
The Transformation Logics

Alessandro Ronca
University of Oxford

alessandro.ronca@cs.ox.ac.uk

Abstract
We introduce a new family of temporal logics de-
signed to finely balance the trade-off between ex-
pressivity and complexity. Their key feature is the
possibility of defining operators of a new kind that
we call transformation operators. Some of them
subsume existing temporal operators, while others
are entirely novel. Of particular interest are trans-
formation operators based on semigroups. They
enable logics to harness the richness of semigroup
theory, and we show them to yield logics capable of
creating hierarchies of increasing expressivity and
complexity which are non-trivial to characterise in
existing logics. The result is a genuinely novel and
yet unexplored landscape of temporal logics, each
of them with the potential of matching the trade-
off between expressivity and complexity required
by specific applications.

1 Introduction
We introduce the Transformation Logics, a new family of
temporal logics designed to finely balance the trade-off be-
tween expressivity and complexity. Their key feature is the
possibility of defining operators of a new kind that we call
transformation operators. They capture patterns over se-
quences, and they can be thought of as a generalisation of
temporal operators. The subclass of transformation opera-
tors based on finite semigroups is of particular interest. Such
semigroup-like operators suffice to capture all regular lan-
guages, and remarkably they allow for creating hierarchies of
increasing expressivity and complexity which are non-trivial
to define in existing logics. The base level of such hierar-
chies is obtained using the operator defined by the flip-flop
monoid. The other levels are obtained introducing operators
based on simple groups—the building blocks of all groups.
Simple groups have been systematically classified into a fi-
nite number of families, cf. [Gorenstein et al., 2018]. The
classification provides a compass in the landscape of groups,
and a roadmap in the exploration of temporal logics, as it is
made clear by the results in this paper.

Our motivation arises from the usage of temporal logics in
AI. They are used in reinforcement learning to specify reward
and dynamics functions [Bacchus et al., 1996; Brafman et al.,

2018; Icarte et al., 2018; Camacho et al., 2019; De Giacomo
et al., 2020b; De Giacomo et al., 2020a]; in planning for de-
scribing temporally-extended goals [Torres and Baier, 2015;
Camacho et al., 2017; De Giacomo and Rubin, 2018; Braf-
man and De Giacomo, 2019; Bonassi et al., 2023]; in stream
reasoning to express programs with the ability of referring
to different points of a stream of data [Beck et al., 2018;
Ronca et al., 2022; Walega et al., 2023].

In the above applications, the required trade-off between
expressivity and complexity will depend on the case at hand.
When the basic expressivity of the star-free regular languages
suffices, one can employ logics such as Past LTL [Manna and
Pnueli, 1991] and LTLf [De Giacomo and Vardi, 2013]. In all
the other cases, one needs to resort to more expressive logics.
The existing extensions of the above logics have the expres-
sivity of all regular languages, cf. ETL [Wolper, 1983] and
LDLf [De Giacomo and Vardi, 2013]. This is a big leap in
expressivity, which may incur an unnecessarily high compu-
tational complexity. We show next two examples where the
required expressivity lies in fragments between the star-free
regular languages and all regular languages. These fragments
can be precisely characterised in the Transformation Logics.

Example 1. An agent is assigned a task that can be com-
pleted multiple times. We receive an update every minute
telling us whether the agent has completed the task in the
minute that has just elapsed. We need to detect whether the
agent has completed the task at least once on every past day.

The example describes a periodic pattern, which is beyond
the star-free regular languages. It requires to count minutes
modulo 24 ∗ 60 = 1440 in order to establish the end of ev-
ery day. This can be expressed in the Transformation Logics
using a transformation operator defined by the cyclic group
C1440. Cyclic group operators yield an ability to capture
many useful periodic patterns. At the same time, they belong
to the special class of solvable group operators, which en-
joys good properties such as a more favourable computational
complexity compared to larger classes of operators. The next
one is an example where solvable group operators do not suf-
fice, and we need to resort to symmetric group operators.

Example 2. A cycling race with n participants takes place,
and we need to keep track of the live ranking. At each step
an overtake can happen, in which case it is communicated to
us in the form (i, i+ 1) meaning that the cyclist in position i

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3549

has overtaken the one in position i + 1. We know the initial
ranking, and we need to keep track of the live ranking.

