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Abstract
Our goal is to develop a modern approach to an-
swering questions via systematic reasoning where
answers are supported by human interpretable proof
trees grounded in an NL corpus of facts. Such a
system would help alleviate the challenges of inter-
pretability and hallucination with modern LMs, and
the lack of grounding of current explanation meth-
ods (e.g., Chain-of-Thought). This paper proposes a
new take on Prolog-based inference engines, where
we replace handcrafted rules with a combination of
neural language modeling, guided generation, and
semiparametric dense retrieval. Our implementation,
NELLIE, is the first system to demonstrate fully in-
terpretable, end-to-end grounded QA as entailment
tree proof search, going beyond earlier work ex-
plaining known-to-be-true facts from text. In experi-
ments, NELLIE outperforms a similar-sized state-
of-the-art reasoner while producing knowledge-
grounded explanations. We also find NELLIE can
exploit both semi-structured and NL text corpora to
guide reasoning. Together these suggest a new way
to jointly reap the benefits of both modern neural
methods and traditional symbolic reasoning.

1 Introduction
Large language models (LLMs) are impressive at question-
answering (QA), but it remains challenging to understand how
answers systematically follow from authoritative information.
This general opacity is a growing impediment to widespread
use of LLMs, e.g., in critical applications such as medicine,
law, and hiring decisions, where interpretability and trust are
paramount. While there has been rapid progress in having
LLMs generate systematic explanations for their answers, e.g.,
Chain-of-Thought [Wei et al., 2022], Entailer [Tafjord et al.,
2022], or Maieutic Prompting [Jung et al., 2022], such expla-
nations are not grounded in external facts and may include hal-
lucinations [Ji et al., 2022]. Rather, what would be desirable -
and what this work pursues - is a system that systematically
reasons over authoritative text: to support answers with hu-
man interpretable proof trees grounded in the text, while not
requiring translation to an entirely symbolic formalism.

Prove(plants use light to produce carbohydrates via photosynthesis)

NL Corpus

RTE
Filters

Template
Conditioned

LM

Inference-Supporting
Templates

___causes ___
___ is used to ___
___ is a kind of ___

if ___ then ___

....

Prove(plants use chlorophyll to produce sugar)

RTE
Filters

Dense
Retrieval

RTE
Filters

Retrieval
Conditioned

LM

Dense
Retrieval

Prove(chlorophyll is used for absorbing light energy by plants)

Prove(carbohydrates are made of sugars)

RTE
Filters

Dense
Retrieval

Prove(chlorophyll causes plants to absorb light)

Prove(chlorophyll is used by plants to produce carbohydrates)

Prove(photosynthesis is a source of food for the plant by
converting carbon dioxide, water, and sunlight into carbohydrates)

Figure 1: Given a query, NELLIE performs a neuro-symbolic back-
ward chaining search for proof trees whose leaves are grounded in a
corpus of facts. It generates candidate decomposition rules guided by
retrieved facts or templates. Then, it recursively tries to prove rule
conditions via entailment from the corpus or further decomposition.

Our approach is to revisit the behavior of expert sys-
tems [Jackson, 1986; Metaxiotis et al., 2002]. Expert sys-
tems are appealing for their explainable behavior: decisions
are made by constructing a well-formed symbolic proof from
explicit, formally represented knowledge authored by a knowl-
edge engineer in consultation with a domain expert. However,
as expert systems are known to be both expensive and brit-
tle [Musen and Van der Lei, 1988], the AI community has
turned to neuro-symbolic mechanisms that use large language
models to reason over natural language (NL). Reasoning over
NL does not require a symbolic formalism and allows the use
of inferentially powerful LLMs, but also loses the systematic,
verifiable proofs that expert systems produced. This motivates
our pursuit of a new way to jointly reap the benefits of both
modern neural methods and traditional reasoning.
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Figure 2: Comparison of approaches to neural XQA. Each approach
leads to NL graphs in support of a query. Our proposal is to pro-
duce logically directed explanations containing model-generated
intermediate steps while grounding a tree in verified facts without
relying on handwritten horn clauses.

We desire the following expert system-inspired desiderata:
1. Grounding inferences fully and scalably in a corpus of

knowledge from an authoritative human source.
2. Logical direction, showing how a given hypothesis (and

all intermediate inferences leading up to it) follows as the
logical consequence of the underlying knowledge source

