
Temporal Inductive Logic Reasoning over Hypergraphs

Yuan Yang1 , Siheng Xiong1 , Ali Payani2 , James C. Kerce1 and Faramarz Fekri1

1Georgia Institute of Technology
2Cisco

{yyang754@, sxiong45@, clayton.kerce@gtri., faramarz.fekri@ece.}gatech.edu, apayani@cisco.com

Abstract
Inductive logic reasoning is a fundamental task in
graph analysis, which aims to generalize patterns
from data. This task has been extensively studied
for traditional graph representations, such as knowl-
edge graphs (KGs), using techniques like inductive
logic programming (ILP). Existing ILP methods
assume learning from KGs with static facts and bi-
nary relations. Beyond KGs, graph structures are
widely present in other applications such as proce-
dural instructions, scene graphs, and program ex-
ecutions. While ILP is beneficial for these appli-
cations, applying it to those graphs is nontrivial:
they are more complex than KGs, which usually
involve timestamps and n-ary relations, effectively
a type of hypergraph with temporal events. In this
work, we propose temporal inductive logic reason-
ing (TILR), an ILP method that reasons on temporal
hypergraphs. To enable hypergraph reasoning, we
introduce the multi-start random B-walk, a novel
graph traversal method for hypergraphs. By com-
bining it with a path-consistency algorithm, TILR
learns logic rules by generalizing from both tem-
poral and relational data. To address the lack of
hypergraph benchmarks, we create and release two
temporal hypergraph datasets: YouCook2-HG and
nuScenes-HG. Experiments on these benchmarks
demonstrate that TILR achieves superior reasoning
capability over various strong baselines.

1 Introduction
The task of inductive reasoning concerns generalizing con-
cepts or patterns from data. This task is studied extensively
in knowledge graphs (KG)s where techniques such as induc-
tive logic programming (ILP) are proposed. A typical knowl-
edge graph such as FB15K [Toutanova and Chen, 2015] and
WN18 [Bordes et al., 2013] represents commonsense knowl-
edge as a set of nodes and edges, where entities are the nodes
and the facts are represented as the edges that connect the
entities. For example, Father(Bob, Amy) is a fact stating
that “Bob is the Father of Amy”; this is represented as an
edge of type Father connecting the two entities Bob and
Amy. Many ILP techniques are proposed to reason on the

KGs that learn first-order logic rules from the graph. Learn-
ing these rules is beneficial as they are interpretable and data
efficient [Yang and Song, 2020]. It has applications such as
biomedical research, semantic search, data integration and
fraud detection.

Apart from KGs, the graph is widely used in other appli-
cations to represent structured data, such as temporal events
that happened among a set of entities [Boschee et al., 2015;
Leetaru and Schrodt, 2013]; the cooking instruction of a video
(Figure 1); the abstract syntax tree (AST) of a program; and
a scene graph from autonomous driving sensors [Caesar et
al., 2020]. Learning explicit rules from these graphs is also
beneficial. However, these graphs are more complex than
standard graphs, and therefore, existing ILP methods are not
readily applicable. Specifically, (1) for temporal data such
as video, the facts or events are labeled with time intervals
indicating their start and end times. While some temporal
KGs such as ICEWS [Boschee et al., 2015] also have time
labels, events are labeled with only a single time point. This
is less expressive than time intervals as it cannot characterize
events with durations. For example, “cook the soup while
cutting the lettuce”. (2) Many events require n-ary relations,
for example “mixing onion, garlic, and oil together”. Such a
relation corresponds to an edge that connects to more than two
nodes, and a graph with such edges is a hypergraph. While
it is possible to convert hypergraphs to graphs with various
techniques such as clique expansion, the conversions are lossy
and can lead to an exponential number of edges.

In this work, we extend traditional ILP methods to hyper-
graphs whose events are labeled with time intervals. To this
end, we first formally define this representation, namely tempo-
ral hypergraph. Then, we discuss the random walk (RW) algo-
rithm on a hypergraph, as RW is the fundamental mechanism
of a family of widely used ILP methods, that is the backward-
chaining methods. We revisit the notion of B-connectivity
on hypergraphs and propose the multi-start random B-walk
algorithm that explores the hypergraph given a set of starting
points. To generalize the temporal relation, we incorporate
Allen’s interval algebra [Allen, 1983] and characterize events
with the interval operators such as Before and After, and
learn temporal relations by resolving the time constraints with
path consistency algorithm. Our contributions are as follows:

• We introduce the temporal hypergraph, a graph that sup-
ports n-ary relations and temporal events with time in-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3613

0:18 0:34 1:03 1:33 2:12 3:160:00

Spaghetti and Meatball

“Put one jar of spaghetti
sauce in the pan and let it

simmer”

“Sauté chopped onion
and garlic with oil”

“Add the beef, breadcrumbs,
parmesan, … to the bowl and

mix them together”

“Mix the meatballs
and sauce in the

spaghetti”

“Make small balls of beef
and fry them in vegetable
oil and olive oil in a pan”

𝑀𝑖𝑥 𝑂𝑛𝑖𝑜𝑛, 𝐺𝑎𝑟𝑙𝑖𝑐, 𝑂𝑖𝑙 , 𝑂𝑖𝑙, 𝒕 ∧
𝑆𝑎𝑢𝑡é(𝑂𝑖𝑙, 𝑂𝑖𝑙, 𝒕)

𝑀𝑖𝑥 𝑆𝑎𝑢𝑐𝑒, 𝑂𝑖𝑙 , 𝑆𝑎𝑢𝑐𝑒, 𝒕 ∧ 𝑆𝑖𝑚𝑚𝑒𝑟(𝑆𝑎𝑢𝑐𝑒, 𝑆𝑎𝑢𝑐𝑒, 𝒕)

