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Abstract
Both structured d-DNNF and SDD can be expo-
nentially more succinct than OBDD. Moreover,
SDD is essentially as tractable as OBDD. But this
leaves two important open questions. Firstly, does
OBDD support more tractable transformations than
structured d-DNNF? And secondly, is structured d-
DNNF more succinct than SDD? In this paper, we
answer both questions in the affirmative. For the
first question we show that, unlike OBDD, struc-
tured d-DNNF does not support polytime negation,
disjunction, or existential quantification operations.
As a corollary, we deduce that there are functions
with an equivalent polynomial-sized structured d-
DNNF but with no such representation as an SDD,
thus answering the second question. We also lift
this second result to arithmetic circuits (AC) to
show a succinctness gap between PSDD and the
positive AC analogue to structured d-DNNF.

1 Introduction
Knowledge compilation aims to provide useful representa-
tions of Boolean functions (propositional knowledge bases).
What ‘useful’ means has, broadly speaking, three aspects.
The first is succinctness: how big is our representation? The
second is transformations. For instance, given a representa-
tion for f and a representation for g can we form a representa-
tion for f ∧ g in polynomial time? The third is queries: given
our representations what can we (efficiently) determine about
our function? For example, given a representation for f can
we compute |f−1(1)| in polynomial time? These aspects may
be in tension with one another; to get a representation which
supports more queries or transformations we may have to ac-
cept increased size. A key task in knowledge compilation is
to map out the trade-offs of using different representations.

In the landmark paper [Darwiche and Marquis, 2002], it
is shown that many well-studied representation formats are
subsets of Boolean circuits in Negation Normal Form (NNF).
Consequently, over the past two decades, research on repre-
sentations within the AI community has focused on classes
which arise from imposing syntactic restrictions on NNF.
Two influential restrictions are decomposability and deter-
minism, an NNF with both properties is called a d-DNNF.

Such circuits support a large range of polynomial time queries
such as clausal entailment and model enumeration.

An older representation format is the Ordered Binary De-
cision Diagram (OBDD) [Bryant, 1986]. In fact, OBDD is
a subset of d-DNNF [Darwiche and Marquis, 2002]. While
a Boolean function may have an equivalent d-DNNF that is
exponentially smaller than any equivalent OBDD, in many
practical settings the latter is preferred. There are two crucial
reasons for this. Firstly, OBDDs that use a common variable
order are closed under Boolean operations; this is useful for
instance in bottom-up approaches to knowledge compilation,
see e.g. [Somenzi, 2009]. Secondly, OBDDs are canonical
which simplifies the task of finding an optimal compilation;
one just needs to find an optimal variable order.

A natural question is whether there are compilation lan-
guages that are more succinct than OBDD but have nicer
properties than d-DNNF? This paper will be concerned with
two such languages: structured d-DNNF [Pipatsrisawat and
Darwiche, 2008] and Sequential Decision Diagram (SDD)
[Darwiche, 2011]. SDD has become a popular representation
format since they may be exponentially more succinct than
OBDD yet still support all Boolean operations in polynomial
time. Moreover, compressed SDDs are canonical [Darwiche,
2011; Van den Broeck and Darwiche, 2015]. Structured d-
DNNF, on the other hand, contains SDD as a subset and sup-
ports a polynomial time conjoin operation. They may, how-
ever, be exponentially more verbose than d-DNNF.

One may then wonder: is there any advantage to using
structured d-DNNF over SDD? To be precise are there func-
tions which have polynomially sized representations in struc-
tured d-DNNF but do not have such SDD representations?
This is a question which has been raised since at least 2015
[Beame and Liew, 2015] and has received substantial inter-
est, see e.g. [Bova and Szeider, 2017; Bollig and Farenholtz,
2021], but has remained open until now. In this paper, we
answer this question in the affirmative.

Theorem 1. For every s ∈ N, there exists a function f with
an equivalent structured d-DNNF of size s such that any
SDD equivalent to f has size sΩ̃(log(s)).

Here Ω̃ is the variant of Ω notation which ignores polylog-
arithmic factors; we analogously define Õ. We prove Theo-
rem 1 by showing that structured d-DNNF is not closed un-
der negation which has been an open question in its own right
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since [Pipatsrisawat and Darwiche, 2008].

Theorem 2. For every s ∈ N, there exists a Boolean function
f with an equivalent structured d-DNNF of size s and such
that any structured DNNF equivalent to ¬f has size sΩ̃(log s).

Thus, we simultaneously show that there is an advantage to
using SDD over structured d-DNNF. We similarly show that
structured d-DNNF is not closed under disjunction or exis-
tential quantification thus completing the ‘knowledge compi-
lation map’ for structured d-DNNF.

Arithmetic circuits (AC) also play an important role in AI,
particularly in probabilistic reasoning. Here one prominent
circuit type is PSDD [Kisa et al., 2014]. As the name sug-
gests, these are the AC analogue of SDD. PSDDs have sev-
eral nice properties making them ripe for applications. For
example, they support a polynomial time multiplication oper-
ation (analogous to the polynomial time conjoin operation for
SDDs), which is useful when compiling probabilistic graph-
ical models [Shen et al., 2016]. de Colnet and Mengel ob-
served that in some cases separations between representations
of Boolean functions can be extended to positive AC in a
straightforward manner [de Colnet and Mengel, 2021]. We
exploit this to show a succinctness gap between PSDD and
the positive AC analogue to structured d-DNNF.