3. Competitive end-to-end QA performance in a complex
domain requiring diverse forms of reasoning.

As illustrated in Figure 2, various eXplainable QA (XQA)
methods accomplish 2 of these criteria, but not all 3. Some
methods, like Chain-of-Thought, generate inference chains or
logically structured graphs from an LLM without grounding in
verified knowledge. Others, like ExplanationLP [Thayaparan
et al., 2021], compose graphs of grounded facts, but do not
show logical direction. LAMBADA [Kazemi et al., 2023]
achieves both direction and grounding but is limited to simple
domains with provided NL Horn rules and sets of 1-2 dozen
facts. In contrast, we desire a system that handles a larger
corpus (10K statements) and doesn’t need handcrafted rules.
To achieve all three desiderata, we reuse the general infer-

ence framework of an expert system, but replace handcrafted
rules with a combination of neural language modeling, guided
generation, and semiparametric dense retrieval. We demon-
strate this in a system called NELLIE, the Neuro-Symbolic
Large LM Inference Engine. NELLIE leverages LLMs as
proposal functions in the search of proof trees showing how

a conclusion follows via entailment from an external corpus
of NL statements. The “symbols” that our neuro-symbolic
engine reasons over are free-form NL sentences. Rather than
require a knowledge engineer to carefully write hundreds of
inference rules as in the classical setting, NELLIE employs an
LLM as a dynamic rule generator [DRG; Kalyanpur et al.,
2021] to generate (rather than retrieve) candidate rules that
decompose a hypothesis into subqueries that, if themselves
proved recursively, will prove that hypothesis via composi-
tion (Figure 1). In this way, NELLIE can answer the question
posed by the classical expert system: “Does this statement
systematically follow from my knowledge, or not?”.

NELLIE is built upon a backward chaining symbolic theo-
rem prover written in Prolog, implemented using a few meta-
rules specifying how inference should proceed. These include
checking for entailment of a hypothesis against a retrieved fact
or decomposing it into a conjunction of subqueries to recur-
sively prove. To treat NL sentences as if they were symbols
in a purely symbolic search algorithm, we use a natural lan-
guage inference-based form of weak unification [Sessa, 2002;
Weber et al., 2019] between the hypothesis and a corpus fact.
This produces interpretable proofs similar to the compositional
entailment trees of prior work (e.g., EntailmentBank [Dalvi et
al., 2021]) while tackling the additional challenge of QA.

NELLIE is designed to search across hundreds of trees
whose leaves come from one of two types of knowledge: (a) a
corpus of semi-structured text statements, such as NL rendi-
tions of database entries, or (b) a corpus of free-form NL sen-
tences. Many correct proofs might exist for a given hypothesis,
but much fewer will be fully groundable in the provided corpus,
making the search harder than for ungrounded alternatives like
Entailer [Tafjord et al., 2022] or COMET-Dynagen [Bosselut
et al., 2021]. To improve grounding, we introduce two guiding
methods to boost the likelihood of generating rules whose con-
ditions match against the available text: (1) For applications
where a semi-structured corpus is available, NELLIE lever-
ages this structure via templates to help steer rule generation
towards syntax that is more likely to match corpus entries.
(2) For both free-form and semi-structured corpora, NELLIE
retrieves and conditions on statements to help steer generation
towards trees grounded in them. Ablation experiments show
these together and individually improve NELLIE’s reasoning.

NELLIE expands upon methods that ground known-to-be-
true hypotheses to provided facts [SCSEARCH; Bostrom et al.,
2022], extending the paradigm to perform QA. This involves
searching for and comparing trees for conflicting answer op-
tions. Experiments find NELLIE outperforms a similar-sized
state-of-the-art reasoner, Entailer, while producing composi-
tional trees showing how decisions are grounded in corpus
facts. Our contributions are thus:

1. An architecture for systematic reasoning from a corpus
of textual knowledge to answer questions. This can be
viewed as a modern approach to expert system inference,
but without requiring a formal knowledge representation.

2. An implementation, NELLIE,1 that outperforms a similar-
sized SOTA reasoner (Entailer-3B) while producing

1Code and appendix at https://github.com/JHU-CLSP/NELLIE.
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grounded trees. To our knowledge, this is the first system
to perform grounded XQA as NL entailment tree search.

2 Related Work
Theorem Proving over Language A long-standing ap-
proach to reasoning over NL is to project it into a sym-
bolic form, such as for QA [Green et al., 1961; Zelle and
Mooney, 1996] or entailment [Bos and Markert, 2005]. Pro-
vided the translation from NL to symbolic representation is
accurate, one can leverage fast and scalable solutions for
discrete symbolic inference [Riazanov and Voronkov, 2002;
Kautz et al., 1992; Kautz and Selman, 1999]. However,
reliably translating broad-domain NL into an adequately
expressive formalism for reasoning is a challenge [Schu-
bert, 2015], though some have found success using LLMs
to perform this semantic parsing task [Wong et al., 2023;
Lyu et al., 2023; Olausson et al., 2023; Pan et al., 2023;
Ye et al., 2023].

Recent work explores methods of handling NL without
parsing it to another formalism. Some use LMs to gener-
ate proof steps in mathematical theorem proving [Polu and
Sutskever, 2020; Welleck et al., 2022]. Variants of neural
theorem provers [NTPs; Rocktäschel and Riedel, 2017] such
as NLProlog [Weber et al., 2019] reconcile NL facts with
symbolic reasoning by learning embeddings for the facts
and symbols in a theory, then using weak unification to
backward chain. Kalyanpur et al., 2021 inject neural rea-
soning into a Boxer/Prolog-based symbolic reasoner via a
special LM-calling predicate. Arabshahi et al., 2021b com-
bine handwritten symbolic rules with neural symbol em-
beddings to classify conversational intents. Other work ex-
plores using LMs to emulate stepwise [Tafjord et al., 2021;
Kazemi et al., 2023] or end-to-end [Clark et al., 2021;
Picco et al., 2021] logical reasoning over small rulebases
converted to NL. These approaches require both user-provided
if/then rules to operate, while NELLIE requires only facts and
is thus applicable to domains in which rules are not available.