𝑀𝑖𝑥(𝐵𝑒𝑒𝑓, 𝐵𝑟𝑒𝑎𝑑𝑐𝑟𝑢𝑚𝑏𝑠, 𝑃𝑎𝑟𝑚𝑒𝑠𝑎𝑛,…], 𝐵𝑒𝑒𝑓, 𝒕

𝑀𝑎𝑘𝑒 𝐵𝑒𝑒𝑓, 𝐵𝑎𝑙𝑙, 𝒕 ∧ 𝐹𝑟𝑦(𝐵𝑎𝑙𝑙, 𝑂𝑖𝑙 ,𝑀𝑒𝑎𝑡𝑏𝑎𝑙𝑙, 𝒕)

𝑀𝑖𝑥(𝑀𝑒𝑎𝑡𝑏𝑎𝑙𝑙, 𝑆𝑎𝑢𝑐𝑒, 𝑆𝑝𝑎𝑔ℎ𝑒𝑡𝑡𝑖 , 𝑆&𝑀, 𝒕)

Onion

Garlic

Oil
Sauce

Beef

Bread-
crumbs

… Oil Spaghetti

𝑆𝑎𝑢𝑡é

𝑀𝑖𝑥

𝑆𝑖𝑚𝑚𝑒𝑟

𝑀𝑖𝑥 𝑀𝑎𝑘𝑒

𝐹𝑟𝑦

𝑀𝑖𝑥

Hypergraph

𝑀𝑖𝑥
0:00-0:05 0:05-0:18

0:18-0:20

0:20-2:12

0:34-1:33 1:33-1:54

1:54-2:12

2:12-3:16

Spaghetti&
Meatball

Figure 1: Temporal hypergraph representation of video instructions for making spaghetti & meatballs.

tervals. We show that this is a natural and expressive
representation for many applications.

• We propose TILR, an ILP method that learns to general-
ize on both temporal and higher-order relational data in
hypergraphs. This is realized with a novel random B-walk
algorithm and a time-constraint propagation algorithm.

• We release two novel temporal hypergraph datasets
YouCook2-HG and nuScenes-HG here, which is created
from YouCook2 cooking recipe dataset and nuScenes au-
tonomous driving dataset [Caesar et al., 2020]. We show
that TILR outperforms existing embedding-based and
ILP baselines significantly on these two benchmarks.

To the best of our knowledge, YouCook2-HG and nuScenes-
HG are the first benchmarks dedicated to temporal hyper-
graphs, and TILR is the first framework that addresses the ILP
problem on hypergraphs with time interval labels.

2 Related Work
ILP Methods. Many ILP methods are proposed for induc-
tive logic reasoning on graphs. These methods are catego-
rized into two types. Forward-chaining methods [Galárraga et
al., 2015; Evans and Grefenstette, 2018; Payani and Fekri,
2019] learn by searching in the rule space. It supports
inferring difficult tasks but suffers from exponential com-
plexity and does not scale to large graphs. On the other
hand, backward-chaining methods [Campero et al., 2018;
Yang and Song, 2020; Yang et al., 2017] learn rules by search-
ing in the graph space, while the rule is usually limited to a
chain-like path in the graph, this leads to better scalability.
For temporal hypergraphs, none of the existing ILP meth-
ods are readily applicable. In this work, we propose the
ILP method for temporal hypergraphs under the backward-
chaining paradigm.

Reasoning on Temporal Knowledge Graphs. Temporal
reasoning has been studied extensively on the temporal knowl-
edge graphs (KG)s [Nguyen et al., 2018; Ronca et al., 2018;

Trivedi et al., 2017; Pareja et al., 2020]. Different from the
temporal hypergraphs proposed in this work, these temporal
KGs typically consist of only unary and binary relations with a
single time point tag. Recent methods such as TLogic [Liu et
al., 2022] were proposed for solving ILP on these graphs, but
time point algebra is limited as it cannot represent temporal
relations of events with duration. A more expressive repre-
sentation is proposed in time interval algebra with Allen’s
interval algebra [Allen, 1983] being the representative schema.
TILP [Xiong et al., 2022] adopted such an algebra and im-
proved ILP methods for ordinary graphs. In this work, we
show how to incorporate this algebra for learning temporal
relations on hypergraphs.

3 Temporal Hypergraphs
An ordinary graph consists of a set of triples of the form
P (xh, xt), where P is the predicate and xh and xt are the
head and tail entities. However, many real-world data can-
not be fully captured by this formalism. We use Figure 1
as a running example to show this. Consider an instruction
video that teaches how to make Spaghetti&Meatball
using ingredients such as Onion, Oil, and Spaghetti,
which are processed to make the dish in a step-by-step man-
ner. Such information naturally implies a graphical struc-
ture, but two aspects cannot be captured by an ordinary graph
1) Higher-order relations. Actions such as MixInto in-
volve multiple entities, which requires n-ary relations to rep-
resent, which calls for a hypergraph representation where
the edges are now hyperedges. Note that, however, many
techniques convert hypergraphs into ordinary graphs[Car-
letti et al., 2020], but it is proven that such conversion will
lose the higher-order information[Chitra and Raphael, 2019;
Hayashi et al., 2020]. Therefore, we focus on developing
native algorithms for hypergraphs. 2) Time intervals. To
properly represent events such as “Saute the ingredients from
0:00 to 0:18”, a time interval ⟨ts, te⟩ marking the start and the
end time is needed.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3614

https://github.com/gblackout/TILR

Temporal Hypergraph. To address the above challenges,
we propose the temporal hypergraph. Formally, a temporal
hypergraph consists of the following components: Entity:
x ∈ X is the unique entity in the temporal data. Predicate:
P ∈ P is the temporal predicate. Event: an event is defined as
e := P (xh,xt, t), where xh,xt are the head entities and tail
entities1, and t := ⟨ts, te⟩ consists of the start and end time of
an event. Note that an event e is a natural extension to the
triple fact in an ordinary graph: a triple P (xh, xt) represents
an edge with label P that starts from a single entity xh to
another entity xt; similarly, e := P (xh,xt, t) represents a
hyperedge with label P that starts from a set of entities xh and
ends at a set of entities xt during a period of time t := ⟨ts, te⟩.
For example, MixInto([Ball,Sauce,Spaghetti],
S&M, ⟨2:12,3:16⟩) in Figure 1 represents an event of “mixing
three ingredients, i.e., Meatball, Sauce and Spaghetti,
into a a dish of Spaghetti&Meatball from 2:12 to
3:16”.

