
A Tensor-Based Formalization of the Event Calculus∗

Efthimis Tsilionis1,2 , Alexander Artikis3,2 and Georgios Paliouras2
1Department of Informatics & Telecommunications, National and Kapodistrian University of Athens,

Greece
2Institute of Informatics & Telecommunications, NCSR “Demokritos”, Greece

3Department of Maritime Studies, University of Piraeus, Greece
eftsilio@{di.uoa.gr, iit.demokritos.gr}, a.artikis@unipi.gr, paliourg@iit.demokritos.gr

Abstract
We present a formalization of the Event Calculus
(EC) in tensor spaces. The motivation for a tensor-
based predicate calculus comes from the area of
composite event recognition (CER). As a CER en-
gine, we adopt a logic programming implementa-
tion of EC with optimizations for continuous nar-
rative assimilation on data streams. We show how
to evaluate EC rules algebraically and solve a linear
equation to compute the corresponding models. We
demonstrate the scalability of our approach with the
use of large datasets from a real-world application
domain, and show it outperforms significantly sym-
bolic EC, in terms of processing time.

1 Introduction
The Event Calculus (EC) is a first-order logical formalism
for representing and reasoning about events and their effects
[Kowalski and Sergot, 1986]. EC introduces the concept of
inertia, which states that the effect of an event holds contin-
uously in time if it is not disrupted by the effects of other
events. Our work is motivated by the area of composite event
recognition (CER). CER refers to the process of consum-
ing a stream of time-stamped, simple derived events (SDEs),
such as events coming from sensors, and identifying the time
periods composite events (CE)s of interest — collections of
events that satisfy a given pattern — hold. The definition of
a CE imposes temporal and, possibly, atemporal constraints
on its sub-events (SDEs or other CEs), and may be combined
with static background knowledge [Giatrakos et al., 2020].

Logic-based approaches have been applied to CER, since
they exhibit a formal, declarative semantics, and at the same
time support efficient reasoning [Dousson and Maigat, 2007;
Cugola and Margara, 2010; Paschke and Bichler, 2008]. As
a CER engine, we adopt a logic programming implementa-
tion of the EC [Skarlatidis et al., 2015]. To reduce the com-
plexity, we handle the input stream by means of window-
ing and employ caching techniques to avoid unnecessary re-
computations [Artikis et al., 2015].

Streaming environments, which are typical in CER, are
characterized by the high rate and volume of input data.

∗https://cer.iit.demokritos.gr/publications/papers/2024/tensor-EC.pdf

Therefore, the development of scalable reasoning techniques
that can deal with large amounts of data is essential. One
promising approach to scalable logical inference is the com-
putation of program models using linear algebraic operations.
Algebraic computation has been extensively studied and there
are various libraries that provide efficient implementations of
algebraic operations. Furthermore, the presence of parallel
versions of these processing algorithms, as well as the recent
advancements in hardware resources, e.g., GPUs, favor the
employment of numerical computation for inference.

Along these lines, Sakama et al. [2021] represent proposi-
tional logic programs as matrices or tensors and through mul-
tiplication and a non-linear operation, they compute models
of programs. An optimization with sparse matrices is intro-
duced in [Nguyen et al., 2022]. Sato [2017a] proposes a tech-
nique for obtaining the truth value of first-order logic formu-
las, where entities, logical connectives and existential quanti-
fiers are formalized in tensor spaces. A procedure for query
answering, where a query can be any nested formula, is also
presented. This framework is applied to a Datalog program,
where the transitive closure of a binary relation is computed
by solving a system of linear matrix equations [Sato, 2017b].

We propose tensor-EC, a linear algebraic formulation of
EC for CER under perfect model semantics. We map en-
tities and time-points to vectors and events/fluents to matri-
ces/tensors, depending on their arity. EC predicates increase
by 1 the order of tensors by incorporating the temporal di-
mension. Our approach is not limited to square matrices or
cubical tensors, since the entities and temporal sets can be of
different size. Moreover, we show how to evaluate rules of
an EC program, and solve a linear equation that produces the
time-points at which a p-ary fluent holds. The resulting ten-
sors, representing fluents, constitute the perfect model of the
program. The contributions of this paper are:

• We present a translation of the language of EC in tensor
spaces and show how to evaluate rules using algebraic
operations.

• We evaluate experimentally tensor-EC on real data from
the maritime domain, where we simulate a streaming en-
vironment and employ an EC program with many rules.

• We compare tensor-EC against the logic programming
implementation of EC, and show that the former im-
proves significantly reasoning time.
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Predicate Meaning
happensAt(e(X,Y ), T ) Event e for variables X and Y occurs at time T

holdsAt(fl(X,Y )=v, T ) Fluent fl takes value v for variables X and Y at T

initiatedAt(fl(X,Y )=v, T ) At T the fluent fl(X,Y )=v is initiated

terminatedAt(fl(X,Y )=v, T ) At T the fluent fl(X,Y )=v is terminated

Table 1: Main predicates of Event Calculus (EC).

2 Background: Event Calculus
In this section, we present the EC dialect we adopt, as well as
the logical inference procedure for CER.

2.1 Language
The time model of EC is linear and includes integer time-
points [Skarlatidis et al., 2015]. Variables start with an
upper-case letter, while predicates and constants start with
a lower-case letter. If fl is a fluent — a property that is al-
lowed to have different values at different points in time —
the term fl(X,Y )=v denotes that fluent fl has value v for
variables X and Y . Boolean fluents are a special case in
which the possible values are true and false. The predicate
holdsAt(fl(X,Y )=v, T ) is true if fl(X,Y )=v at time-point
T . A fluent fl takes at most one value at each time-point.
Event occurrences are expressed through the happensAt pred-
icate. happensAt(e(X,Y ), T ) denotes that event e occurs at
time-point T for variables X and Y . Table 1 summarizes the
available predicates of the EC language. EC events express
instantaneous SDEs, while fluent-value pairs express SDEs
and CEs that persist in time. Without loss of generality, we
restrict our attention to events and fluents with arity ≤ 2.