Our proof of Theorem 2 exploits a connection be-
tween knowledge compilation and communication complex-
ity which has been widely deployed in recent years, see e.g.
[Beame and Liew, 2015; Bova et al., 2016; Amarilli et al.,
2020]. We start from the same piece of communication com-
plexity as [Göös et al., 2022], where an analogous result for
unambiguous finite automata (UFA) is obtained. However,
while the size of UFAs is related to the fixed partition com-
munication complexity model the size of structured d-DNNF
is related to another model: the best partition communica-
tion complexity. We therefore adapt an ingenious construc-
tion from [Knop, 2017], which allows one to lift results from
the fixed partition model to the best partition model.1

The rest of the paper is structured as follows. In Section 2
we define our main objects of study. In Section 3 we intro-
duce the communication complexity we need. Following this,
in Section 4 we prove our main theorem. Finally, in Section 5
we show how our results extend to ACs.

2 Formulas, NNF, Structured d-DNNF and
SDD

2.1 Formulas and Boolean Functions
Recall that a propositional formula is a DNF if it is a disjunc-
tion of conjunctions. We call each disjunct a term. A DNF ψ
is a k-DNF if each term contains at most k-literals and unam-
biguous if every assignment α : var(ψ) → {0, 1} satisfies at
most one term of ψ. Let sat(ψ) denote the set of satisfying
assignments for a propositional formula ψ. We identify each

1There is an older construction from [Lam and Ruzzo, 1992]
which also allows one to lift communication complexity results to
the best partition model. However, this construction requires that
the functions involved are paddable; as far as we can tell, this is not
the case for the functions we use.

such ψ with a Boolean function with domain {0, 1}var(ψ) in
the standard way, i.e., the function evaluates to 1 on input x
iff x ∈ sat(ψ).

For f : {0, 1}X → {0, 1} a Boolean function, we write
sat(f) := f−1(1). We may view x, an input to f , as a tuple
with one coordinate for each element of X; we write x(x) to
denote the coordinate of x corresponding to variable x ∈ X .
For Y ⊆ X , we say that the projection of x to Y—denoted
πY (x)—is the y ∈ {0, 1}Y with y(y) = x(y) for all y ∈ Y
and extend this notion to sets in the natural way. We will be
interested in the following transformations.

Definition 1. Let f, g : {0, 1}X → {0, 1} be Boolean func-
tions and x ∈ X . Then we write:

1. (negation) ¬f to denote the Boolean function with
sat(¬f) = f−1(0);

2. (existential quantification) ∃xf to denote the Boolean
function with sat(∃xf) equal to the projection of sat(f)
to {0, 1}X\{x};

3. (disjunction) f ∨ g to denote the Boolean function with
sat(f ∨ g) = sat(f) ∪ sat(g) and

4. (conjunction) f ∧ g to denote the Boolean function with
sat(f ∧ g) = sat(f) ∩ sat(g).

2.2 Negation Normal Form
Definition 2. A Boolean circuit in Negation Normal Form
(NNF) is a vertex-labelled directed acyclic graph with a
unique source such that every internal node is a fan-in two
∧- or ∨-node and whose leaves are each labelled by 0, 1, a
variable x or a negated variable ¬x.

We define the size of C, an NNF, to be the number of
vertices in the underlying graph and denote this by |C|. By
expanding out an NNF circuit C we get a unique proposi-
tional formula which we denote by ⟨C⟩. Further, we write
var(C) for the set of variables occurring in C. It will be
convenient to associate a set dom(C) to C which contains
var(C) (together with possibly other variables). Unless oth-
erwise stated, we assume that dom(C) = var(C). We write
fC : {0, 1}dom(C) → {0, 1} to denote the Boolean function
computed by C in the obvious way. We say that C is equiv-
alent to fC and define sat(C) := sat(fC). If for some C ⊆
NNF, a Boolean function f is equivalent to C ∈ C of size s
then we say that f admits a C of size s.

2.3 Decomposability, Determinism and
Structuredness

For a node g of C, we write C(g) for the subcircuit rooted at
g; for conciseness we write var(g) to mean var(C(g)). If g is
not a leaf we write gℓ (resp. gr) for its left (resp. right) child.
An NNF, C, is decomposable if for every ∧-node g ∈ C,
var(gℓ)∩var(gr) = ∅ [Darwiche, 2001a]. C is deterministic if
for every ∨-node g ∈ C, sat(C(gℓ)) ∩ sat(C(gr)) = ∅, where
we set dom(C(gℓ)) = dom(C(gr)) = dom(C) [Darwiche,
2001b]. The set of decomposable NNF is denoted by DNNF
and the set of deterministic DNNF by d-DNNF.