Definition 3.1 (Temporal Hypergraph). A temporal hyper-
graph G is defined as G := ⟨X ,P, E⟩, where X and P are
the space of entities and space of predicates respectively, and
E = {e1, ..., en} is a collection of events, where each event
represents a hyperedge e := P (xh,xt, t) with timestamps
t := ⟨ts, te⟩.

A temporal hypergraph can represent many temporal data
that are usually beyond the capacity of ordinary graphs, for ex-
ample, representing the instructions/procedure to repair/build
something, recipes in the video data shown in Figure 1, or
detecting the behavior patterns in autonomous driving logs.

4 Temporal Inductive Logic Reasoning
Temporal Inductive Logic Reasoning (TILR) concerns solving
the ILP problem on the temporal hypergraph, which involves
learning first-order logic (FOL) rules that generalize over the
patterns in the graph.

First-Order Logic. A FOL rule consists of (i) a set of
predicates defined in P , (ii) a set of logical variables such
as X and Y , and (iii) logical operators {∧,∨,¬}. For
example, a FOL rule R : GrandFatherOf(X,X ′) ←
FatherOf(X,Y) ∧ MotherOf(Y,X ′) has predicates
GrandFatherOf, MotherOf and FatherOf. Terms
such as FatherOf(X,Y) are referred to as atoms, which
correspond to the predicates that apply to the logical vari-
ables. Each atom can be seen as a Boolean function. For
example, for the binary relation FatherOf, the atom is a
mapping X × X 7→ {0, 1}. This function can be evaluated by
instantiating the logical variables such as X into the object
in X . For example, let X = {Amy,Bob}, we can evaluate
FatherOf(Bob/X,Amy/Y) by instantiating X and Y into
Bob and Amy respectively. This yields True if “Bob is the
father of Amy”. The outputs of atoms are combined using
logical operations {∧,∨,¬} and the imply operation a← b is
equivalent to a∨¬b. Thus, when all variables are instantiated,
the rule will produce an output as the specified combinations
of those from the atoms.

1Note that in some work such as [Gallo et al., 1993], head and
tail are used in a reversed manner

Inductive Logic Programming (ILP). Given a set of pos-
itive and negative queries Q+ and Q−, the ILP problem
concerns learning a set of logic rules that predict (or entail)
positive ones and do not predict the negative ones. For ex-
ample, summarizing a recipe for making Spaghetti & Meat-
ball from a set of videos (Figure 1) is an ILP task. Let
G1, ...,Gn be the temporal graphs of the videos, ILP learns
a logic rule that predicts the positive video labels Q+ =
{S&M(G1), ..., S&M(Gn)} and does not predict the nega-
tive video labels Q− = {S&M(Gi)|i ̸= 1, ..., n}. Similarly,
ILP can be used to answer event queries, where we learn rules
to predict positive events Q+ = {e1, ..., en}, and not the
negative events, which is essentially the link predicate task
performed on the temporal hypergraph.

We solve the ILP problem via the backward-chaining ap-
proach: given a query q, one seeks to answer the query by
finding a relation path in the graph that entails the query [Lao
et al., 2011; Yang et al., 2017; Yang and Song, 2020]. In an
ordinary graph with a triple query q = P (x0, xn), this relation
path from x0 to xn is represented as a chain-like rule

P (X0, Xn)← P 1(X0, X1) ∧ ... ∧ Pn(Xn−1, Xn), (1)

where X0, Xn are variables to be instantiated into the query
entities x0 and xn, and X1, ..., Xn−1 are variables to be in-
stantiated to the entities that exist along the relation path

x0
P 1

−−→ x1
P 2

−−→ ...
Pn

−−→ xn.

Temporal Inductive Logic Reasoning. We extend this
chain-like rule family for temporal hypergraphs to general-
ize over both the higher-order relational data and the temporal
data. Formally, we learn logic rules of the following form:

P (X0,Xn,T)← P 1(X0,X1,T 1) ψ1 P 2(X1,X2,T 2)

ψ2 ... ψn−1 Pn(Xn−1,Xn,T n). (2)

Similar to Eq.(1), X0,Xn are variables of the head and
tail entity sets, and X1, ...,Xn−1 are variables for those en-
tities along the relation path which can now be in higher-
order. On the other hand, we introduce the temporal operator
ψ ∈ {BEFORE,EQUAL,MEETS, ...} from Allen’s interval
algebra [Allen, 1983] (details in §4.2), which is a widely ac-
cepted formalism for characterizing the temporal relations
between time intervals. With this operator, a logic rule can
now generalize over temporal data: similar to logical variables,
T ,T 1, ...,T n are the variables for the timestamps and can be
instantiated into values t, t1, ..., tn−1, and their temporal rela-
tions can be computed by the operators which yield True or
False in a similar way as logical operators.

Definition 4.1 (Temporal Inductive Logic Reasoning). Given
a temporal hypergraph G, and a set of positive and negative
queriesQ+ andQ−, find a model f(q;G) that maps the query
q into a logic rule R such that

R(q) = 1[q ∈ Q+], for q ∈ Q,

where Q = Q+ ∪Q− and 1[·] is an indicator function.

For an event query q = e := P (x0,xn, t), R(x0,xn, t)
denotes a logic rule with head predicate P that entails e is
positive given the entities and the time interval. Similarly, for

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3615

a graph label query q = P (G), R(G) denotes a logic rule with
head predicate P that entails if G belongs to class P given
the entire graph. However, learning the rule family Eq.(2)
on the temporal hypergraph is nontrivial and one needs to
address two challenges: (C1). How to traverse and learn
higher-order relations on hypergraph via random walk? (C2)
How to generalize over the temporal data while walking on the
graph? We address these challenges in the following section.