The application-specific part of a formalization in EC is
called event description.

Definition 1 (Event description). An event description com-
prises:

(a) Ground happensAt and holdsAt predicates. These are
the facts and constitute the input (SDEs) to the system.

(b) Rules with initiatedAt and terminatedAt predicates at the
head, expressing the effects of events on fluents. ■

We focus on the task of computing the time-points for
which a fluent has a particular value.

Definition 2 (Syntax). initiatedAt rules have the following
syntax:

initiatedAt(fl(X,Y )=v, T )←
happensAt(e(X,Y ), T ),[[

[not] happensAt(a(X,Y ), T ), . . . ,

[not] happensAt(b(X,Y ), T ),

[not] holdsAt(c(X,Y )=vc, T ), . . . ,

[not] holdsAt(d(X,Y )=vd, T ).
]]

(1)

Rule (1) comprises conjunctions, meaning that all body lit-
erals should be satisfied in order for the rule to fire. not de-
notes negation by failure [Clark, 1977], while [not] denotes
that ‘not’ is optional. The variable T , present at the head and
all body literals, constrains all literals to be evaluated at the

same time-point. We use the term ‘positive’ to refer to events
and fluents that must occur or hold at T , and the term ‘nega-
tive’ for events and fluents that should not occur or hold at T
(symbol not). Rules of type (1) are Horn clauses and not re-
stricted in the number of body literals. The only requirement
is the first body literal to be a ‘positive’ happensAt predicate,
which can then be followed by a possibly empty set of ‘posi-
tive/negative’ happensAt and holdsAt predicates, denoted by
‘
[[ ]]

’. Additionally, rules are ‘safe’, i.e. every variable that
appears in the head of the rule or in any negative literal in the
body also appears in at least one positive literal in the body.
terminatedAt rules have a similar form. ■

In Def. 2, we restrict the first body literal to be a posi-
tive happensAt predicate for complexity reasons. The time-
points at which a fluent holds are usually a lot more than the
time-points at which an event occurs. By selecting a positive
happensAt predicate as the first body literal of initiatedAt and
terminatedAt rules, we reduce complexity.
Example 1. An example fluent definition from the maritime
domain, is the following:

initiatedAt(gap(Vessel)=farFromPorts , T )←
happensAt(gap start(Vessel), T ),

not holdsAt(nearPorts(Vessel)=true, T ).

terminatedAt(gap(Vessel)=farFromPorts , T )←
happensAt(gap end(Vessel), T ).

(2)

Rule-set (2) formalizes the notion of a ‘communication gap’
[Pitsikalis et al., 2019]. Communication gaps occur when a
vessel is not emitting its position, either due to the absence of
a nearby receiving station or on purpose. In maritime situ-
ational awareness, communication gaps may indicate an in-
tention of hiding (e.g. in cases of illegal fishing). A gap is
initiated for a Vessel if a gap start has occurred far from
ports, and terminated when a gap end event is detected.

The time-points produced by initiatedAt and terminatedAt
rules are used to specify the time-points a fluent has a partic-
ular value. According to the law of inertia, a fluent holds
continuously if it has been initiated and not terminated in
the meantime. For example, if fl(X,Y )=v was initiated
at Ts and terminated at Tf , with Ts < Tf , it holds for
every time-point between Ts and Tf , excluding Ts, i.e.,
Ts+1, Ts+2, . . . , Tf−1, Tf .
Definition 3 (Inertia axiom). The law of inertia is formalized
by the following axiom:

holdsAt(fl(X,Y )=v, T )←
initiatedAt(fl(X,Y )=v, Tprev ),

not terminatedAt(fl(X,Y )=v, Tprev ),

next(Tprev ,T ). (3)

holdsAt(fl(X,Y )=v, T )←
holdsAt(fl(X,Y )=v, Tprev ),

not terminatedAt(fl(X,Y )=v, Tprev ),

next(Tprev ,T ). ■

The inertia axiom (3) is a disjunction of two rules. The pred-
icate next(Tprev ,T ) present in both rules, denotes that the
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next time-point after Tprev is time-point T . Notice that the
inertia axiom allows reasoning about time-points that are not
initiation or termination points.

2.2 Semantics and Operation
The EC language supports non-monotonic reasoning through
negation-by-failure [Clark, 1977]. The event description
(Def. 1) along with the inertia axiom constitute an EC pro-
gram P . A common case in CER is the employment of hi-
erarchical CE definitions [Giatrakos et al., 2020]. Hierarchy
in an EC program can be achieved through stratification [Apt
et al., 1988]. For instance, stratum P0 may comprise all the
events and those fluents that do not depend on events or other
fluents, serving as input to the system (these are the ground
happensAt and holdsAt facts, Def. 1). Fluents of stratum P1

can be defined only in terms of events from P0 while fluents
of stratum Ps>1 can be defined in terms of at least one event
from P0, one fluent-value of Ps−1, and a possibly empty set
of fluent-values from lower strata. The EC dialect that we use
expresses locally stratified programs that may not necessarily
be stratified [Przymusinski, 1987]. Note that local stratifica-
tion is a standard assumption in EC [Artikis et al., 2015].