We now only need one ingredient to get to structured d-
DNNF; for this, we need the notion of a v-tree.
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Figure 1: (left) A v-tree T . (right) A structured d-DNNF C that
respects T . ⟨C⟩ = (a∧b∧¬c)∨(a∧b∧c∧e)∨(a∧b∧c∧d∧¬e))

.

Definition 3. A v-tree over variables X is a full, rooted, bi-
nary tree whose leaves are in 1-1 correspondence with the
elements of X .

For a non-leaf node t of a v-tree T , we write tℓ for its left
child, tr for its right child and var(t) for the variables appear-
ing in the subtree rooted at t. A DNNF C respects a v-tree T ,
if for every ∧-node g ∈ C, there is a node t of T such that
var(gℓ) ⊆ var(tℓ) and var(gr) ⊆ var(tr); see Figure 1.
Definition 4 ([Pipatsrisawat and Darwiche, 2008]). A (d)-
DNNF C is structured if it respects some v-tree. We denote
the set of structured (d)-DNNF by (d)-SDNNF.

2.4 SDDs
SDD is a subset of d-SDNNF which arises from imposing a
stricter form of determinism and structuredness called strong
determinism. The idea is that SDDs respect a certain type
of decomposition which generalises the well-known Shannon
decomposition on which OBDDs are based.
Definition 5. Let f : {0, 1}Z → {0, 1} be a Boolean function
and X,Y ⊆ Z be disjoint sets of variables. Then if

f =

n∨
i=1

pi(X) ∧ si(Y )

then {(p1, s1), . . . , (pn, sn)} is an X-decomposition for f if
∨ni=1pi ≡ 1, pi ∧ pj ≡ 0 for all i ̸= j and pi ̸≡ 0 for all i.

The idea is that the {pi}i∈[n] form a partition. We can now
define SDDs.
Definition 6. Let T be a v-tree over variables Z. An SDD
respecting T is a DNNF C with one of the following forms.

• C consists of a single node labelled by 0, 1, x or ¬x,
where x ∈ Z.

• The source of C is a ∨ node g and there exists some t, an
internal node of T , such that:

1. ⟨C⟩ =
∨n
i=1 pi(X)∧ si(Y ) where {(pi, si)}i∈[n] is

an X decomposition for fC ,
2. X ⊆ var(tℓ), Y ⊆ var(tr) and
3. if h ∈ C with ⟨C(h)⟩ = pi(X) (resp. si(Y )) for

some i then C(h) is an SDD that respects the sub-
tree of T rooted at tℓ (resp. tr).

An SDD is an SDD that respects some v-tree.

It follows from the definition that SDDs are determinis-
tic and structured. One can further show that SDDs admit
conjunction, disjunction and complementation in polynomial
time [Darwiche, 2011]. These are the main facts we need;
we include the full definition for context and because it is
needed for the connection to arithmetic circuits,2 see [Dar-
wiche, 2011; Bollig and Farenholtz, 2021] for a more thor-
ough introduction to SDDs.

2.5 Succinctness
Since we want to compare the succinctness of different rep-
resentations we need the following notion.
Definition 7. [Gogic et al., 1995] Let C1,C2 ⊆ NNF. Then
C1 is at least as succinct as C2 if there is a polynomial p, such
that for every C ∈ C2 there is an equivalent C′ ∈ C1 with
|C′| ≤ p(|C|). We write C1 ≤ C2. C1 is more succinct than
C2, denoted C1 < C2, when C1 ≤ C2 and C2 ̸≤ C1.

3 Knowledge Compilation and
Communication Complexity

We will next introduce all of the background from communi-
cation complexity we will use in Section 4, see [Kushilevitz
and Nisan, 1997] for an introduction to the subject.

Let f : {0, 1}Z → {0, 1}, for some set Z, and Π = (X,Y )
be a partition of Z. We will only consider balanced parti-
tions, i.e. partitions with |Z|/3 ≤ min{|X|, |Y |}. Then a
Π-rectangle is a set A×B ⊆ {0, 1}Z , with A ⊆ {0, 1}X and
B ⊆ {0, 1}Y . We say that Π-rectangles R1, . . . , Rk cover a
set S ⊆ {0, 1}Z , if

⋃
iRi = S. We write CovΠb (f) to denote

the minimum size of a set of Π-rectangles that cover f−1(b).
This is a communication complexity measure in the fixed par-
tition model; we are given Π and then find a cover of minimal
size using Π-rectangles.

In order to get a connection to SDNNF we need to instead
look at the best partition model: here we may choose Π. For-
mally, we define Covb(f) := minΠ Covb(f), where the min-
imum is over all balanced partitions. The following lemma
shows that if there is no small rectangular cover of sat(f)
then f does not admit a small SDNNF.
Lemma 1 ([Pipatsrisawat and Darwiche, 2010; Bova et al.,
2016].). If f admits an SDNNF of size s then Cov1(f) ≤ s.