4.1 Random Walk on Temporal Hypergraphs
In an ordinary graph, chain-like rules Eq.(1) are typically
learned via personalized graph random walk [Lao et al., 2011;
Lao and Cohen, 2010]. Given a start node xh, a single run of
the random walk involves repeating the following two steps: (i)
sample an out-edge of the current node e ∼ OutEdges(xh),
uniformly at random; (ii) move to the tail node xt and update
xh ← xt. Given a maximum length n, this yields a sample
relation path, and by running random walks multiple times,
one collects a set of relation paths R1, ..., Rn, which can then
be used in various differentiable models to learn the desired
chain-like rules (details in §4.3).

B-Graph and B-Connectivity. For temporal hypergraphs,
however, while there exist many random walk techniques for
hypergraphs [Chitra and Raphael, 2019; Chan et al., 2018;
Li et al., 2020], none of the existing work is designed for ILP
and concerns an important property, i.e., the B-connectivity.
To see this, consider an event with Mix relation in the
recipe example in Figure 1, i.e., Mix([Onion,Garlic,
Oil],Oil, t). This is a hyperedge with 3 head nodes and
1 tail node. A fundamental issue arises in developing traver-
sal algorithms for exploring the graph through this edge, that
is, “can we reach the tail node if we haven’t visited all the
head nodes?”. Intuitively, the answer is no, as we consider
the actual transformational nature of the event: “we Mix the
ingredients only when we have collected all three of them”.

Specifically, let Mix(xh, xt, t) be a Mix event with xh

denotes the ingredients and xt (since dim(xt) = 1) denotes
the mixed output. Suppose at the ith step of a random walk,
xi is the set of nodes that we have visited. Then, there exists
a natural constraint that “xt is reachable via Mix if and only
if xh ⊆ xi”, that is, the tail nodes cannot be reached until all
the head nodes are reached. This property is referred to as B-
connectivity [Gallo et al., 1993]. This problem can be further
formulated with the notion of B-graph which is a specific
subset of directed hypergraphs. Formally, let P (xh,xt, t)
be a hyperedge of predicate P . A hyperedge is a B-edge if
dim(xh) ≥ 1 and dim(xt) = 1, meaning P is a many-to-
one relation. Nodes are B-connected, if there exists a path
consisting of B-edges that connects them, and the path is
referred to as a B-path. A hypergraph with B-edges is a B-
graph. Figure 2 shows an example hypergraph with 3 paths,
where R1 and R3 are valid B-paths and R2 is the invalid one
since it does not visit x3 before x6.

Multi-Start Random B-walk. We propose a novel random
walk method on the B-graph, i.e., the multi-start random B-
walk (MRBW) to address challenge (C1). The MRBW has two
unique properties compared to the traditional random walk:
1) it maintains a set of active nodes X, which keeps track of

Algorithm 1: Multi-start Random B-walk
Input: Graph G, start nodes X0 = {x1, x2, ...}
Init: Path R = [], active nodes X = {}
Set all start nodes as active X← X0

while |X| > 0 do
Get all viable edges E ← B-Connected(X;G)
Sample e := P (xh, xt, t) ∼ Uniform(E)
Set xt as active X← X ∪ {xt}
for xh ∈ xh do

if AllOutEdgesV isited(xh) then
Set xh inactive X← X/{xh}

end
end
Add the edge to path R← R+ [e]

end
Return R

the nodes that have been visited but still have unvisited out-
edges; 2) for every hop, it samples an edge uniformly from all
edges that are B-connected to X, and then updates the active
nodes accordingly. Algorithm 1 shows how to sample a B-
path via MRBW. The function B-Connected(X;G) collects
all nodes that are B-connected to the active nodes X and the
corresponding B-edges E. Then, it randomly chooses an edge
e and hops to its tail node xt. After each hop, the function
AllOutEdgesV isited(xh) checks if all out-edges of each
xh ∈ xh have been visited and will remove it from the active
nodes if true.

Specifically, to sample logic rules Eq.(2), we perform
MRBW over B-paths with predicates sequence P 1...Pn. One
important feature to characterize the likelihood of such a path
is the distribution of random walk given the specified pred-
icates [Lao et al., 2011]. Formally, let xi−1 be the nodes
reached at i − 1th step, and P i be the predicate by which
transition is performed at ith step. If it is an ordinary graph,
then xi−1 = xi−1 and we have path probability to xi as

p(xi|xi−1;P i) =
NP i(xi−1, xi)

|NP i(xi−1, ·)|
· p(xi−1|xi−2;P i−1),

where NP i is an indicator function that checks if xi and xi−1

are connected by edge of type P i and · means arbitrary nodes.
For a hypergraph where dim(xi−1), dim(xi) ≥ 1, we extend
the above, such that for ∀xi ∈ xi we have

pRW
i−1 (x

i) =
∑

xh∈xi−1

NP i(xh, x
i)

|NP i(xh, ·)|
∏

xh∈xh

pRW
i−2 (xh), (3)

where pRW
i−1 (·) denotes p(·|xi−1, P i). Eq.(3) specifies that for

every head nodes xh ∈ xi−1 that are connected to xi, the
probability of them to land on xi is the product of pRW

i−2 (xh) for
every individual node, and pRW

i−1 (x
i) is the sum of probabilities

of all such head nodes divided by their out degrees. Finally,
for path distribution over xi we have

pRW
i−1 (x

i) =
∏

xi∈xi

pRW
i−1 (x

i). (4)

With Eq.(4), we can now compute the likelihood of MRBW
over a specified path P 1...Pn for any logic rules of the

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3616

𝑥4

𝑥3

𝑥6

𝑃1

𝑥1
𝑥2

𝑥5
𝑃1

𝑃3

𝑃2

𝑃2

0.5

0.5

1.0

0.5

1.0

0.5

B-Graph

B-Path

𝑥3𝑥1 𝑥5
𝑃1 𝑃2

𝑥2𝑥1 𝑥4
𝑃1 𝑃2 𝑥6

𝑃3

𝑥4

𝑥3

𝑥1
𝑥2 𝑃3

𝑥6

𝑃1

𝑃1

𝑃2

𝑅1:

𝑅2:

𝑅3:

✔ Valid

❌ Invalid

✔ Valid

Figure 2: Example B-graph and B-paths.

form Eq.(2). In §4.3, we build the differentiable model that
utilizes this as the feature.