As a CER engine, we adopt a logic programming im-
plementation of EC [Skarlatidis et al., 2015], equipped
with optimization and caching techniques that make it suit-
able for continuous narrative assimilation on data streams
[Artikis et al., 2015]. Recognition is performed by process-
ing hierarchical definitions in a bottom-up manner, whereby
the ground events and fluents at the bottom of the hierarchy
(stratum P0) are processed first and all their time-points are
cached. Subsequently, fluents of the next stratum P1 are pro-
cessed, their time-points are cached, and stratum-by-stratum
the top of the hierarchy is reached. This way, when evaluating
rules of stratum Ps, the time-points of the fluents and events
of the body literals are fetched from the cache, avoiding un-
necessary re-computations.

The CER process aims at the computation of all time-
points at which CEs hold. This process takes place at speci-
fied query times q1, q2, . . . . The recognition at each qi is per-
formed over the SDEs (input) that fall within a specified in-
terval, the ‘working memory’ or window ω. All SDEs outside
the window are discarded and not considered during recogni-
tion. This means that at each qi CER depends only on the
SDEs that took place in the interval (qi − ω, qi]. This way,
the cost of reasoning depends on the size of ω and not on the
complete stream. The size of ω, as well as the temporal dis-
tance between two consecutive query times — the slide step
qi−qi−1 — are user-specified.

In addition to events and fluent-value pairs, the domain
of an application contains a nonempty set C of N constants
{c1, . . . , cN}, called domain entities. For example, in the
fluent-value pair gap(Vessel)=farFromPorts in rule (2), the
variable Vessel is mapped to vessel IDs. Additionally, there
is a nonempty ordered set T of Ω constants {t1, . . . , tΩ},
that correspond to the time-points specified by the applica-
tion’s temporal window ω. The time variable T in the EC
predicates is mapped to some time-point tk, qi − ω < tk ≤
qi, ∀ 1 ≤ k ≤ Ω. Recall from inertia axiom (3), the predicate
next(Tprev ,T ). In case Tprev → tΩ, variable T cannot be

mapped to a constant and thus predicate next(tΩ, T ) returns
false. This way we restrict fluents to hold inside window ω.

The sets C and T (ground terms) constitute the Herbrand
universe UP of P , which is fixed and finite at each ω. If
X is the set of all atoms of P , the Herbrand base (set of all
ground atoms) of P is BP=XUP . A model MP of P is the
set of ground atoms (⊆ BP ) that makes all the rules of the
program true. Since P is stratified, MP is the unique perfect
model of P [Gelfond and Lifschitz, 1988]. When a ground
EC predicate r is entailed by MP , we write MP |= r.

The computation of MP is performed at each query time
qi. Notice that, in the worst case, a fluent of a stratum may
hold for the entire window ω, meaning that to compute all the
time-points at which it holds we have to iterate through all the
Ω constants in T (inertia axiom (3)).

3 Linear Algebraic Approach
We present our method, tensor-EC, for computing a model
MP of an EC program P in tensor spaces. Before we delve
into the details of the approach, we provide terminology and
notation used henceforth.

3.1 Preliminaries
Vectors are represented by bold lower case letters, e.g., x. A
vector of all ones is represented by 1. x •y = x⊤y is the dot
product while x ◦ y = xy⊤ is their outer product. Matrices
are written by bold upper case letters like X and the identity
matrix is denoted by I. An order-p tensor (p specifies the
number of dimensions, where p > 2) is written as X. X⊙Y
is the Hadamard product (element-wise multiplication) of two
tensors and is defined only on two tensors of the same order
and size. We refer to an element of a vector x or an order-p
tensor X, as xi and Xi1,...,ip , respectively.

Definition 4 (mode-(n,m) product). Let X and Y be two
order-p and order-k tensors, respectively. The mode-(n,m)
contracted product X×n,m Y of X and Y is defined as:

(X×n,m Y)i1,...,in−1,in+1,...,ip,j1,...,jm−1,jm+1,...,jk =∑
z

Xi1,...,in−1,z,in+1,...,ipYj1,...,jm−1,z,jm+1,...,jk
. ■

In Def. 4, (n,m) index the dimensions of the two operands.
Then, each element of the resulting tensor is the dot product
of the fibers of size |z| of the n-th dimension of X and the
fibers of size |z| of the m-th dimension of Y.

3.2 Encoding EC in Tensor Spaces
The EC language contains the sets of constants, C and T
(section 2.2), events/fluents, and the predicates outlined in
Table 1. We encode entities ci from C in one-hot vectors
ci, i.e., vectors that have one at the i-th position and zeros
elsewhere. Similarly, we encode time-points tk from T in
one-hot vectors tk. The EC sets of constants now become
C′ = {c1, . . . , cN} and T ′ = {t1, . . . , tΩ}, forming the stan-
dard basis of RN and RΩ, respectively. When it is not clear
from the context, we will specify the size of a vector x with
xN or xΩ.

EC predicates are translated into matrices or tensors.
The shape/order of a matrix/tensor equals the arity of
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events/fluents plus 1 for the temporal dimension. For illustra-
tion purposes, we restrict attention to binary events/fluents.
Definition 5 (EC predicates encoding). An EC predicate r is
encoded by an order-3 tensor R ∈ {0, 1}N×N×Ω, where:

R i,j,k =

{
1, if MP |= r, for ci, cj , tk
0, o.w

∀ 1 ≤ i, j ≤ N, 1 ≤ k ≤ Ω . ■

Element Ri,j,k equals 1 if predicate r is true in the model
MP of the program for variable groundings ci, cj , tk, and 0
if it is not. The example below illustrates this encoding.
Example 2. Assume that C={c1, c2} has two entities,
say vessel IDs, and T ={t1, t2} has two time-points.
Then, C′={c1, c2} and T ′={t1, t2}. Furthermore, as-
sume the following groundings of the EC predicate
initiatedAt(fl(X,Y )=v, T ), expressing the initiation points
of fluent fl :

initiatedAt(fl(c1, c2)=v, t1)

initiatedAt(fl(c1, c2)=v, t2)

initiatedAt(fl(c2, c1)=v, t2) .