Modular Reasoning over NL NELLIE’s systematic reason-
ing is related to approaches that decompose problems into
sequences of modular operations. Gupta et al., 2020 introduce
a neural module network [NMN; Andreas et al., 2016] for QA
with modules for span extraction and arithmetic operations.
Khot et al., 2021 introduce another NMN that decomposes
questions into simpler ones answerable by existing models.
These are part of a broader class of work decomposing multi-
step reasoning using reasoning modules [Khot et al., 2022;
Saha et al., 2023a; Saha et al., 2023b].

Systematic Explanation Generation Recent works have
used LMs to generate NL reasoning graphs in support of an
answer. “Chain-of-Thought” prompting [Wei et al., 2022;
Kojima et al., 2022], elicits free-form inference hops from the
LM before it generates an answer. Other text graph generation
methods connect model-generated statements via common
sense relations [Bosselut et al., 2021; Arabshahi et al., 2021a]
or for/against influence [Madaan et al., 2021; Jung et al.,
2022], though these are not knowledge-grounded and don’t
address entailment (see Figure 2).

The EntailmentBank dataset [Dalvi et al., 2021] has driven
research towards the construction of explanation trees, chal-
lenging models to produce stepwise entailment proofs of a
statement using a set of provided support facts. This direction
builds upon works on explainable reasoning that build graphs
from KB-retrieved sets of support statements, but stop short
of showing their role in logical entailment [Pan et al., 2019;
Jansen and Ustalov, 2019; Yadav et al., 2019; Valentino et al.,
2022]. Components of our framework are related to concur-
rent approaches for entailment tree construction [Bostrom et
al., 2022; Hong et al., 2022; Sprague et al., 2022]. Ribeiro
et al., 2022 also use iterative retrieval-conditioned generation,
and Yang et al., 2022 also use entailment classifiers to filter
proof steps. None of the above tree generation approaches
consider this harder scenario of multiple-choice QA, opting
instead to focus on the reconstruction task from support facts.
Tafjord et al., 2022 do consider the harder task. They propose
a backward chaining QA system, Entailer, that generates en-
tailment trees (not grounded in human-verified facts) using
a search grounded to the model’s internal beliefs, comple-
mentary to NELLIE’s use of guided and retrieval-conditioned
generation to obtain knowledge grounding. As with NELLIE
(§5.2), Entailer benefits from humans adding more useful state-
ments to its available knowledge [Dalvi Mishra et al., 2022].
The difference between systems is highlighted by the num-
ber of generations (i.e. search nodes) considered by the two
algorithms: while Entailer considers at most a couple dozen
hypothesis decompositions, NELLIE must consider hundreds
or thousands to find one that is fully grounded.

Faithful Complex LLM Reasoning Of the growing body
of work on LLM-based “Chain-of-X” reasoning methods [Xia
et al., 2024], a portion considers ways to improve faithfulness
to underlying knowledge and reduce LLM hallucinations (see
Lyu et al., 2024 for an overview of faithful explanation meth-
ods). NELLIE contributes to this space by providing a faithful-
by-design algorithm that reasons based on logical hypothesis
grounding. Other recent methods include Rethinking with
Retrieval [He et al., 2022], which reranks reasoning chains
using a faithfulness score based on retrieved knowledge, and
the forward-chaining Faithful Reasoning algorithm [Creswell
and Shanahan, 2022], which follows “a beam search over
reasoning traces” to answer a question by iteratively adding
deductive inferences to a context of starting facts. Theirs is a
different style search to our backward-chaining NELLIE, not
relying upon NLI for verifying logical connectedness and not
scaling to larger knowledge bases.

3 Background
A logical expert system proves a propositional query against a
theory comprised of facts and inference rules, generally given
in the form of Horn clauses. Upon finding a rule whose head
can unify with the query, a depth-first backward chaining al-
gorithm such as those used in Prolog solvers will perform
variable substitution and then recursively attempt to prove
the terms in the rule’s body. For example, a disease classifi-
cation system might prove query CONTAGIOUS(flu) via facts
CONTAGIOUS(influenza) and OTHERNAME(flu, influenza), and
conjunctive rule CONTAGIOUS(X) ( OTHERNAME(X,Y )^
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CONTAGIOUS(Y ). It does so by unifying CONTAGIOUS(flu)with
CONTAGIOUS(X) and then recursively unifying the terms in
the rule body with their matching facts. Here, flu is an ob-
ject symbol, CONTAGIOUS is a predicate symbol, and X is a
variable. See Russell and Norvig, 2010 for further details.
Neural Predicates While most declarative predicates have
meaning only in the context of user-defined inference axioms,
others can call external neural modules that produce values
for their arguments or determine the truth value of the pred-
icate. A popular implementation of this paradigm is Deep-
ProbLog [Manhaeve et al., 2018], which we use to define LM-
invoking predicates. In the above example, we might train a
sequence-to-sequence (seq2seq) model to produce other names
for a disease Y , turning OTHERNAME(Y +