4.2 Temporal Relation Generalization

Here, we address challenge (C2) and incorporate Allen’s Inter-
val Algebra [Allen, 1983] for generalizing over temporal data.
Allen’s Interval Algebra consists of 6 asymmetric interval re-
lations {BEFORE, DURING, MEETS, OVERLAPS, STARTS,
FINISHES}, the corresponding reverse relations {AFTER,
CONTAINS, MET-BY, OVERLAPPED-BY, STARTED-BY,
FINISHED-BY}, and one symmetric relation EQUAL. Simi-
lar to the logical operators, each interval relation is a unique
mapping of timestamps to the Boolean value True or False.
For example, for two intervals t, t′, BEFORE checks if t ends
earlier than where t starts, e.g., ⟨0 : 00, 0 : 03⟩ BEFORE ⟨0 :
04, 0 : 10⟩ = True. All 13 relations are self-explanatory
and the complete list of the operations is provided in [Allen,
1983].

TILR incorporates interval algebra into the logic rule. Re-
call the temporal rule family Eq.(2), instead of treating tempo-
ral relations as a separate operation from conjunction ∧. we
consider them as composite conjunction of the following form

P i(Xi−1,Xi,T i) ψi P i+1(Xi,Xi+1,T i+1) =

P i(Xi−1,Xi) ∧ P i+1(Xi,Xi+1) ∧ ψi
(
T i,T i+1

)
,

where ψi ∈ {BEFORE,EQUAL,MEETS, ...}. To generalize
the temporal relations from the data, one keeps track of the set
of applicable temporal relations for each pair of events in the
rule. Whenever a positive query is matched by the rule, one
updates the temporal relations to satisfy the time constraints
posed in the corresponding subgraph of the query. We incor-
porate and modify the path-consistency (PC) algorithm [Allen,
1983] for MRBW. Algorithm 2 shows the process of resolving
the temporal relations for a given path R. For every pair of
events (e1, e2) in the path, one first obtains the pairwise tempo-
ral relation via function TempRel(e1, e2) which returns the
satisfied relation. Then, it checks the path consistency between
the three edges of the path. This is done with PC3(e1, e2, e3)
which is the PC3 algorithm.

Algorithm 2: Path-consistency for temporal relation
generalization.

Input: Path R = [e1, ..., eT]
Init: Temporal relation table B[·, ·] = ∅
for (e1, e2) ∈ R×R do

Update the temporal relation
B[e1, e2]← TempRel(e1, e2)

for e3 ∈ R/{e1, e2} do
Resolve path consistency
B[e1, e3], B[e2, e3]← PC3(e1, e2, e3)

end
end
Return B

4.3 Differentiable TILR for Hypergraph Reasoning
Through MRBW and the PC algorithm, one can reliably tra-
verse the temporal hypergraph and sample reasoning path,
enabling us to develop models for solving the ILP task. Here,
we propose TILRθ , a differentiable ILP model that reasons on
the temporal hypergraph.

Let R be a temporal relation B-path, x0 P 1

−−→ ...
Pn

−−→ xn

that traverses from x0 to xn via relation P 1...Pn and under
the temporal constraints ψ1, ..., ψn−1. We seek to model R
with a distribution pR as the path and temporal constrained
random walk. Let T i = {t|P i(xh,xt, t) ∈ G} be the space
of time intervals in graph G with respect to predicate P i at
i−th step. Given two such spaces T i−1, T i , the space of time
interval pairs that satisfy temporal constraint ψi−1 is com-
puted as ψi−1

(
T i−1, T i

)
= {⟨ti−1, ti⟩|ψi−1

(
ti−1, ti

)
=

True; ti−1 ∈ T i−1, ti ∈ T i}, which represents the set of in-
terval pairs where ψi−1 yields True. Finally, the probability
of traversing from step i− 1 to step i via under ψi−1 can be
computed as
p(P i|P i−1) = |ψi−1

(
T i−1, T i

)
|/|ψi−1

(
T i−1, ·

)
|, (5)

where · indicates arbitrary spaces in G. We can now define
distribution pR over R with Eq.(4) and Eq.(5) in a recursive
fashion:

pR(x
i|x0) = pRW

i−1 (x
i) · p(P i|P i−1). (6)

Recall Definition 4.1, to answer a query with respect to x0 to
xn, we sample a set of paths R1...RL and learn a parameter-
ized model

fθ(q;G) =
L∑

j=1

θpj

n∑
i=1

θsi · pRj
(xi|x0), (7)

where θp are the weights for choosing the appropriate paths
and θs are the weights for combining the path features over
pRj (x

i|x0) the n steps respectively. To train such a model,
we collect queries D = {qi} from the training split of the
hypergraph G by sampling the events and corresponding paths.
We optimize the model by minimizing a cross-entropy loss

L(θ;G) =
∑
q∈D

yi log p(q|G) + (1− yi) log(1− p(q|G)),

where yi ∈ 0, 1 indicates if the query is positive, and p(q|G) =
1/(1+ e−fθ(q;G)) is the conditional probability of q computed
from Eq.(7) with sigmoid function.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3617

5 Experiment
We conduct experiments to answer the following questions:
(Q1) can temporal hypergraphs preserve more information
over ordinary graphs such that they lead to better performance
in real-world tasks? (Q2) Can TILR generalize better and
interpretable logic rules from hypergraphs than traditional
ILP methods? (Q3) How do MRBW, PC algorithm, and
parametrized model contribute to the performance of TILR?

To do so, we create two temporal hypergraph datasets
YouCook2-HG and nuScenes-HG and evaluate TILR on the
reasoning tasks of recipe summarization and driver behavior
explanation.

