% noisy ratio. We
run each algorithm for 5 epochs. As described in Figure 3d,
TURN shows better performance (+2.69% compared to UNI-
CON) while spending the smallest training time (i.e., ⇥0.12
compared to UNICON). This is because leveraging noisy la-

bels by giving pseudo-labels for them, such as DivideMix
and UNICON, requires a significant amount of time due to
their computationally expensive nature. Furthermore, robust
loss-based algorithms exhibit reduced computational costs
compared to the pseudo-label based methods but they used
entire training samples, while TURN utilize part of a clearer
training dataset. This analysis emphasizes the efficiency of
TURN.

6 Related Work
Learning with noisy labels. Noisy label problem has been
explored extensively in recent researches [Li et al., 2020;
Cheng et al., 2021; Kim et al., 2021; Xia et al., 2022;
Karim et al., 2022; Cheng et al., 2023]. Existing meth-
ods mainly address this problem by (1) detecting corrupted
instances and only using label information of clean exam-
ples [Li et al., 2020; Cheng et al., 2021; Kim et al., 2021;
Xia et al., 2022] (2) designing loss functions [Zhang and
Sabuncu, 2018; Wang et al., 2019; Zhou et al., 2021] or
regularization terms [Liu et al., 2020; Ko et al., 2022;
Cheng et al., 2023] with robust behaviors. Recently, the
majority of the researches [Zheltonozhskii et al., 2022;
Karim et al., 2022; Li et al., 2022; Tu et al., 2023; Huang et al.,
2023] have focused on applying self-supervised approaches
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Architecture
Clothing1M

LP FFT LP+FFT
CE GCE ELR DivideMix UNICON CE GCE ELR Ours

ViT-B/16 67.83 / 67.54 67.46 / 67.46 66.91 / 66.91 68.13 / 68.13 68.42 / 68.42 68.98 / 68.98 69.74 / 69.74 68.73 / 68.73 70.28 / 70.28
ConvNeXt-T 64.82 / 64.81 64.59 / 64.59 64.17 / 64.17 66.12 / 65.42 67.33 / 66.92 68.80 / 68.80 68.92 / 68.92 69.19 / 68.52 69.63 / 69.63
MAE-ViT-B 5.06 / 5.06 5.92 / 5.92 8.28 / 8.28 8.04 / 8.04 8.52 / 8.52 61.31 / 61.31 60.80 / 60.80 61.51 / 61.51 61.96 / 61.96
MSN-ViT-B 6.77 / 6.77 6.20 / 6.20 7.64 / 7.64 6.42 / 6.42 6.31 / 6.31 66.88 / 63.38 67.06 / 65.41 66.32 / 66.32 69.13 / 69.13
ResNet-50 7.08 / 7.08 7.18 / 7.18 6.68 / 6.68 8.13 / 8.13 8.24 / 8.24 66.10 / 66.02 66.19 / 66.19 66.19 / 66.19 66.31 / 66.31

Architecture
WebVision

LP FFT LP+FFT
CE GCE ELR DivideMix UNICON CE GCE ELR Ours

ViT-B/16 84.62 / 84.48 84.32 / 84.24 84.48 / 84.32 84.72 / 84.72 85.68 / 85.68 84.20 / 83.04 83.40 / 83.40 84.92 / 83.72 85.96 / 85.92
ConvNeXt-T 85.24 / 85.24 85.12 / 85.04 86.28 / 86.28 86.40 / 86.40 86.24 / 86.24 84.00 / 82.68 85.40 / 84.92 84.52 / 83.44 87.16 / 86.44
MAE-ViT-B 48.00 / 48.00 47.32 / 47.28 49.76 / 49.76 59.40 / 58.44 56.96 / 53.80 67.48 / 65.64 63.16 / 62.84 67.80 / 67.80 69.45 / 68.45
MSN-ViT-B 77.40 / 77.40 74.40 / 74.40 74.00 / 74.00 76.56 / 76.40 77.72 / 77.34 77.04 / 77.80 72.28 / 72.28 74.88 / 72.28 78.36 / 75.40
ResNet-50 84.88 / 84.72 81.68 / 81.68 84.96 / 84.96 85.16 / 85.16 85.04 / 85.04 78.00 / 76.44 77.04 / 70.92 80.44 / 77.44 85.36 / 85.36

Table 3: Comparison with LNL algorithms in test accuracy (%) on Clothing1M and WebVision. We run five architectures under the same noisy
label setting. The best results are highlited in bold. We report the best/last performance for each experiment.
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Figure 3: Analysis of TURN about training time, parameter sensitivity, respectively. We run CIFAR-100 with 90% symmetric noise case.

Method Linear Probing Full Fine-Tuning LP + FFT
CE GCE ELR DMix UNICON CE GCE ELR Ours

ViT-L/16 81.20 / 60.77 70.02 / 70.02 81.70 / 79.46 84.58 / 84.58 84.87 / 84.87 84.37 / 53.08 42.71 / 42.71 80.22 / 49.78 87.02 / 85.90
CLIP-ViT-L/14 41.24 / 41.24 36.48 / 36.48 41.01 / 41.01 80.68 / 80.13 75.83 / 75.83 63.30 / 38.59 71.93 / 71.70 68.16 / 48.27 81.17 / 81.17

Table 4: Analysis on larger PTMs. ViT-L/16 and CLIP-ViT-L/14 are used. We run CIFAR-100 with 90% symmetric noise.

LP Cleansing FFT ViT-B/16 CLIP-ViT-B
Multiple 3 45.51 30.07

3 None 3 45.90 47.47
3 Once 3 83.00 60.80
3 Multiple 3 83.33 72.17

Table 5: Component analysis.

to construct robust feature extractors on label noise. The au-
thors of [Zheltonozhskii et al., 2022; Ko et al., 2023] used
pre-trained models to run semi-supervised approaches with the
initial parameters from the SimCLR [Chen et al., 2020] and
showed significant performances. However, these approaches
may be over-complicated requiring hyperparameter tuning for
different datasets, as well as significant computation resources.

Pre-trained visual models. Recently, several studies have
demonstrated that PTMs, which are trained on the large image
set (ImageNet), can learn universal visual representations that
are useful for downstream computer vision tasks. This has
eliminated the need to train a new model from scratch. With
the advancement of computational power and development
of deep models such as ViT[Dosovitskiy et al., 2021] and
ConvNext [Liu et al., 2022], the capabilities of PTMs have

greatly improved. Utilizing PTMs has been considered as an
effective solution for multi-modal models such as CLIP [Rad-
ford et al., 2021] and Data2Vec [Baevski et al., 2022], which
can effectively represent various types of domains. As re-
searchers make pre-trained weights of PTMs available to the
open-source community, there is growing interest in finding
ways to effectively use these pre-trained weights.

7 Conclusion
This study introduces TURN, an algorithm designed to handle
noisy labels using large pre-trained models. It focuses on
robustly leveraging these models and minimizing noisy label
effects. TURN uses linear probing and fine-tuning on a refined
subset of the training dataset. Its enhanced performance is
evident from experiments on CIFAR-100, Clothing 1M, and
WebVision datasets, demonstrating both improved results and
lower computational costs.
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