We end this section by stating some simple but useful com-
binatorial properties of rectangles. Let R ⊆ {0, 1}Z be a
(X,Y )-rectangle, W ⊆ Z and a ∈ {0, 1}W . Then we define
a selection operation by removing all tuples fromR which do
not agree with a. Formally, we define sela(R) := {x ∈ R |
x(w) = a(w) for all w ∈ W}. We also define a operation
allowing us to rename variables. Formally, for a set Z ′ and a
bijection σ : Z → Z ′, b ∈ {0, 1}Z we define bσ ∈ {0, 1}Z′

to be the tuple with bσ(σ(z)) = b(z) for all z ∈ Z and
Rσ = {bσ | b ∈ R}. The following is immediate.

2The definition is somewhat cumbersome as all nodes have fan-
in two. We enforce this to make the overall presentation cleaner.
Note, that circuits with unbounded fan-in can be rewritten as fan-in
two circuits with only a quadratic size blow-up.
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Lemma 2. Let R ⊆ {0, 1}Z be a (X,Y )-rectangle, W ⊆ Z,
a ∈ {0, 1}W and σ a bijection with domain Z. Then the
projection ofR toW is a (X∩W,Y ∩W )-rectangle, sela(R)
is a (X,Y )-rectangle and Rσ is a (σ(X), σ(Y ))-rectangle.

4 Proof of Theorems 1 and 2
4.1 Proof Outline
In [Göös et al., 2022] an analogue of Theorem 2 is proved
but for UFA. Their approach goes via communication com-
plexity in the fixed partition model. Our proof starts from
this same piece of communication complexity but we need to
work in the best-partition model. It turns out we can make
this jump by adapting an ingenious construction from [Knop,
2017] based on the work of [Segerlind, 2008].

Our starting point is the following result shown in the proof
of [Göös et al., 2022, Theorem 1] building on results from
[Göös et al., 2016] and [Balodis et al., 2021].

Theorem 3. For every k ∈ N, there exists an integer n =
kO(1), a Boolean function g : {0, 1}n → {0, 1} and Π, a
balanced partition, such that the following properties hold.

1. g is equivalent to an unambiguous k-DNF ψ with 2Õ(k)

terms.

2. CovΠ0 (g) = 2Ω̃(k2).

One can show that g admits a d-SDNNF of size 2Õ(k).
We would therefore like to show a lower bound on the size
of an SDNNF equivalent to ¬g. However, we cannot use
Lemma 1 since Theorem 3 only gives lower bounds in the
fixed-partition model. To get around this we transform g into
a new function f which still admits a d-SDNNF of size 2Õ(k)

and with Cov0(f) ≥ CovΠ0 (g) = 2Ω̃(k2).

4.2 From Fixed Partition to Best Partition
We now present the construction which allows us to build f .
This is almost the same as that given in [Knop, 2017]. The
following things are different (1) we are now working with
formulas in DNF rather than CNF, (2) we now want to ensure
that the construction transforms an unambiguous DNF into
an unambiguous DNF and (3) the notion of balancedness we
use is different. We end up with the following result.

Theorem 4. Let ψ be an unambiguous n-variable k-DNF
with ℓ terms. Then there exists an unambiguous O(n2)
variable O(kn)-DNF ψ′ with O(ℓnk+4) terms such that for
δ ∈ {0, 1} and any balanced partition Π of the variables of
ψ, Covδ(ψ′) ≥ CovΠδ (ψ).

We next show how this implies Theorem 2.

Proof of Theorem 2. Fix some k ∈ N and let g : {0, 1}n →
{0, 1} be the function from Theorem 3. Then we know there
is some equivalent unambiguous k-DNF ψ with 2Õ(k) terms.
Let f ≡ ψ′. By Theorem 4 and since n = kO(1), ψ′ has
2Õ(k) terms. Then we can form a d-SDNNF equivalent to f
as follows. Fix any v-tree T over var(ψ′). Then since every
term of ψ′ is a conjunction of O(kn) literals, every term ad-
mits a d-DNNF respecting T of size O(kn). By taking the

disjunction of all such d-DNNF we get a d-DNNF for ψ′ re-
specting T of size 2Õ(k) := s. Here determinism follows as
ψ′ is unambiguous.

But also by Theorem 3, CovΠ0 (g) = 2Ω̃(k2). So applying
Theorem 4 we obtain that Cov0(f) = 2Ω̃(k2). Therefore, by
Lemma 1, any SDNNF for ¬f has size at least 2Ω̃(k2) =

sΩ̃(log s).

It only remains to prove Theorem 4.

4.3 Idea of the Construction
One way to try and transfer bounds from the fixed partition
model to the best partition model is to extend a function to
include a permutation as part of the input. A naive way of
doing this is as follows. Let ψ(x1, . . . , xn) be a propositional
formula. Associate a binary string of length m := log2(n!)
to each of the permutations of these variables and for each
such permutation σ write rep(σ)i for the ith bit of the string
associated with σ. We define

perm(ψ)(z1, . . . , zm, x1, . . . , xn) ≡∧
σ∈Sn

(
m∧
i=1

(zi = rep(σ)i) → ψ (σ(x1), . . . , σ(xn))

)
.