5.1 Recipe Summarization
YouCook2 cooking recipe dataset [Zhou et al., 2018] consists
of instructional videos of 89 cooking recipes such as spaghetti
& meatballs. Each recipe has 22 videos and each video is
annotated by a sequence of natural language sentences that de-
scribe the procedure steps, as shown in Figure 1. The dataset
serves as a challenging benchmark for evaluating the gener-
alizability of both temporal and relational data: instructions
of the same class can have varied procedures and ingredients.
For example, one can make BLT sandwich by first putting the
lettuce on the bread and then the ham, or in the reserve order.
This requires the ILP method to learn generalized temporal
relations for the temporal events.

Predicate Type # Predicates # Facts ExamplesPer Graph Total

Relation
Unary 208 58 10426 Cut, fry
Binary 51 29 5213 Put
N-ary 1 69 12417 MixInto

Class 1136 257 45881 Oil, Oinon, Noodle

Table 1: Stats. of the hypergraph benchmark YouCook2-HG.

YouCook2-HG Construction. We construct the temporal
hypergraph from the instruction sentences. For each clip,
we run NLTK tools and extract the nouns and verbs from
the sentences. We collect verbs as temporal relations. After
pre-processing and grouping synonyms, there are 208 unary
relations, 51 binary relations, and 1 n-ary relation. There are
many possible n-ary relations in the raw data that describe the
same action, such as “put together” and “stir together”. Given
the low frequency of each data, we consider merging them
into a single n-ary relation, that is MixInto. Statistics are
shown in Table 1.
Clique-Expansion Graphs. To evaluate (Q1) and (Q2),
an ordinary graph version of the YouCook2-HG needs to
be created such that we can evaluate TILR on both the hy-
pergraphs and the ordinary graphs with traditional baselines.
To do so, we use the clique expansion algorithm to convert
the hypergraph to an ordinary graph: for every hyperedge
e := P (xh,xt, ⟨ts, te⟩) ∈ E , it creates edges for each pair of
head and tail nodes Eord = {P (xh, xt, ts)|xh ∈ xh, xt ∈ xt}.
Note that, for time intervals, we drop the end time te and use
ts as the time point label. This way, the clique-expansion
graphs share the same structure as those traditional temporal
graphs [Boschee et al., 2015].

Task. The goal of recipe summarization is to generalize a
structured procedure for each distinct recipe from the hyper-
graph data as that in Figure 1. We formalize this problem as a
graph classification task. Formally, Let P (G) be the label of a
hypergraph G, where P denotes its recipe type label (e.g. BLT
sandwich). Let P ∗ be the target type for which we want to
summarize, then the positive set of P ∗ is the set of all graphs
with the same label, and the negative set is the rest of the
graphs with different labels

Q+ = {P (G)|P = P ∗}, Q− = {P (G)|P ̸= P ∗}. (8)

Recall the objective in Definition 4.1, we learn rules for recipe
type P ∗ that can classify graphs inQ+ as positive and those in
Q− as negative. Furthermore, we also constrain the temporal
rules to cover the full timespan of the graphs, ensuring rules
fully represent the underlying recipe.

Methods and Baselines. We evaluate three modes of TILR
with increasing complexity, so that it serves as an ablation
study on the proposed modules: 1) TILR: this mode performs
vanilla MRBW without the path-consistency (PC) algorithm;
it proposes the best rule for each recipe by counting the oc-
currences and picking the most frequent one. 2) TILR-PC:
this mode is the same as MRBW but with the PC algorithm
implemented. 3) TILRθ-PC: this mode performs MRBW and
PC algorithm during search and learns rule via the parametric
model introduced in §4.3.

We compare TILR with baseline methods that reason on
the clique-expansion graphs (as TILR is the only method that
reasons on hypergraphs): 1) GNN-GCN [Kipf and Welling,
2016] and GNN-Cheb [Defferrard et al., 2016]. GNN meth-
ods are evaluated on the clique-expansion graph with the time
labels. Specifically, we set GNN methods to the inductive
setting, where the entities all share the same one-hot vector.
This way GNNs learn to generalize to classify graphs with
unseen entities. 2) CTDNE [Nguyen et al., 2018]. A graph
embedding method that utilizes the time point labels in the
clique-expansion graph. 3) traditional ILP methods: random
walk (RW), NeuralLP [Yang et al., 2017], NLIL [Yang and
Song, 2020], and Drum [Sadeghian et al., 2019]. We imple-
ment the RW method as a simplistic baseline that performs
personalized random walks on the clique-expansion graph
while ignoring the time labels; it counts the frequency of paths
that answer the query. All experiments are done on a PC with
i7-8700K and one GTX1080ti. We use the Mean Reciprocal
Rank (MRR) and Hits@3 and Hits@10 as the metrics.

Results. The results are shown in Table 2. We find TILR
yields the best performance on the hypergraphs, which is 30%
higher than the ordinary graph counterparts. This suggests the
proposed temporal hypergraph representation can better cap-
ture the higher-order information, which addresses question
(Q1). On the other hand, we also find TILR outperforms all
baseline methods on clique-expansion graphs as well. This
suggests that TILR, with the introduction of time intervals,
generalizes better than other baselines in the temporal domain,
as others can at most utilize time point information. To further
inspect the generalizability of TILR, we show example rules
in Table 3. This shows that TILR can generalize meaningful
and interpretable rules over both logic and temporal domains,

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3618

Method
YouCook2-HG nuScenes-HG

Clique-Expansion Hypergraph Clique-Expansion Hypergraph
MRR Hits@3 Hits@10 MRR Hits@3 Hits@10 MRR Hits@3 Hits@10 MRR Hits@3 Hits@10

GNN-GCN 0.32 28.1 36.9 - - - 0.40 32.2 50.4 - - -
GNN-Cheb 0.37 32.7 43.7 - - - 0.41 32.6 55.6 - - -
CTDNE 0.15 11.9 16.6 - - - 0.08 9.7 11.3 - - -