, X
�)2 into a neural

predicate. This mechanism creates the ability to introduce
externally defined object symbols, e.g. seq2seq-generated NL,
into the engine’s vocabulary.
Weak Unification In classical backward chaining, a unifi-
cation operator assigns equivalence to two logical atoms; this
requires atoms to have the same arity and have no unequal
ground literals in the same argument position. Issues arise
when literals are NL sentences, which can be syntactically dis-
tinct but semantically equivalent. To handle this, Weber et al.,
2019 propose a weak unification operator, which allows for the
unification of any same-arity atoms regardless of conflicting
symbols.3 They estimate a unification score as the aggrega-
tion of pairwise similarity scores using a similarity function
✓(s1, s2) 2 [0, 1]. The score of the full proof is taken as the
minimum of scores across all steps. In this work, we apply
a similar aggregation; we say that a query fact s1 “weakly
unifies” with provenance fact s2 with a unification score equal
to the confidence of an NLI model taking s2 as the premise
and s1 as the hypothesis.

4 Overview of Approach
Depicted in Figure 3, our framework is comprised of: an exter-
nal corpus of facts (some {f1, . . . fn}); a module that converts
a QA pair to a hypothesis; an off-the-shelf theorem prover;
and a suite of meta-axioms that use neural fact retrieval and
dynamic rule generation modules to propose, verify, and score
inferences. In our experiments, we consider one implementa-
tion of this framework that uses the corpus WorldTree [Xie et
al., 2020], a set of 9K NL science facts that can interchange-
ably be considered as rows in 81 n-ary relational tables.
Question Conversion Given a multiple-choice question, the
system converts each candidate answer into a hypothesis h
using a Question to Declarative Sentence model [QA2D; Dem-
szky et al., 2018] (See §C). It then searches for a proof of h
against its knowledge base. For each alternative, we enumer-
ate p proofs using a time-capped backward chaining search
and then take as the system’s answer the candidate with the
overall highest-scoring proof.

2In Prolog syntax, ‘+’ denotes inputs, ‘�’ outputs.
3Introducing weak unification greatly increases the search run-

time, as one might try to unify any two symbols in the vocabulary
at every recursive step. This poses a substantial challenge when
applying the query grounding algorithm to a search space over NL.

4.1 Inference Rule Structure
Our approach uses LMs to dynamically generate inference
rules given a hypothesis. The rule structure is strikingly simple,
instantiating one of the following meta-level templates:
I. Hypothesis( Fact

II. Hypothesis( Fact1 ^ Fact2

Via template I, the system proves the hypothesis by finding
a provenance Fact stored in its knowledge store that entails
the hypothesis. Via template II, it enumerates a pair, Fact1
and Fact2, both either stored in the knowledge store or them-
selves recursively proved, such that the pair in conjunction
entails the hypothesis.4 Template I is given higher search
precedence than II, yielding an intuitive high-level procedure:
we first look up the hypothesis against the factbase, searching
for an entailing fact. If we do not find one, we decomposes
the hypothesis into a pair of statements to be proved. Con-
cretely, for an input hypothesis h, we define the predicate
PROVE(h) that serves as the primary goal term. We define
the following core meta-rules, which use the neural predicates
RETRIEVE, ENTAILS, and RULEGEN. At each step in the
backward-chaining search, NELLIE’s Prolog engine attempts
to unify a query with the head of one of these three rules:
1. Fact Unification

PROVE(h) ( RETRIEVE(h+
, f

�) ^ ENTAILS(f, h)

2. Two Premise Rule Generation
PROVE(h) ( RULEGEN(h+

, f
�
1 , f

�
2 ) ^ENTAILS([f1, f2], h)

^ PROVE(f1) ^ PROVE(f2)

3. Retrieved First Premise Rule Generation
PROVE(h) ( RETRIEVE(h+

, f
�
1 ) ^ RULEGEN(h+

, f
+
1 , f

�
2 )

^ENTAILS([f1, f2], h) ^ PROVE(f2)

4.2 Unification with Retrieved Facts
For factbase fact f , PROVE(f) is vacuously true. Rule 1
shows how we prove PROVE(h) using retrieval. The pred-
icate RETRIEVE proposes candidate fi’s given h using a
FAISS [Johnson et al., 2019]-based nearest neighbor dense
retrieval index. We train the retrieval encoder via ranking
loss such that the embedding for a hypothesis is maximally
similar to its supporting facts. To promote logical coherence
and improve the precision of the system, we apply a set of
neural models for recognizing textual entailment (RTE) as
filters ENTAILSj(·) that iteratively rule out fi candidates that
are not classified as entailing h.