What is the idea? Let Π = (Π1,Π2) be a balanced parti-
tion of var(ψ) and Γ = (Γ1,Γ2) be any balanced partition of
var(perm(ψ)) such that |Π1| = |{xi | xi ∈ Γ1}|. Further,
let R1, . . . , Rα be a set of Γ-rectangles covering sat(ψ′) and
σ be the permutation such that Π1 = {σ(xi) | xi ∈ Γ1}. We
use this to define a set of Π-rectangles covering sat(ψ).

To do this let a ∈ {0, 1}{z1,...,zn} be the tuple with
a(zi) = rep(σ)i and set R′

i = (π{x1,...,xn}(sela(Ri)))
σ .

That is we first select from Ri according to a, then project
to {x1, . . . , xn} and finally rename the variables according to
σ. By Lemma 2 and the choice of σ, R′

i is a Π-rectangle.
Moreover, it is easy to see that sat(ψ) =

⋃α
i=1R

′
i.

But there is an issue: the size of perm(ψ) is exponential
in n. So our proof doesn’t go through with this construction
because there is no reason to think that ψ admitting a small d-
SDNNF implies that perm(ψ) admits such a representation.3

The obvious solution is to consider a smaller set of permu-
tations. But then the σ such that Π1 = {σ(xi) | xi ∈ Γ1}
might not be in our set. To get around this we, following
[Knop, 2017], first add copies of variables to our original
formula and then permute these new variables using a care-
fully chosen set of permutations. This effectively increases
the number of permutations we can reach without excessively
blowing up the size of our formula.

4.4 The Construction
Step 1: Making Copies of Variables
Let ψ be an unambiguous DNF formula on n variables. We
replace every occurrence of variable xi by a disjunction of
m fresh variables

∨
j∈[m] yi,j , where m = cn, for some suf-

ficiently large constant c. Denote the subformula obtained
3Another issue is that this argument only gives lower bounds for

partitions where |X| = |{xi | xi ∈ X ′}|.
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from a term C of ψ by C∨. The resulting formula is not a
DNF. To change this first we use distributivity to expand out
our formula into a DNF ϕ. If a term of ϕ is the result of ex-
panding out C∨ we say it is derived from C. As this DNF
may not be unambiguous we need an extra step not in [Knop,
2017]. For each term C of ϕ and every positive literal yi,j in
C add conjuncts ¬yi,j′ for every j′ ̸= j to get a term Cu. If
C is derived from D we also say that Cu is derived from D.
We denote the resulting DNF by ψ∨.

Lemma 3. If ψ is an unambiguous n-variable k-DNF with
ℓ terms then ψ∨ is an O(n2)-variable unambiguous O(kn)-
DNF with O(ℓnk) terms.

Proof. To see that ψ∨ is unambiguous suppose some assign-
ment α of the variables of ψ∨ satisfies a term C. Define the
assignment β = β(α) on the variables of ψ by β(xi) = 1 if
and only if α(

∨
j∈[m] yi,j) = 1. We know that C was derived

from some D. Then clearly β satisfies D. Since ψ is unam-
biguous this is the unique term satisfied by β. Therefore, if α
satisfies some C ′ then C ′ must also be derived from D. We
have that there are Ip, In ⊆ [n] with |Ip ∪ In| = O(k) such
that D∨ is equal to∧
i∈Ip

m∨
j=1

yi,j ∧
∧
i∈In

¬
m∨
j=1

yi,j ≡
∧
i∈Ip

m∨
j=1

yi,j ∧
∧
i∈In

m∧
j=1

¬yi,j

It follows that each term of ψ∨ deriving from D is of the
form ∧

i∈Ip

yi,ji ∧
∧
j ̸=ji

¬yi,j ∧
∧
i∈In

m∧
j=1

¬yi,j

where (ji)i∈Ip is some sequence of elements of [m]. It is
therefore easy to see that C = C ′ and so ψ∨ is unambiguous.
Moreover, by the above each term contains O(km) = O(kn)
variables. Finally, by construction, there are at mostmk terms
of ϕ∨ derived from each term of ϕ.

Step 2: Adding Permutations
Let |var(ψ∨)| = n′. For notational convenience we write
vim+j for yi,j and V for var(ψ∨). For simplicity4 assume
n′ = 2t for some integer t. Let F be the unique field of order
n′ and P be the set of mapping on F with x → ax + b ,
a, b ∈ F and a ̸= 0. The reason for using P is that it is a set
of independent permutations in the following sense.

Lemma 4. [Wegman and Carter, 1981] Every mapping in P
is a permutation and |P| = n′ · (n′ − 1). Moreover, for any
a, b, c, d ∈ [n′] with a ̸= b and c ̸= d,

Pr
σ∈P

[σ(a) = c, σ(b) = d] =
1

|P|

Elements of P may be represented by binary strings of
length 2t such that the first t bits are not all zero; we denote
the ith bit of the representation of σ ∈ P by rep(σ)i.

4The general case is not much more difficult: we just add extra
‘dummy’ variables until we reach a power of two. This does not
change anything, other than making the notation slightly messier,
see [Knop, 2017, Theorem 4.2].