RW 0.19 18.8 20.6 - - - 0.15 11.0 17.4 - - -
NeuralLP 0.36 35.4 39.5 - - - 0.47 39.4 63.1 - - -
NLIL 0.38 36.3 6.8 - - - 0.45 38.3 58.2 - - -
Drum 0.40 38.5 45.2 - - - 0.51 45.5 66.8 - - -

TILR 0.25 20.4 23.7 0.35 29.4 36.3 0.14 10.1 19.5 0.19 20.8 31.4
TILR-PC 0.30 27.9 31.1 0.60 55.8 59.1 0.18 15.1 22.9 0.22 24.1 35.5
TILRθ-PC 0.44 40.2 47.3 0.72 76.0 79.4 0.52 47.2 65.2 0.64 66.0 81.1

Table 2: MRR and Hits of TILR and baselines on YouCook2 recipe summarization and nuScenes behavior explanation benchmarks.

Recipe Example temporal rules

BLT Sandwich
Put(Mayo, Bread1)

BEFORE MixInto((Bread1, lettuce, tomato), M)
BEFORE Cover(Bread2, M)

Onion Ring

Remove(Layers, Onion)
AND Cut(Onion, Onion)
BEFORE MixInto((Onion, flour), M)
BEFORE Put(M, Fryer)

Spaghetti & Meatball

MixInto((Garlic, Beef), M1)
BEFORE Saute(M1, M1)
AND MixInto((Tomato Paste, cheese), M2)
BEFORE MixInto((M1, M2, Spaghetti), M3)

Table 3: Example rules that summarize the recipes. We simplify the
notations. The class M denotes the intermediate products.

addressing question (Q2). We investigate (Q3) in §5.2 with
both tasks’ results.

5.2 Driving Behavior Explanation
The nuScenes autonomous driving dataset [Caesar et al., 2020]
consists of 750 driving scenes in the training set. Each scene
is a 20s video clip; each frame in the clip is annotated with
2D bounding boxes and class labels. The dataset also provides
lidar and ego information such as absolute position, brake,
throttle, and acceleration.

Predicate Type # Predicates # Facts ExamplesPer Graph Total

Relation
Unary 13 4631 3473257 ego.throttle

ego.brake

Binary 6 1859 1394253 in front
behind

N-ary 1 1692 1269004 Between

Class 23 257 45881
vehicle.car

human.ped.adult
ped crossing

Table 4: Stats. of the hypergraph benchmark nuScenes-HG.

nuScenes-HG Construction. We construct the hyper-
graph for each driving scene. We use the 23 ob-
ject classes as class labels, including vehicle.car
and human.pedestrian.adult; We convert ego in-
formation and attributes such as vehicle.moving and

pedestrian.moving into unary predicates. The origi-
nal dataset does not provide relations for the objects. Here, we
create the relative spatial relations by inferring from the abso-
lute spatial information. This includes In front, Behind,
Between and etc. The statistics are shown in Table 4. Clique-
expansion graphs are created for nuScenes-HG the same way
as that in YouCook2-HG.
Task. We apply TILR to explain the driving behavior with
temporal logic rules. Such an explanation is beneficial as it
can provide insight into why certain behavior happens, for
example, one can explain in what situation will the driver hit
the brake; the evidence is likely to be there is a pedestrian
crossing the street. Formally, we consider the positive queries
as events of ego.brake and ego.throttle and the rest
of the events as the negative queries. Let e = P

(
x0,xn, t

)
be the event and G be the temporal graph, we have
Q+ = {e|P ∈ {ego.brake,ego.throttle}, e ∈ G},
Q− = {e|P /∈ {ego.brake,ego.throttle}, e ∈ G}.

Results. We show results in Table 2. TILR performs the
best on both clique-expansion graphs and hypergraphs, which
is similar to that in YouCook2-HG, suggesting temporal hy-
pergraph and the proposed TILR are the better representation
and ILP method for learning rules from real-world data with
temporal and higher-order relations.
Ablation Study. For both benchmarks, using PC and pa-
rameter model improves the performance, suggesting they
are essential components of TILR, resolving question (Q3).
Furthermore, we find that TILRθ-PC performs significantly
better than two other modes in this benchmark. This is because
nuScenes are more diverse and many situations can lead to the
target event, making it difficult to learn rules by counting.

6 Conclusion
We propose TILR, a framework that extends ILP technique
to beyond KGs. We introduce the temporal hypergraph and
show it is a powerful representation for many applications; we
then propose the MRBW algorithm, which, combined with the
path-consistency algorithm, serves as the foundation of TILR.
In experiments, we create and release two dedicated temporal
hypergraph datasets and evaluate TILR with strong baselines,
which shows superior reasoning capabilities.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3619

Acknowledgements
This work was supported by a sponsored research award by
Cisco Research.

References
[Allen, 1983] James F Allen. Maintaining knowledge

about temporal intervals. Communications of the ACM,
26(11):832–843, 1983.

[Bordes et al., 2013] Antoine Bordes, Nicolas Usunier, Al-
berto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data.
In Advances in neural information processing systems,
pages 2787–2795, 2013.

[Boschee et al., 2015] Elizabeth Boschee, Jennifer Lauten-
schlager, Sean O’Brien, Steve Shellman, James Starz, and
Michael Ward. ICEWS Coded Event Data, 2015.

[Caesar et al., 2020] Holger Caesar, Varun Bankiti, Alex H.
Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush
Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom.
nuscenes: A multimodal dataset for autonomous driving.
In CVPR, 2020.

[Campero et al., 2018] Andres Campero, Aldo Pareja, Tim
Klinger, Josh Tenenbaum, and Sebastian Riedel. Logical
rule induction and theory learning using neural theorem
proving. arXiv preprint arXiv:1809.02193, 2018.

[Carletti et al., 2020] Timoteo Carletti, Federico Battiston,
Giulia Cencetti, and Duccio Fanelli. Random walks on
hypergraphs. Physical review E, 101(2):022308, 2020.