Below we present, the one-hot vector of c1 (left), the one-
hot vector of t2 (middle), and the tensor S encoding the EC
predicate initiatedAt(fl(X,Y )=v, T ) (right):

c1 =

[
1
0

]
, t2 =

[
0
1

]
, S =

[
0 1
0 0

∣∣∣∣ 0 1
1 0

]
. (4)

The vertical line in the above tensor representation serves the
separation of the temporal dimension, i.e., it separates the
two temporal slices. In this example, t1 is expressed by the
left slice while t2 is expressed by the right slice. The rows and
columns of the tensor correspond to entities c1 and c2. For ex-
ample, the first row and column of each temporal slice refer to
c1. When we want to refer to a slice i of a tensor S, we use the
notation S:,:,i . In the tensor representation in (4), a value of 1
signifies that for specific groundings of the variables the pred-
icate is true and a value of 0 that the predicate is false. For ex-
ample, the ground predicate initiatedAt(fl(c1, c2)=v, t2) cor-
responds to the element S 1,2,2 of S with value 1, and states
that fluent fl is initiated at time-point t2 for entities c1 and c2.

To query the truth value of a specific variable grounding,
e.g. initiatedAt(fl(ci, cj)=v, tk), we use the following:

initiatedAt(fl(ci, cj)=v, tk) =

S×1,1 ci ×2,1 cj ×3,1 tk =

S i,j,k ∈ {0, 1},
∀ 1 ≤ i, j ≤ N, 1 ≤ k ≤ Ω .

(5)

3.3 Reasoning in Tensor-EC
The goal in EC is to compute the time-points at which a fluent
holds. To achieve this, we first need to evaluate initiation and
termination rules. To do this algebraically, we next show how
we treat negation, conjunction, and disjunction.

EC predicates that participate negatively in the body of
a rule (symbol not in rule (1)), imply that an event or

fluent should not occur or hold at a specific time-point.
To obtain a tensor representing a negative literal, we sub-
tract from 1 each element of the tensor encoding the cor-
responding positive literal. Consider the negative literal
not happensAt(a(X,Y ), T ). The tensor ¬A used to repre-
sent this negative literal is computed as per Def. 6.
Definition 6 (Tensor Negation). Negation is defined as:

¬A = 1N ◦ 1N ◦ 1Ω −A ∈ {0, 1}N×N×Ω . ■
In Def. 6, notice that the outer product of all-ones vectors

results in an all-ones order-3 tensor. ¬A is the result of sub-
tracting from 1 all the elements of the positive counterpart
tensor, i.e., A.
Example 3. The negation of S from (4) is:

¬S =

[
1 0
1 1

∣∣∣∣ 1 0
0 1

]
.

Multiplication is used to evaluate the conjunction of liter-
als. In EC rules conjunctive literals are evaluated at the same
time-point, and usually on the same entities. Consider the
following conjunction:

happensAt(a(X,Y ), T ), holdsAt(b(X,Y ), T ) .

We denote each predicate with tensors A and B, respectively,
and define tensor conjunction as per Def. 7.
Definition 7 (Tensor Conjunction). Conjunction is defined as
the Hadamard product of two tensors:

A⊙B . ■
Example 4. Consider the following tensors A and B:

A =

[
0 1
1 0

∣∣∣∣ 0 1
0 0

]
, B =

[
0 0
0 0

∣∣∣∣ 0 1
1 0

]
.

Their conjunction would be:[
0 0
0 0

∣∣∣∣ 0 1
0 0

]
,

stating that event a and fluent b have the same grounding of
variables for entities c1 and c2 only at time-point t2.

In the Technical Appendix, we present a conjunction of
literals in the presence of an existentially quantified variable.
In that case, apart from multiplying the dimensions specified
by the variables that are common among the literals, we also
sum the result across the dimension indexed by the quantified
variable.

Disjunction is treated by tensor addition. Consider that we
want to compute the following disjunction of literals:

happensAt(a(X,Y ), T ) ∨ holdsAt(b(X,Y ), T ) .

Definition 8 (Tensor Disjunction). Disjunction is defined as:

A+B ∈ RN×N×Ω θ>1−−→ {0, 1}N×N×Ω . ■
Notice that in case of tensor disjunction, the value of an

element of the resulting tensor may be greater than 1. In this
case, we employ a standard thresholding operation, denoted

by
θ>1−−→, that makes every entry greater than 1 equal to 1.