ENTAILS(fi, h) (
^

j=1...n

ENTAILSj(fi, h)

Implicit in rule 1 is that PROVE(h) weakly unifies with some
PROVE(fi); we assign the unification score ✓(h, fi) equal to
the confidence of one RTE model.

For some questions such as the one depicted in Figure 4, it is
necessary to ground a subquery in evidence from the problem.
To handle this, we add the question setup (defined as all but
its last sentence) as a “fact” always proposed by RETRIEVE.

4We find that two-premise decomposition is sufficiently powerful
and expressive for our purposes. For example, to prove a hypothesis
such as those in EntailmentBank [Dalvi et al., 2021] that requires
a three-premise conjunction h ( f1 ^ f2 ^ f3, NELLIE produces
instead a recursive set of decompositionsH ( f1^fi; fi ( f2^f3.
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Figure 3: Proposed system framework. An off-the-shelf theorem prover searches for proofs of query PROVE(h), where symbol h is an NL
hypothesis translated from a QA pair. The prover uses a set of meta-axioms invoking neural retrieval, entailment, and generation predicates to
dynamically instantiate inference rules that use the NL factbase.

Cheetahs have come close to extinction due to hunting, drought, and
disease. There is now little genetic variation in cheetah populations.
Which of the following is a result of the limited genetic variation in the current
cheetah populations compared to earlier populations with more variation?
(A) ...
(D) The current cheetah populations are less likely to be able to adapt to
environmental changes.

The current cheetah populations are less likely to be able to adapt to
environmental changes as a result of the limited genetic variation

compared to earlier populations with more variation.

Cheetahs have come close to
extinction due to hunting, drought, and

disease. There is now little genetic
variation in cheetah populations.

Question Context

Corpus Fact

Hypothesis

The current cheetah populations have
less genetic variation than the earlier

populations

Sub-Hypothesis

As the genetic variation in a species
of organism decreases, the ability of
that species to adapt to changes in

the environment will decrease.

Figure 4: Example question in which a sub-hypothesis in the proof
tree is grounded to the question context rather than to the factbase.

4.3 Dynamic Rule Generator (DRG)
If we do not find an entailing fact for hypothesis h, we decom-
pose h into a pair of entailing premises; we propose candidates
using nucleus sampling [Holtzman et al., 2019] from a seq2seq
model. The predicate RULEGEN(h, f1, f2) prompts a model
trained to generate h ! f1, f2 pairs. The space of potential
decompositions is very large; there are many deductively valid
ways to prove a hypothesis in natural language, though only
a fraction of them are ultimately groundable in the provided
factbase. To bias the proof search towards those more likely to
be grounded in the corpus, we adopt a two-pronged approach,
illustrated in inference rules 2 and 3, that proposes a hetero-
geneous search frontier using different biasing strategies in
addition to straightforward LM sampling.

Template Conditioned Generation (TCG) One way in
which we improve our LM-based proposal function is to lever-

age the high-level structure that supports reasoning in a given
domain: we propose template-guided generation to bias search
towards the semi-structure of WorldTree.5 WorldTree tables
correspond to types of facts with similar syntax and semantics
that support scientific reasoning. WorldTree questions are
annotated with the fact rows that support their answers. Each
table can be viewed as an n-ary relation of columns whose val-
ues are text spans. E.g., the Taxonomic relation has columns
<A>, [HYPONYM], <is a / a kind of>, <SCOPE1>, [HY-
PERNYM], <for>, [PURPOSE]. Rows include ‘a bird is an
animal’ and ‘a seed is a kind of food for birds.’
Thus, for the RULEGEN predicate in rule 2, half of the

f1, f2 candidates are sampled from the DRG conditioned on
h plus a template that cues the model to reflect the syntax of
a WorldTree table. We train the DRG to accept any masked
infilling template (e.g. <mask>is a kind of <mask>, akin to
those used to pretrain LMs [Lewis et al., 2019; Raffel et al.,
2020]), and propose decompositions whose first fact reflects
the template’s syntax. We thus create a h, t1 ! f1, f2 model.
We feed the model templates drawn from WorldTree’s tables,
guiding it towards proof steps more likely to be grounded in
the factbase. A sample of the 150 templates can be found in
Figure 5 (a larger list is shown in §D). We reuse the same
model for non-template-conditioned generation by feeding
it an empty template. In practice, we make two generation
calls: one samples m free-generated candidates, and a second
samples n candidates for each of nt templates.
RULEGEN(h+

, f
�
1 , f

�
2 ) ( MEMBER(t, TEMPLATES [ {BLANK})

^ TCRULEGEN(h+
, t

+
, f

�
1 , f

�
2 )

Template Selection WorldTree is a diverse corpus, contain-
ing tables that are specific to a particular subset of science