Let C be a term of ψ∨ with C =
∧
i∈I ai, for some ai ∈

{vi,¬vi}. Then for each σ ∈ P andC a term of ψ∨ we define
a term

permπ(C) :=
2t∧
i=1

(zi = rep(σ)i) ∧
∧
i∈I

aσ(i)

To form ψ′ we take the disjunction of every permπ(C) with
π ∈ P , C a term of ψ∨. Note, that if ϕ∨ is unambiguous so
is ψ′ and that |P| = O(n4). The following is immediate.
Lemma 5. If ψ is a n-variable unambiguous k-DNF with ℓ
terms then ψ′ is a O(n2)-variable unambiguous O(kn)-DNF
with O(ℓnk+4) terms.

4.5 Proof of Theorem 4
Proof. Fix two arbitrary balanced partitions Π = (Π1,Π2)
and Γ = (Γ1,Γ2) of the variables of ψ and ψ′ respectively.
It is enough to show that CovΓb (ψ

′) ≥ CovΠb (ψ). So let C =
{Ri}i∈[α] be a set of Γ-rectangles which cover sat(ϕ′); we
will form a set of Π-rectangles which cover sat(ψ) of size at
most α. The key is the following.

Claim 1. There is a permutation σ ∈ P , such that for any
i ∈ [n] and k ∈ {0, 1}, there is a j such that yi,j is mapped
to a variable from Γk by σ.

Assume the claim and let σ be such a permutation. Let
vr(i,k) denote some yi,j that is mapped to an element of Γk
by the permutation σ. Let V1 = {vr(i,k) | xi ∈ Πk} and
V2 = V \ V1. Define the bijection τ : V1 → var(ψ) by
τ(vr(i,k)) = xi. The key observation is that for every x ∈
{0, 1}var(ϕ), ψ′(x′) = ψ(x) where x′ ∈ {0, 1}var(ϕ′) is the
unique tuple with:

x′(x) =


rep(σ)i x = zi
x(xi) x = vr(i,k) and x ∈ V1
0 otherwise.

Note that the projection of x′ to var(ϕ′) \ V1 is the same
for every x, call the resulting tuple a. Then, for each Ri we
form R′

i by selecting only the tuples agreeing with a then
projecting to V1 before renaming variables via τ , i.e. R′

i :=
(πV1

(selaRi))
τ . By Lemma 2 and the choice of σ, everyRi is

a Π-rectangle and it is easy to verify that sat(ψ) =
⋃α
i=1R

′
i.

It follows that CovΓ1 (ψ
′) ≥ CovΠ1 (ψ). The case where b = 0

is identical except now ¬ψ′ plays the role of ψ′.
Claim 1 follows by a relatively simple probabilistic ar-

gument: the two key tools are Chebyshev’s inequality and
Lemma 4. The proof is almost identical to [Knop, 2017, The-
orem 4.2.]. The only difference is that we need to use our
more relaxed notion of balancedness but an inspection of the
proof shows that everything goes through.

Theorem 1 follows almost immediately.

Proof of Theorem 1. Fix s ∈ N, let f be the function given
by Theorem 2 and let C be an SDD equivalent to f . Then we
may complement this SDD to get C′ an SDD for ¬f of size
polynomial in |C|. Since SDD is a subset of d-SDNNF by
Theorem 2, |C′| = sΩ̃(log(s)). The result follows.
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4.6 Disjunction and Existential Quantification
In the appendix, we also prove the following.

Theorem 5 (Disjunction). For every s ∈ N, there exists
Boolean functions f, g sharing a common domain with the
following properties.

1. There is a v-tree T such that f and g both admit d-
DNNFs of size s respecting T .

2. Any d-SDNNF equivalent to f ∨ g has size sΩ̃(log s).

The proof follows the same structure as that given above.
In fact, Theorem 5 almost implies5 Theorem 2; however we
focused our expositional on negation for pedagogical reasons
and since this is related to a long-standing open question.
Namely, does (unstructured) d-DNNF admit polynomial time
negation [Darwiche and Marquis, 2002]? We discuss this
question in more detail in the conclusion. We also obtain the
following corollary.

Corollary 1 (Existential Quantification). For every s ∈ N,
there exists a setX , a Boolean function f : {0, 1}X → {0, 1}
and a variable x ∈ X , such that

1. f admits a d-SDNNF of size s and

2. any d-SDNNF equivalent to ∃xf has size sΩ̃(log s).

Proof. Let f, g, T be as in the statement of Theorem 5. Then
there are d-DNNFs Cf and Cg , for f and g respectively, which
both have size at most s and respect T . Let x be a fresh
variable and form a new circuit C with

⟨C⟩ = (x ∧ ⟨Cf ⟩) ∨ (¬x ∧ ⟨Cg⟩)

The source is a ∨-node v which is deterministic since any el-
ement of sat(vℓ) must map x→ 1 and any element of sat(vr)
must map x→ 0. Take T and form a v-tree T ′ by adding two
fresh nodes r, t such that r has children t and the root of T .
Then C is a d-DNNF of size O(s) respecting T ′. Moreover,
∃xfC ≡ f ∨ g. The result follows by Theorem 5.