The same applies to disjunctive rules (rules with the same
head), as well as for conjunction in the presence of existen-
tially quantified variables (see Technical Appendix). This op-
eration is needed because a tensor may participate negatively
in the body of a rule and the computation of its negation will
result in negative values, if thresholding is not used.
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3.4 Computing a Model in Tensor Spaces
To obtain the time-points a fluent holds, we need to com-
pute its initiation and termination points. In rule (1), we
presented the general syntax of initiatedAt and terminatedAt
rules. Let S be the tensor encoding the initiation points of
fluent fl(X,Y )=v, E, A, B the tensors encoding the event
occurrences of events e(X,Y ), a(X,Y ), and b(X,Y ), re-
spectively, and C, D the tensors encoding the time-points
at which fluents c(X,Y )=vc and d(X,Y )=vd hold, where
S,E,A,B,C,D ∈ {0, 1}N×N×Ω. Recall from rule (1) that
the symbol [not] denotes that negation is optional. If a literal
participates negatively in the body of a rule, the tensor encod-
ing the predicate is negated according to Def. 6. To compute
the initiation points of S, we have:

S = E⊙
[[

[¬]A⊙ [¬]B⊙ [¬]C⊙ [¬]D
]]

(6)

The symbol [¬] represents the optional negation of tensors.
‘
[[ ]]

’, similarly to rule (1), denotes that the presence of the
enclosed tensors is optional. The evaluation of rule (1) in ten-
sor spaces, is the Hadamard product of the tensors encoding
the body literals, and the result is tensor S encoding the initi-
ation points of fluent fl . In Eq. (6), the initiation points of S
are basically the time-points at which all tensors, E,

[[
[¬]A,

[¬]B, [¬]C, [¬]D
]]

, are true for the same groundings of en-
tities and time-points.

terminatedAt rules are evaluated in a similar manner. The
reasoning process ends with the computation of the time-
points at which a fluent holds. To achieve this in tensor-EC,
we employ the inertia axiom presented in rule-set (3). The in-
ertia axiom is a disjunction of rules, where the variables are
common among the first two body literals of each rule. Let
S,T ∈ {0, 1}N×N×Ω be order-3 tensors, computed by the
equivalent tensor formulation (Eq. (6)) of rules of type (1),
that encode the time-points at which fluent fl is initiated and
terminated, respectively. ¬T ∈ {0, 1}N×N×Ω is the negative
version of T, computed as per Def. 6.

The predicate next(Tprev ,T ) in inertia axiom (3) states
that the next time-point of Tprev is T . We encode next with
shift matrix U ∈ {0, 1}Ω×Ω, that is, a square matrix with
ones only on the super-diagonal and zeros elsewhere. Post-
multiplying a matrix A with U, i.e., AU, results in shifting
the elements of A to the right by one position, with zeros ap-
pearing in the first column. Multiplying a tensor A with a
shift matrix results in the shifting of elements along the tem-
poral dimension, i.e., the first temporal slice is a matrix of ze-
ros, A:,:,1 = 0N ◦0N , where 0N an all-zeros vector. Finally,
let H be the tensor encoding the time-points at which fluent
fl holds. Then, the inertia axiom can be seen as a first-order
difference (recursive) equation of the form:

H =
(
S⊙ ¬T

)
×3,1 U+

(
H⊙ ¬T

)
×3,1 U⇔

H−
(
H⊙ ¬T

)
×3,1 U =

(
S⊙ ¬T

)
×3,1 U .

(7)

Eq. (7) states that a fluent holds at a time-point if it was initi-
ated or held and not terminated at the previous time-point.

Unfolding Eq. (7) for every element of tensors H,S,¬T,
i.e., for every pair of entities ci, cj ∈ C and time-point
tk ∈ T , we result in the following system of linear first-order
difference equations:

H1,1,1 = 0

−H1,1,1¬T1,1,1 +H1,1,2 = S1,1,1¬T1,1,1

...
−HN,N,Ω−1¬TN,N,Ω−1 +HN,N,Ω = SN,N,Ω−1¬TN,N,Ω−1 .

Notice that the initial condition Hi,j,1= 0, 1 ≤ i, j ≤ N ,
states that at the first time-point t1, regardless the pair of enti-
ties ci, cj , no fluent can hold. The above system can be writ-
ten in matrix form as:

1
−
(
¬T1,1,1

)
1

. . . . . .
−
(
¬TN,N,Ω−1

)
1


︸ ︷︷ ︸

G


H1,1,1

H1,1,2

...
HN,N,Ω


︸ ︷︷ ︸

h

=


0

S1,1,1¬T1,1,1

...
SN,N,Ω−1¬TN,N,Ω−1


︸ ︷︷ ︸

b

,

(8)
where G ∈ RN2Ω×N2Ω is the coefficients matrix, and
h ∈ RN2Ω, b ∈ {0, 1}N2Ω, are column vectors. Our goal is
to solve Eq. (8) for h, i.e., the time-points at which a fluent
holds for every pair of entities.

To construct the matrix equation (8), we must first perform
a series of operations. We define vec[·] as the vectorization
operator, which transforms a tensor into a vector. For ex-
ample, let a be a vector and A a tensor, vec[A] : A ∈
RN×N×Ω → a ∈ RN2Ω. Then, the operations to produce
G and b in Eq. (8), are the following:

(a) G ∈ RN2Ω×N2Ω : Gi,i= 1 ,G⋆=−vec
[
¬T

]
,

Gi,j= 0, ∀ i, j : i ̸= j, j ̸= i− 1

(b) b= vec

[((
S⊙ ¬T

)
×3,1 U

)]
∈ {0, 1}N2Ω

In (a), all the elements of the principal diagonal of G are
set to 1, the first sub-diagonal (G⋆) is set to the result of vec-
torizing ¬T multiplied by -1, and all the remaining elements
are set to 0. Notice that, due to multiplication of vec

[
¬T

]
by -1, G /∈ {0, 1}N2Ω×N2Ω but G ∈ {−1, 0, 1}N2Ω×N2Ω.
Vector b, in (b), is the vectorization of the Hadamard product
of initiation and non-termination tensors, S and ¬T, shifted
(mode-(3,1) product) by matrix U.
G is a lower unitriangular matrix, i.e., a lower triangular

matrix for which all elements on the principal diagonal equal
to 1. Additionally, G is a bi-diagonal matrix [Demmel, 1997;
Kılıç and Stanica, 2013], since only the elements of the prin-
cipal and the first sub-diagonal may differ from 0. Since G
is unitriangular, its determinant is 1 (product of the principal
diagonal elements), and thus, it has an inverse (G−1). Hence,
Eq. (8) has a unique solution, that can be expressed formally
for vector h and tensor H, both encoding the time-points at
which fl(X,Y )=v holds, as per Def. 9.