5While our approach is applicable to a wide array of reasoning
problems, the use of WorldTree-specific templates illustrates one way
by which we can infuse domain-specific structure into the neural
search algorithm. This is a strict departure from the burdensome
process of symbolic knowledge engineering. As our experiments
show, this guidance method improves NELLIE’s QA accuracy by a
few points, though ablating it yields a similarly strong performance.
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WorldTree Relation Template

KINDOF <mask>is a kind of<mask>
IFTHEN if<mask>then<mask>
PROP-THINGS <mask>has<mask>
CAUSE <mask>causes<mask>
MADEOF <mask>made of<mask>
REQUIRES <mask>requires<mask>
ACTION <mask>is when<mask>
USEDFOR <mask>used to<mask>
PARTOF <mask>a part of<mask>
CHANGE <mask>changes<mask>
USEDFOR <mask>used for<mask>
AFFECT <mask>has<mask>impact on<mask>
PROP-ANIMAL-ATTRIB <mask>is a<mask>animal
SOURCEOF <mask>is a source of<mask>
COMPARISON <mask>than<mask>
EXAMPLES an example of<mask>is<mask>
COUPLEDRELATIONSHIP as<mask>decreases<mask>will<mask>
PROP-CONDUCTIVITY <mask>is<mask>conductor
PROP-GENERIC <mask>is a property of<mask>
HABITAT <mask>live in<mask>
MEASUREMENTS <mask>is a measure of<mask>

Figure 5: Sample of WorldTree templates used for guided generation.

problems (e.g. the “Predator-Prey” table). As condition-
ing on dozens of templates can be computationally expen-
sive, we introduce a case-based reasoning [Schank, 1983;
Das et al., 2021] approach that selects relevant templates for
a given hypothesis. We construct an Okapi-BM25 [Jones et
al., 2000] retrieval index over questions from the WorldTree
QA training set to obtain the most lexically similar items to
a query. At inference time, we select the top-k most similar
questions to the query and take as our template subset the
tables of the questions’ annotated facts.
Retrieval Conditioned Generation (RCG) In rule 3, rather
than generate a pair of subqueries, we immediately ground half
of the antecedent by choosing as f1 a fact retrieved directly
from the corpus. We have the DRG force decode f1 before
generating f2 as normal, then recur only on f2.
Filters As stochastic sampling from LMs can be noisy,
some fraction of the generated candidate set may be in-
valid: premises may be incoherent, or the decomposition
might not properly entail h. Accordingly, we introduce a
set of compositional entailment verifiers [Khot et al., 2020;
Jhamtani and Clark, 2020] trained on two-premise compo-
sitional entailment. We also add a “self-ask” filter, which
following Tafjord et al., 2022 is an LM fine-tuned to assign a
statement a truth value. If the confidence is below 0.5 for either
an entailment judgment or the ‘self-ask’ belief in f1 or f2, then
we filter the pair. All filters condition on the question text as
context. When NELLIE uses these rules, the unification score
equals the lowest of the scores for PROVE(f1), for PROVE(f2),
and the confidence of entailment filters se([f1, f2] ) H).

4.4 Proof Search
Given a query, NELLIE searches for t seconds to find up to
p proofs of depth d or less. We follow Weber et al., 2019 in
pruning search branches whose unification score is guaranteed
to fall below the current best, given our monotonic aggregation
function min(·). Found proofs that score under the current
best do not count towards p. Full pseudocode for the algo-
rithm, which follows a depth-first search with a breadth-first

lookahead [Stern et al., 2010] to check for the unification of
generated subgoals, can be found in §E. It is parameterized by
1. A maximum number of proofs m at which to cut off

searching. In experiments, we set this to 10 for top-level
queries and 2 for recursive subqueries.

2. A number of support facts nf to retrieve at each call to
RETRIEVEK , which we set to 15.

3. Candidate generation rates nv for vanilla nucleus-
sampled decompositions, nt for template-conditioned
decompositions, and nr for retrieval-conditioned gener-
ations. We set these each to 40.6 Upon removing exact
match duplicates, a call to RULEGEN produces about
100 candidates.

4. Entailment scoring module SCOREe(·), which is a sep-
arate RTE cross-encoder model for single- and double-
premise entailments.

5 Experiments
We train the components of NELLIE to be able to answer
questions in the Science QA domain. The different neural
modules are trained on reformulations of existing datasets for
scientific reasoning. Further information can be found in §A.