[Chan et al., 2018] T-H Hubert Chan, Anand Louis, Zhi-
hao Gavin Tang, and Chenzi Zhang. Spectral properties of
hypergraph laplacian and approximation algorithms. Jour-
nal of the ACM (JACM), 65(3):1–48, 2018.

[Chitra and Raphael, 2019] Uthsav Chitra and Benjamin
Raphael. Random walks on hypergraphs with edge-
dependent vertex weights. In International Conference
on Machine Learning, pages 1172–1181. PMLR, 2019.

[Defferrard et al., 2016] Michaël Defferrard, Xavier Bresson,
and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. Advances in
neural information processing systems, 29, 2016.

[Evans and Grefenstette, 2018] Richard Evans and Edward
Grefenstette. Learning explanatory rules from noisy data.
Journal of Artificial Intelligence Research, 61:1–64, 2018.

[Galárraga et al., 2015] Luis Galárraga, Christina Teflioudi,
Katja Hose, and Fabian M Suchanek. Fast rule mining
in ontological knowledge bases with amie+. The VLDB
Journal—The International Journal on Very Large Data
Bases, 24(6):707–730, 2015.

[Gallo et al., 1993] Giorgio Gallo, Giustino Longo, Stefano
Pallottino, and Sang Nguyen. Directed hypergraphs and
applications. Discrete applied mathematics, 42(2-3):177–
201, 1993.

[Hayashi et al., 2020] Koby Hayashi, Sinan G Aksoy,
Cheong Hee Park, and Haesun Park. Hypergraph random
walks, laplacians, and clustering. In Proceedings of the 29th
ACM International Conference on Information & Knowl-
edge Management, pages 495–504, 2020.

[Kipf and Welling, 2016] Thomas N Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[Lao and Cohen, 2010] Ni Lao and William W Cohen. Re-
lational retrieval using a combination of path-constrained
random walks. Machine learning, 81(1):53–67, 2010.

[Lao et al., 2011] Ni Lao, Tom Mitchell, and William Co-
hen. Random walk inference and learning in a large scale
knowledge base. In Proceedings of the 2011 conference on
empirical methods in natural language processing, pages
529–539, 2011.

[Leetaru and Schrodt, 2013] Kalev Leetaru and Philip A
Schrodt. Gdelt: Global data on events, location, and tone,
1979–2012. In ISA annual convention, volume 2, pages
1–49. Citeseer, 2013.

[Li et al., 2020] Pan Li, Niao He, and Olgica Milenkovic.
Quadratic decomposable submodular function minimiza-
tion: Theory and practice. J. Mach. Learn. Res., 21:106–1,
2020.

[Liu et al., 2022] Yushan Liu, Yunpu Ma, Marcel Hilde-
brandt, Mitchell Joblin, and Volker Tresp. Tlogic: Temporal
logical rules for explainable link forecasting on temporal
knowledge graphs. arXiv preprint arXiv:2112.08025, 2022.

[Nguyen et al., 2018] Giang Hoang Nguyen, John Boaz Lee,
Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and
Sungchul Kim. Continuous-time dynamic network em-
beddings. In Companion Proceedings of the The Web Con-
ference 2018, pages 969–976, 2018.

[Pareja et al., 2020] Aldo Pareja, Giacomo Domeniconi, Jie
Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi,
Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn:
Evolving graph convolutional networks for dynamic graphs.
In Proceedings of the AAAI conference on artificial intelli-
gence, volume 34, pages 5363–5370, 2020.

[Payani and Fekri, 2019] Ali Payani and Faramarz Fekri. In-
ductive logic programming via differentiable deep neural
logic networks. arXiv preprint arXiv:1906.03523, 2019.

[Ronca et al., 2018] Alessandro Ronca, Mark Kaminski,
Bernardo Cuenca Grau, Boris Motik, and Ian Horrocks.
Stream reasoning in temporal datalog. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 32,
2018.

[Sadeghian et al., 2019] Ali Sadeghian, Mohammadreza Ar-
mandpour, Patrick Ding, and Daisy Zhe Wang. Drum:
End-to-end differentiable rule mining on knowledge graphs.
Advances in Neural Information Processing Systems, 32,
2019.

[Toutanova and Chen, 2015] Kristina Toutanova and Danqi
Chen. Observed versus latent features for knowledge base
and text inference. In Proceedings of the 3rd Workshop on

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3620

Continuous Vector Space Models and their Compositional-
ity, pages 57–66, 2015.

[Trivedi et al., 2017] Rakshit Trivedi, Hanjun Dai, Yichen
Wang, and Le Song. Know-evolve: Deep temporal rea-
soning for dynamic knowledge graphs. In international
conference on machine learning, pages 3462–3471. PMLR,
2017.

[Xiong et al., 2022] Siheng Xiong, Yuan Yang, Faramarz
Fekri, and James Clayton Kerce. Tilp: Differentiable learn-
ing of temporal logical rules on knowledge graphs. In The
Eleventh International Conference on Learning Represen-
tations, 2022.

[Yang and Song, 2020] Yuan Yang and Le Song. Learn to
explain efficiently via neural logic inductive learning. In In-
ternational Conference on Learning Representations, 2020.

[Yang et al., 2017] Fan Yang, Zhilin Yang, and William W
Cohen. Differentiable learning of logical rules for knowl-
edge base reasoning. In Advances in Neural Information
Processing Systems, pages 2319–2328, 2017.

[Zhou et al., 2018] Luowei Zhou, Chenliang Xu, and Jason J
Corso. Towards automatic learning of procedures from
web instructional videos. In AAAI Conference on Artificial
Intelligence, pages 7590–7598, 2018.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3621

	Introduction
	Related Work
	Temporal Hypergraphs
	Temporal Inductive Logic Reasoning
	Random Walk on Temporal Hypergraphs
	Temporal Relation Generalization
	Differentiable TILR for Hypergraph Reasoning

	Experiment
	Recipe Summarization
	Driving Behavior Explanation

	Conclusion