5 Lifting Results to Positive AC
So far we have been focussed on representations of Boolean
functions; now we switch gears and look at representations of
polynomials with real coefficients: arithmetic circuits (AC).
These are defined similarly to NNF except now internal nodes
are labelled by + and × and any real number may be a con-
stant.

Definition 8. An arithmetic circuit (AC) is a vertex-labelled
directed acyclic graph with a unique source such that every
internal node is a fan-in two +- or ×-node and whose leaves
are each labelled by a real number, a variable x or a negated
variable ¬x.

5Note that in Theorem 2 we prove lower bounds on the size of
SDNNF equivalent to ¬f . Using Theorem 5 we could only get a
lower bound on d-SDNNF. Still, this is, arguably, the most impor-
tant part of the result. To go from Theorem 5 to the result on negation
one uses the equivalence f ∨ g ≡ ¬(¬f ∧ ¬g) and the tractability
of ∧ for d-SDNNF [Pipatsrisawat and Darwiche, 2008].

As in the case of NNFs, we associate a set of variables
dom(C) to each arithmetic circuit which contains every vari-
able occurring in the circuit. Then we associate to C a func-
tion fC : {0, 1}dom(C) → R as follows. On input x, replace
each variable x occurring positively in C with x(x) and each
variable occurring negatively with 1 − x(x). Then evaluate
the circuit bottom up in the obvious way: the output is fC(x).
If we expand out the circuit we get a formula in var(C) (with
possible negations). We denote this by ⟨C⟩ and identify this
expression with the function fC .

Since in many cases, ACs are used in the context of proba-
bilistic reasoning it often makes sense to restrict our attention
to ACs which output non-negative polynomials; call this frag-
ment positive AC, denoted ACp. This can be enforced syntac-
tically by insisting that every constant is non-negative, giving
the monotone fragment, denoted ACm. This includes many
well-studied classes such as PSDD [Kisa et al., 2014] and
Sum Product Networks (SPN) [Poon and Domingos, 2011].
Moreover, [de Colnet and Mengel, 2021] made the following
observations connecting AC with NNF.

Let C ∈ AC. We form an NNF circuit ϕ(C) with the same
underlying directed graph as C by relabelling each node as
follows:

• Leaves: nodes labelled by a variable, a negated variable
or the constant 0 are unchanged. Otherwise, change the
label to the constant 1.

• Internal node: change +-nodes to ∨-nodes and ×-
nodes to ∧-nodes.

We will use the following result.6

Lemma 6 ([de Colnet and Mengel, 2021, Proposition 2]). Let
C1,C2 ⊆ ACm. Then ϕ(C1) < ϕ(C2) implies that C1 < C2.

Here ≤ is defined exactly as for subsets of NNF. Write
supp(C) to denote the support of C, i.e., the set of inputs for
which fC is non-zero. We can also lift the definitions of de-
composability, determinism and structuredness to AC, by re-
placing the role of ∧ with ×, ∨ with + and sat with supp in
the definitions. Let dSD-{ACm, ACp} denote the determin-
istic, structured, decomposable, {monotone, positive} ACs.
We next define the ACm analogue to SDD.

Definition 9. Let f : {0, 1}X → R+ be a positive polyno-
mial and X,Y ⊆ Z be disjoint sets of variables. Suppose

f =
n∑
i=1

αi × pi(X)× si(Y )

where each αi > 0 and
∑n
i=1 αi = 1. Then

{(p1, s1, α1), . . . , (pn, sn, αn)} is an X p-decomposition for
f if

∑n
i=1 pi ≡ 1, pi × pj ≡ 0 for all i ̸= j and pi ̸≡ 0 for

all i.

The idea is that we take an X decomposition, put a dis-
tribution on the disjuncts and then replace ∨ with + and ∧

6We should note that although the original paper states the propo-
sition as an if and only if, in fact only one of the directions holds.
Luckily, this is the direction used in the rest of the paper and which
we need to translate our results to ACs.
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a 0

+ ×

×

b +

¬c 3

a 0

∨ ∧

∧

b ∨

¬c 1

Figure 2: (left) A monotone arithmetic circuit, C. Note that ⟨C⟩ =
(a + 0) × (b × (¬c + 3)). To evaluate fC for a = 1, b = 1, c = 0
we compute (1 + 0) × (1 × ((1 − 0) + 3)) = 4. (right) ϕ(C), an
NNF. Note that supp(C) = sat(ϕ(C)).

with ×. We call the αi parameters. A PSDD is defined anal-
ogously to an SDD but with +, × and X p-decomposition
replacing the roles of ∨,∧ and X decomposition.
Definition 10. Let T be a v-tree over variables Z. A PSDD
respecting T is a ACm C with one of the following forms.

• C consists of a single node labelled by a constant, x or
¬x, where x ∈ Z.

• The source of C is a + node g and there exists some t,
an internal node of T , such that:

1. ⟨C⟩ =
∑n
i=1 αi × pi(X) × si(Y ) where

{(pi, si, αi)}i∈[n] is an X p-decomposition for fC ,
2. X ⊆ var(tℓ), Y ⊆ var(tr) and
3. if h ∈ C with ⟨C(h)⟩ = pi(X) (resp. si(Y )) for

some i then C(h) is a PSDD that respects the sub-
tree of T rooted at tℓ (resp. tr).