Our experiments illustrate how the approach exemplified by
NELLIE provides grounded and logical explanations, perform-
ing comparably or better than approaches that do not satisfy
these properties. We evaluate models on two multiple-choice
QA datasets constructed so that correct answers are supported
by facts in the WorldTree corpus:
EntailmentBank [Dalvi et al., 2021] is a dataset of entail-
ment trees for declarativized answers to the AI2 Reasoning
Challenge (ARC) dataset [Clark et al., 2018], showing how
the hypothesis can be derived via compositional entailment
hops from WorldTree facts. We recast the test set, initially
designed to test tree reconstruction, into QA by retrieving the
corresponding multiple-choice ARC questions from which the
hypotheses were constructed.
WorldTree [Xie et al., 2020] is a subset of the ARC dataset
annotated with undirected explanation graphs whose nodes are
facts from the WorldTree tablestore. We note that WorldTree
explanations do not show how facts should combine. There is
no guarantee that fully grounded trees exist for these questions
using the WorldTree corpus alone. The difficulty of this task
is akin to that of a course exam: the teacher (us) provides the
student (the model) with a very large study guide of facts, but
expects the student to use these facts by composing them to
reason coherently about a problem.
Our task metric is accuracy: whether a generated proof of

the correct option outscores any other.7

Baselines We evaluate NELLIE against Entailer [Tafjord et
al., 2022], another system that produces entailment tree proofs
via backward chaining. Entailer stops recurring not when it
finds entailing facts from a corpus, but rather when the model

6Due to batching, these correspond to 3 total calls to the Hugging-
Face library’s generate function for the T5-3B model.

7If it produces no proofs, it gives no answer and is wrong. NELLIE
searches for up to p=10 proofs of max depth d=5 with a timeout of
t=180 seconds per option.
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Explanations QA Accuracy (%)

Grounded Logical Ovr Easy Chal

EntailmentBank QA

NELLIE (3B) Yes Yes 71.4 76.4 60.4
Entailer-3B

(D = 3) No Yes 48.7 52.8 39.6
(D = 1) No No 64.9 71.2 50.9

Entailer-11B
(D = 3) No Yes 73.2 77.3 64.2
(D = 1) No No 71.1 76.4 59.4

WorldTree QA

NELLIE (3B) Yes Yes 71.4 75.7 60.9
Entailer-3B

(D = 3) No Yes 45.2 50.1 33.3
(D = 1) No No 47.7 51.6 38.5

Entailer-11B
(D = 3) No Yes 73.2 76.7 64.6
(D = 1) No No 74.1 78.7 63.0

PathNet Yes No 43.4
TupleILP Yes No 49.8
ExplanationLP Yes No 62.6
Diff-Explainer Yes No 71.5

Table 1: NELLIE performance vs. comparable XQA systems.

believes that a subquery is true with high confidence. Its trees
are thus not grounded in verified facts. We reimplemented
their algorithm using their T5-11B-based model, reporting
their configuration of a max tree depth (D) of 3 and mini-
mum of 1 (i.e. � 1 decomposition). We also evaluate their
ablated setting which recurs exactly once (D=1). This is a
baseline that is neither grounded nor particularly interpretable,
generating just a pair of statements. To isolate the impact of
model size, we also evaluate an Entailer-3B model based on
the same T5-3B model as NELLIE’s DRG.8 We also compare
against grounded xQA methods without logical structure (see
Fig 2): PathNet [Kundu et al., 2019], which constructs 2-hop
chains by linking entities between facts, and three approaches
that build graphs from facts using linear programming: Tu-
pleILP [Khot et al., 2017], ExplanationLP [Thayaparan et
al., 2021], and Diff -Explainer [Thayaparan et al., 2022].9

5.1 Results
Table 1 shows QA performance. NELLIE’s overall (Ovr)
accuracy of over 70% matches that of the best-performing
grounded baseline, Diff -Explainer, on WorldTree, and is
within 2 points of the best logically directed baseline, Entailer-
11B. This is notable given Entailer-11B is a much larger model
and has no requirement to provide grounded proofs. NELLIE
outperforms the same-sized Entailer-3B baseline by a margin

8We obtained the training data from Tafjord et al., 2022 and
trained our model in consultation with the authors.

9We show results from [Thayaparan et al., 2021 & 2022].

Figure 6: Effect of ablating one or both of rule-conditioned (RCG)
and template-conditioned generation (TCG).

Figure 7: NELLIE QA accuracy and proof recall on OBQA with vs.
without access to common knowledge statements

of 22% on EntailmentBank and 26% on WorldTree under its
default max D = 3 configuration, and even outperforms the
less explainable D = 1 variant.

Figure 6 shows the results of ablating NELLIE’s two condi-
tional generation modules and replacing them with vanilla gen-
eration. Removing both template- and retrieval-conditioned
generation lowers NELLIE’s performance in all circumstances,
highlighting the empirical benefit of structured guidance. Ab-
lating TCG ((� TCG), and the drop from (� RCG) to (�
Both)) reduces performance by 1-1.5 points. Ablating RCG
(NELLIE vs (� RCG)) drops it by 3-4.

5.2 Domain Generalization and Knowledge Scaling
While NELLIE was trained on datasets centered around
WorldTree, we show that it can perform in another domain by
altering the knowledge over which it reasons. We consider
OpenBookQA [Mihaylov et al., 2018], a dataset that requires
reasoning over facts not included in WorldTree; each question
is associated with one WorldTree science fact (“metals con-
duct electricity”), but also one fact from a separate pool of
common knowledge (“a suit of armor is made of metal”).