Definition 9 (Inertia Axiom Solution). The time-points at
which a fluent-value pair holds are computed by:

h = G−1b, h ∈ RN2Ω θ>1−−→ {0, 1}N
2Ω, (9)

H = vec−1
[
h
]
, H ∈ {0, 1}N×N×Ω . ■
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In Def. 9, vec−1
[
·
]

is the inverse of the vectorization oper-
ator, i.e., transforms a vector to a tensor. This operation is
needed, since H may participate in the body of initiatedAt/
terminatedAt rules of type (1) at higher strata. Notice, also,
that h ∈ RN2Ω. To constrain h ∈ {0, 1}N2Ω we use the

thresholding operation
θ>1−−→, already discussed in Section 3.3.

Def. 9 may be extended for tensors of any order, i.e., for flu-
ents with arity > 2.

The process described so far is repeated for every stratum
of the EC program P , as is also the case for symbolic-EC (see
Section 2.2). The tensors of stratum Ps, encoding the time-
points at which fluents of Ps hold (computed as per Def. 9),
are cached and propagated to higher strata (P>s). At the end,
the tensors of all strata constitute the perfect model MP .

Proposition 1 (Correctness). The unique solution of Eq. (8),
computed by Eq. (9), coincides with the time-points at which
a fluent-value pair holds, as expressed by the perfect model
of the corresponding program in symbolic-EC. ♦

The proof may be found in the Technical Appendix.

Proposition 2 (Complexity). The time complexity of solving
Eq. (8) is O(Np−1Ω) for order-p tensors [Demmel, 1997].♦

Eq. (8) requires the construction of the coefficients ma-
trix G and vector b. The first sub-diagonal of G depends
on the non-termination tensor ¬T, while b depends on the
Hadamard product of initiation and non-termination tensors,
S and ¬T, shifted (mode-(3,1) product) by matrix U. S and
T are produced by evaluating initiatedAt and terminatedAt
rules of type (1) in tensor-EC (Eq. (6)), and require
O(Np−1Ω) time for order-p tensors. The time complexity of
the mode-(3,1) product

(
S⊙ ¬T

)
×3,1 U, is O(Np−1Ω2).

Evaluating axiom (3) in symbolic-EC for fluents with arity
p−1, requires in the worst case O(Np−1Ω). Moreover, rules
of type (1), in symbolic-EC, are bound byO(Np−1Ω2) [Tsil-
ionis et al., 2022]. Hence, both methods, symbolic-EC and
tensor-EC, are bound theoretically by the same complexity.

However, the performance of tensor-EC can be boosted
through parallelism or/and the employment of sparse rep-
resentations. In this paper, we do not exploit parallelism
(it is left for future work), but note that operations such as
the Hadamard and mode-(n,m) products are trivially paral-
lelized. In real-life scenarios, the time-points at which fluents
are initiated and terminated are usually very few, and thus,
the corresponding tensors would be very sparse. Operations
on sparse representations avoid unnecessary calculations by
not examining null elements (time-points at which the EC
predicates are false), resulting in peformance improvement
[Nguyen et al., 2022]. Furthermore, recall that shift matrix
U has 1s only on the first super-diagonal and its sparse struc-
ture can also be considered. Finally, matrix G in Eq. (8) is a
bi-diagonal matrix, where only the elements of the principal
and the first sub-diagonal may differ from 0. By taking advan-
tage of the sparsity of G and the fact that the elements of the
principal diagonal are equal to 1, the time of solving Eq. (8)
can be further reduced (see in the Technical Appendix the
computation of the inverse G−1). In the empirical analysis,
we employ sparse representations for the tensors and matrices
needed by tensor-EC and observe significant improvements.

4 Empirical Analysis
We present an empirical analysis on real datasets from the
field of maritime monitoring.

4.1 Experimental Setup
Symbolic-EC is implemented in XSB Prolog while the
tensor-based implementation is written in Python. The source
code of both methods and a subset of one of the datasets,
are available in the Code & Data Appendix. The experi-
ments were performed on a single core, on a computer with
AMD EPYC 7543 and 400 GB of RAM, running Debian
GNU/Linux 12, XSB Prolog 5.0.0 and Python 3.11.4.

The composite event recognition (CER) process involves
the computation and caching of all time-points at which
fluent-value pairs, expressing CEs, hold. On the field of mar-
itime monitoring, CER concerns the recognition of compos-
ite maritime events (recall ‘communication gap’ from (2))
and is typically achieved by monitoring the messages ves-
sels emit while sailing at sea. These messages are exchanged
through the Automatic Identification System (AIS) [Bereta et
al., 2021] and contain information about the position, head-
ing, speed, etc. of vessels at different points in time. More-
over, these messages can be annotated automatically, convey-
ing information about the start/end of sailing at a low/high
speed, changes in speed/heading, entrance or exit in an area
of interest, etc. [Patroumpas et al., 2017]. The annotated AIS
messages constitute the input to our system.