A PSDD is a PSDD respecting some v-tree.
The following is now almost immediate.

Corollary 2. dSD-ACp < PSDD.

Proof. First, observe that ϕ(dSD-ACm) = d-SDNNF. It is
not quite true that ϕ(PSDD) = SDD. However, for any
C ∈ ϕ(PSDD), if we propagate away constants correspond-
ing to parameters from ϕ(C) we get an equivalent SDD of
smaller size. Therefore, ϕ(PSDD) ≥ SDD. By Theorem 1,
ϕ(dSD-ACm) = d-SDNNF < SDD ≤ ϕ(PSDD) and so by
Lemma 6 dSD-ACm < PSDD. Finally, by [de Colnet and
Mengel, 2021, Lemma 10] if we take a dSD-ACp and switch
the sign of every negative constant we get an equivalent dSD-
ACm. Therefore, dSD-ACp and dSD-ACm are equally suc-
cinct and the result follows.

Since adding two positive functions yields a positive func-
tion we also lift Theorem 5.
Corollary 3. For every s ∈ N, there exists positive polynomi-
als f and g which both admit a dSD-ACp of size s and such
that any dSD-ACp equivalent to f + g has size sΩ̃(log s).

Proof. Let f and g be as in the statement of Theorem 5. Take
any d-SDNNF equivalent to f . Then if we change every ∨ to
a + and every ∧ to a × we get a dSD-ACm of the same size
which is equivalent to f viewed as a positive polynomial. The

same is true for g. Let C be a dSD-ACm equivalent to f + g,
again viewed as a positive polynomial. Then ϕ(C) is a d-
SDNNF for f ∪ g. Therefore, by Theorem 5, |C| = sΩ̃(log s).
By again applying [de Colnet and Mengel, 2021, Lemma 10]
the result follows.

6 Conclusion and Open Problems
We have shown that d-SDNNF does not admit polynomial
time complementation, disjunction or existential quantifica-
tion and that it is more succinct than SDD. Therefore, there
is a trade-off between succinctness and supported transforma-
tions in choosing one representation over the other. We have
shown a quasi-polynomial separation but have not ruled out
the possibility that the gap is exponential.

A tantalising open problem, first raised over twenty years
ago [Darwiche and Marquis, 2002], is whether d-DNNF is
closed under complementation. We have solved a restricted
form of this problem and one could attempt the general case
using similar methods. Just as the size of d-SDNNF is re-
lated to the best partition communication complexity, the size
of d-DNNF is related to multi-partition communication com-
plexity [Bova, 2016]. However, adapting the methods from
this paper to this setting still appears to be a daunting task.

A Proof of Theorem 5
We will follow a similar strategy to in the proof of Theorem 2
but this time we need to start from a different piece of com-
munication complexity and use disjoint rectangular covers.

Formally, if Π is a partition of Z, we say that Π-rectangles
R1, . . . , Rk are a disjoint cover of S ⊆ {0, 1}Z , if

⋃
iRi = S

and Ri ∩ Rj = ∅ for all i ̸= j. For b ∈ {0, 1}, we de-
fine DCovΠb (f) to be the minimum number of Π-rectangles
that partition f−1(b) and DCovb(f) := minΠ DCovΠb , where
the minimum is over all balanced partitions. The following
lemma shows that if there is no small disjoint rectangular
cover of sat(f) then f does not admit a small d-SDNNF.
Lemma 7 ([Pipatsrisawat and Darwiche, 2010; Bova et al.,
2016].). If f : {0, 1}Z → {0, 1} admits a d-SDNNF of size
s, then DCov1(f) ≤ s.

The key is the following result which is shown in the proof
of [Göös et al., 2022, Theorem 2].
Theorem 6. For every k ∈ N, there exists n = kO(1),
Boolean function f, g : {0, 1}n → {0, 1} and a balanced
partition Π such that the following properties hold.

1. f, g have equivalent unambiguous k-DNFs ψ, ϕ respec-
tively with 2Õ(k) terms.

2. DCovΠ1 (f ∪ g) = 2Ω̃(k2).
So let f, g, ψ, ϕ be as above. Then, by Theorem 4 and the

same argument as in Theorem 2, ψ′ and ϕ′ have equivalent d-
SDNNFs of size 2Õ(k). Therefore, by Lemma 7, it is enough
to show that DCov1(ψ′ ∪ ϕ′) = 2Ω̃(k2). But this follows by
essentially the same argument as in the proof of Theorem 2 by
applying Claim 1. The only extra thing we need to observe is
that the mapping between rectangles we defined in the proof
of Theorem 2 preserves disjointness.
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Mikaël Monet, and Pierre Senellart. Connecting Knowl-
edge Compilation Classes and Width Parameters. Theory
Comput. Syst., 64(5):861–914, 2020.

[Balodis et al., 2021] Kaspars Balodis, Shalev Ben-David,
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