As with a classical expert system, we have designed NELLIE
to be “improvable merely by making statements to it” [Mc-
Carthy, 1959]. This suggests that as we increase the provided
knowledge store, we should expect NELLIE to reason more
effectively. Because WorldTree does not cover all the knowl-
edge required to answer OBQA questions, we test whether
NELLIE performs better on them when we add the common
knowledge to its retrieval index. As the common knowledge
annotations are one fact per question and are not designed
specifically for entailment, it is unlikely a priori that a fully
grounded entailment tree can be created using the available
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as the block of iron is melted the particles
move more rapidly

a block of iron is a kind of object

a block of something is a kind of object
a block is a kind of object

iron is a kind of thing
iron is a kind of metal

if an object is melted then the particles will
move more rapidly

melting means changing from a solid
into a liquid by increasing heat energy

melting means matter changes
from a solid into a liquid by
increasing heat energy

if an object adds some heat energy
then the particles in that object will
move more rapidly

as the temperature of a substance
increases the molecules in that
substance will move faster

the kidneys filter wastes and byproducts
a kidney is used for filtering blood

kidney is a vehicle for removing
bodily waste from the blood

blood contains wastes and byproducts
the blood is a vehicle for moving
chemical waste and excess water
from the body to the kidneys

frictional force between two sticks
causes them to increase in temperature

friction causes the temperature of an
object to increase
friction is the force between two sticks
moved against each other

friction occurs when two object
surfaces move against each other
sticks are objects

a stick is a kind of object

2. Semantic Drift Error

seeing requires light

light is needed to cut wood with a saw
a saw is used for cutting wood

a saw requires light

temperature decreases when heat is applied

1. Property Inheritance Error

planting trees is a human activity

solids are made of matter

sound travels only through matter

sound can only travel through solids

planting a tree will have a negative effect
on an ecosystem

human activity can have a negative effect
on an ecosystem

as heat is transferred from something, the
temperature of that something will decrease

Figure 8: (Left) Example NELLIE proofs. Top-level queries are decomposed into subqueries via retrieval- or template-conditioned generation.
Proof leaves are corpus facts. (Right) Common classes of error causing false statements to be grounded in true ones.

Figure 9: Distribution of NELLIE error classes among 136 incorrect
answers on EntailmentBank questions

knowledge alone, making this a challenging task.
Figure 7 shows NELLIE’s accuracy with and without RCG.

We do not use TCG, as the targeted common knowledge is free-
form. We find that QA accuracy increases 11-12% with the
common knowledge added. The percent of correct statement
proved also increases 9-12%. These results also highlight the
importance of RCG, as it provides a 5% QA boost and 13%
on correct proof rate. These results show that NELLIE can be
applied out-of-the-box to a dataset requiring reasoning over a
different source of free-form NL knowledge.

5.3 Tree Error Analysis
We find that NELLIE can produce high quality proofs of cor-
rect hypotheses; examples are shown in Figure 8 (left) and §F.
However, the system can also generate proofs for incorrect an-
swers that bypass its entailment filters. We can diagnose (and
perhaps annotate) error patterns to address in future work. We
list a few categories, depicted in Figure 8 (right). A common
pattern of error is Hypernym Property Inheritance Errors
(also known as the “fallacy of the undistributed middle”), in
which the model assumes that a member of a taxonomic class
has a property of their hypernym, but the property is not uni-
versal. A colloquial example is inferring penguins can fly
from penguins are birds & birds can fly. We also observe
an amount of Errors from Semantic Drift [Khashabi et al.,

2019] between inference hops, culminating in RTE model
false positives. E.g., in block 2 of Fig 8 (right), which object
loses temperature during heat transfer changes between hops.
Figure 9 shows the distribution of these errors on a set of 136
incorrect answers from EntailmentBank. The predominant
error case is a failure to find any proof of the correct option.
Correct Answer Tree Analysis To investigate whether NEL-
LIE reaches a right solution with right vs wrong reasoning, we
manually inspected for reasoning errors in 50 correct answer
trees produced by NELLIE. We found that 39/50 (78%) of
trees were perfectly acceptable. Most of the 11 unacceptable
trees were due to incompleteness at one decomposition step.

6 Conclusion
We propose a reimagined version of a classical expert system
that relies on the inferential power of LLMs rather than hand-
crafted rules. NELLIE has the skeleton of a symbolic theorem
prover, but the provided rules invoke neural predicates that
allow for systematic reasoning over NL statements. To dynam-
ically generate inferences, we introduce two mechanisms for
knowledge-guided generation: conditioning decompositions
on retrieval or model-selected inference templates. Our search
algorithm undergirds NELLIE, an explainable reasoning sys-
tem that performs end-to-end QA by searching for grounded
entailment trees. We find that NELLIE equals or exceeds the
performance of comparable XQA systems, while providing
explanations with the simultaneous guarantees of logical di-
rectionality and groundedness in human-provided text. This
work thus suggests a new way to jointly reap the benefits of
both modern neural methods and traditional reasoning.
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