The CE description used in our empirical analysis includes
forty input events and twenty two fluents. Recall that each
fluent is defined by one or more initiatedAt and terminatedAt
rules, plus the inertia axiom. We employed two datasets for
our empirical analysis; the first is a publicly available dataset,
concerning approx. 5K vessels sailing in the Atlantic Ocean
around the port of Brest, France, and consists of approx. 15M
SDEs. The second dataset is proprietary and was provided to
us by IMIS Global. It concerns 34K vessels sailing in the
European seas and consists of approx. 32M SDEs. These
datasets allow us to test the scalability of the methods.

Recall from Section 2.2, that CER takes place at spec-
ified query times q1, q2, . . . , where the recognition at each
qi is performed over the SDEs (input — ground happensAt/
holdsAt predicates) that fall within a user-specified window
ω. To simulate a streaming behavior, the datasets are stored
in CSV files and are processed periodically in chunks accord-
ing to the window ω specification. Moreover, the slide step
(distance between consecutive query times) is set equal to ω
in the experiments, i.e., non-overlapping windows are used.
Notice that, given a constant window ω, the number of SDEs
varies from window to window and consequently, the number
of vessels (the N constants of the entity set C) changes, while
the Ω time-points of set T (size of ω) remain unchanged.

Since the data concerning each vessel is very sparse due
to periodic message emission, we use sparse representation
of the tensors encoding fluents. However, efficient imple-
mentations of operations, such as the Hadamard or the mode-
(n,m) product, on sparse tensors do not exist. Therefore, we
convert tensors to matrices. For example an order-3 tensor
F ∈ {0, 1}N×N×Ω is converted to a matrix F ∈ {0, 1}N2×Ω.
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Figure 1: Tensor vs. symbolic-EC.

4.2 Experimental Results
Figures 1(a) and (b) display our experimental results for the
Brest and the European seas dataset, respectively. In both
datasets, we employ temporal windows of four different sizes
and on the x-axis we state the size of the window, as well
as the average number of SDEs and average number of ves-
sels/entities falling inside the window. The y-axis of both fig-
ures corresponds to average recognition time (in log scale).

In the Brest dataset the temporal window varies from 1 to 8
hours, while in the European seas dataset the window varies
from 200 to 2000 seconds. In both datasets, the time-points of
the windows correspond to seconds. Notice that the number
of SDEs and vessels increases dramatically in the European
seas dataset, even for smaller windows. Tensor-EC achieves a
performance gain for all window sizes in both datasets, high-
lighting the efficiency of the method in comparison to the
symbolic one. Recall that the experiments were performed
on a single core, i.e., no parallelization was used.

5 Related Work
Computing models of logic programs in vector spaces has
recently gained a lot of attention. Sakama et al. [2021] pre-
sented a method for computing models, where they encode
propositional programs into matrices. Optimization tech-
niques that make the method able to cope with huge pro-
grams in vector spaces, have also been proposed [Nguyen
et al., 2018; Nguyen et al., 2021]. Our work is not directly
comparable to these propositional approaches. We also com-
pute the model of a program but we use a first-order lan-
guage. Propositionalization in CER would lead to millions
of propositional atoms in the Herbrand base, and the con-
struction of the program matrix would be practically infea-
sible, due to huge memory requirements and time complex-
ity. Additionally, the matrix construction process needs to be
repeated at each temporal window, since the set of domain
entities/vessels C does not remain the same in each window.

The work closest to ours is that by Sato [2017a; 2017b].
Sato [2017a] utilizes a first-order language with a finite do-
main of constants. Entities are represented by one-hot vec-
tors and p-ary relations by order-p (cubical) tensors. Quanti-
fiers are also encoded as tensors and their order depends on
the number of appearances of the quantified variable. Then,
a procedure, consisting of matrix multiplications or tensor
mode-(n,m) products, is proposed for determining the truth

value of nested quantified logic formulas. This procedure can
also be used for computing the encoding of a rule head, but
it is only applicable to square matrices encoding binary pred-
icates. In the case of tensors, redundant computations are
introduced, increasing the order of the resulting tensor (in the
Technical Appendix we demonstrate the reason). To solve
this issue, when the variables are common among the head
and the body literals, as in a rule of type (1), we employ the
Hadamard product in Eq. (6), a cheaper operation compared
to matrix multiplication and mode-(n,m) products. A further
improvement is the use of an evaluation approach that does
not increase the order of the head tensor, in the presence of
existentially quantified variables (see Technical Appendix).

The method for computing square matrices that constitute
the least model of a transitive closure program in Datalog,
is described in [Sato, 2017b]. The model is determined by
solving a linear recursive equation and significant speedups,
compared to symbolic systems, are observed. Our work is
inspired by this study and in Eq. (7) we formalize the iner-
tia axiom (3) as a linear recursive equation. Furthermore,
we provide in Def. 9 a solution that can be extended to ten-
sors of any order, as opposed to the square (binary predi-
cates) matrix solution in [Sato, 2017b]. Consider again, the
predicate holdsAt(fl(X,Y )=v, T ) that is encoded by tensor
H ∈ {0, 1}N×N×Ω. The corresponding square matrix would
be H ∈ {0, 1}NΩ×NΩ. Expressing the inertia axiom as a
discrete Sylvester equation, as proposed by Sato, and solving
it would require O(N3Ω3) time. In our approach, with the
use of a bi-diagonal matrix, the time complexity is O(N2Ω),
orders of magnitude lower. Recall that N in our empirical
analysis reached a value of 13K in the European seas dataset.

Several EC implementations for logical reasoning over
traces of events have been proposed in the literature [Chit-
taro and Montanari, 1996; Chesani et al., 2010; Bragaglia
et al., 2012; Chesani et al., 2013; Montali et al., 2014;
Arias et al., 2022]. These approaches represent the whole
history and thus, as the trace grows, they are unable to scale
to streaming applications. Tensor-EC adopts the optimization
techniques of [Artikis et al., 2015], such as windowing and
caching in hierarchical EC programs, to avoid unnecessary
re-computations and scale to data streams.

6 Summary and Future Work
We proposed a linear algebraic approach for computing the
perfect model of a hierarchical EC program. We represent
EC predicates as tensors and demonstrate that the time-points
any p-ary fluent (CE) holds can be assessed by solving a lin-
ear recursive equation. The scalability of our system is em-
pirically demonstrated on real-world streaming data from the
maritime domain. Additionally, our numerical approach im-
proves the performance of the symbolical implementation of
EC, by orders of magnitude. An interesting future work direc-
tion would be to develop tensor representations that avoid the
grounding of every time-point at which a fluent holds. Encod-
ing in tensors the time intervals a fluent holds continuously,
will reduce substantially the inference time. Finally, we in-
tend to exploit parallel algorithms of linear algebra and hard-
ware resources (e.g., GPUs) to further boost performance.
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ica. The inverse of banded matrices. Journal of Computa-
tional and Applied Mathematics, 237(1):126–135, 2013.

[Montali et al., 2014] Marco Montali, Fabrizio M. Maggi,
Federico Chesani, Paola Mello, and Wil M. P. van der
Aalst. Monitoring business constraints with the event cal-
culus. ACM Trans. Intell. Syst. Technol., 5(1), jan 2014.

[Nguyen et al., 2018] Hien D. Nguyen, Chiaki Sakama,
Taisuke Sato, and Katsumi Inoue. Computing logic pro-
gramming semantics in linear algebra. In Manasawee
Kaenampornpan, Rainer Malaka, Duc Dung Nguyen, and
Nicolas Schwind, editors, Multi-disciplinary Trends in Ar-
tificial Intelligence - 12th International Conference, MI-
WAI 2018, Hanoi, Vietnam, November 18-20, 2018, Pro-
ceedings, volume 11248 of Lecture Notes in Computer Sci-
ence, pages 32–48. Springer, 2018.

[Nguyen et al., 2021] Hien D Nguyen, Chiaki Sakama,
Taisuke Sato, and Katsumi Inoue. An efficient reason-
ing method on logic programming using partial evalua-
tion in vector spaces. Journal of Logic and Computation,
31(5):1298–1316, 03 2021.

[Nguyen et al., 2022] Tuan Quoc Nguyen, Katsumi Inoue,
and Chiaki Sakama. Enhancing linear algebraic compu-
tation of logic programs using sparse representation. New
Gen. Comput., 40(1):225–254, apr 2022.

[Paschke and Bichler, 2008] Adrian Paschke and Martin
Bichler. Knowledge representation concepts for automated
SLA management. Decision Support Systems, 46(1):187–
205, 2008.

[Patroumpas et al., 2017] Kostas Patroumpas, Elias Alevi-
zos, Alexander Artikis, Marios Vodas, Nikos Pelekis, and
Yannis Theodoridis. Online event recognition from mov-
ing vessel trajectories. GeoInformatica, 21(2):389–427,
2017.

[Pitsikalis et al., 2019] Manolis Pitsikalis, Alexander Ar-
tikis, Richard Dreo, Cyril Ray, Elena Camossi, and Anne-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3591



Laure Jousselme. Composite event recognition for mar-
itime monitoring. In Proceedings of the 13th ACM In-
ternational Conference on Distributed and Event-Based
Systems, DEBS ’19, page 163–174, New York, NY, USA,
2019. Association for Computing Machinery.

[Przymusinski, 1987] T. Przymusinski. On the declarate se-
mantics of stratified deductive databases and logic pro-
grams. In Foundations of Deductive Databases and Logic
Programming. Morgan, 1987.

[Sakama et al., 2021] Chiaki Sakama, Katsumi Inoue, and
Taisuke Sato. Logic programming in tensor spaces. Annals
of Mathematics and Artificial Intelligence, 89, 12 2021.

[Sato, 2017a] Taisuke Sato. Embedding tarskian semantics
in vector spaces. In The Workshops of the The Thirty-
First AAAI Conference on Artificial Intelligence, Saturday,
February 4-9, 2017, San Francisco, California, USA, vol-
ume WS-17 of AAAI Technical Report. AAAI Press, 2017.

[Sato, 2017b] Taisuke Sato. A linear algebraic approach to
datalog evaluation. Theory and Practice of Logic Pro-
gramming, 17(3):244–265, 2017.

[Skarlatidis et al., 2015] Anastasios Skarlatidis, Georgios
Paliouras, Alexander Artikis, and George A. Vouros. Prob-
abilistic event calculus for event recognition. ACM Trans.
Comput. Logic, 16(2), feb 2015.

[Tsilionis et al., 2022] Efthimis Tsilionis, Alexander Artikis,
and Georgios Paliouras. Incremental event calculus for
run-time reasoning. J. Artif. Intell. Res., 73:967–1023,
2022.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3592


	Introduction
	Background: Event Calculus
	Language
	Semantics and Operation

	Linear Algebraic Approach
	Preliminaries
	Encoding EC in Tensor Spaces
	Reasoning in Tensor-EC
	Computing a Model in Tensor Spaces

	Empirical Analysis
	Experimental Setup
	Experimental Results

	Related Work
	Summary and Future Work