The ranking in the example corresponds to the symmetric
group Sn, which is not solvable if n ≥ 5. The example can
be specified in a Transformation Logic featuring a transfor-
mation operator defined by the group Sn.
Summary of the contribution. We introduce the Trans-
formation Logics, providing a formal syntax and semantics.
Their main characteristic is the transformation operators. The
operators are very general, as we demonstrate through a se-
ries of concrete examples. We develop a systematic approach
in defining operators, based on semigroup theory and al-
gebraic automata theory, cf. [Ginzburg, 1968; Arbib, 1969;
Dömösi and Nehaniv, 2005]. This way we are able to iden-
tify prime operators that can capture all finite operators. For
them, we prove a series of expressivity and complexity re-
sults. Regarding the expressivity, we show there exists one
operator, defined by the flip-flop monoid, which yields the
expressivity of the star-free regular languages; as one keeps
adding operators based on cyclic groups of prime order, the
expressivity increases, up to capturing all languages that can
be captured using solvable group operators; the expressivity
of all regular languages is reached by adding the other prime
operators, that can be defined by choosing groups from the
classification of finite simple groups, cf. [Gorenstein et al.,
2018]. Regarding the complexity, we focus on the evalua-
tion problem, and we show three sets of results. First, we
show any Transformation Logic can be evaluated in polyno-
mial time, whenever its operators can be evaluated in polyno-
mial time. Second, for two notable families of operators, we
show that polynomial-time evaluation is possible even when
they are represented compactly. Third, we focus on the data
complexity of evaluation showing that it corresponds to the
three circuit complexity classes AC0 ⊊ ACC0 ⊆ NC1 when
we include (i) only the flip-flop operator, (ii) also cyclic oper-
ators, and (iii) all operators. Finally, we show how Past LTL
formulas can be easily translated into the core Transformation
Logic featuring the flip-flop operator.
Extended version. Proofs of all our results as well as addi-
tional details on several aspects of the paper can be found in
the extended version [Ronca, 2024].

2 Preliminaries
For X a set, a transformation is a function f : X → X . We
write the identity function over any domain as id . We denote
the Boolean domain {0, 1} by B, the natural numbers by N,
and the integer numbers by Z.

2.1 Formal Languages
An alphabet Σ is a non-empty finite set of elements called
letters. A string over Σ is a finite concatenation σ1 · · ·σn of
letters from Σ. A language over Σ is a set of strings over
Σ. The regular languages are the ones languages that are
defined by regular expressions, or equivalently by finite au-
tomata [Kleene, 1956]. The star-free regular languages are
the languages that are defined by regular expressions without
the Kleene star but with complementation, or equivalently by
a group-free finite automaton, cf. [Ginzburg, 1968].

2.2 Propositional Logic
Syntax. A propositional variable is an element from a set V
that we consider as given. Typically we denote propositional
variables by lowercase Latin letters. A propositional formula
is built out of propositional variables and the Boolean oper-
ators {¬,∧,∨}. It is defined inductively as a propositional
variable or one of the following expressions: ¬α, α ∧ β,
α ∨ β where α and β are propositional formulas. Additional
Boolean operators may be defined, but it is not necessary as
the former operators are universal, they suffice to express all
Boolean functions.

Semantics. An interpretation I for a propositional formula
is a subset of the propositional variables occurring in the for-
mula. Intuitively, the fact that a variable appears in the in-
tepretation means that the variable stands for a proposition
that is true. An assignment is a function ν : V → B from
a set of propositional variables V to the Boolean domain
B = {0, 1}. When V = {v1, . . . , vn}, we can also write an
assingment ν as the map ⟨v1, . . . , vn⟩ 7→ ⟨b1, . . . , bn⟩, with
the meaning that ν(vi) = bi. An interpretation I corresponds
to the assignment ν such that ν(a) = 1 iff a ∈ I . Then, the
semantics of formulas is defined in terms of the following sat-
isfiability relation. Given a formula α and an interpretation I
for α, the satisfiability relation I |= α is defined following
the structural definition of formulas, for variables as

• I |= a iff a ∈ I ,

and inductively for the other formulas as

• I |= ¬α iff I ̸|= α,

• I |= α ∨ β iff I |= α or I |= β,

• I |= α ∧ β iff I |= α and I |= β.

An assignment ν to variables {a1, . . . , am} can be seen as
the conjunction l1 ∧ · · · ∧ lm where li = ai if ν(ai) = 1 and
li = ¬ai otherwise. This allows us to write I |= ν.

2.3 Semigroups and Groups
A semigroup is a non-empty set together with an associative
binary operation that combines any two elements a and b of
the set to form a third element c of the set, written c = (a · b).
A monoid is a semigroup that has an identity element e, i.e.,
(a ·e) = (e ·a) = a for every element a. The identity element
is unique when it exists. A group is a monoid where every el-
ement a has an inverse b, i.e., (a·b) = (b·a) = ewhere e is the
identity element. For every element a of a group, its inverse is
unique and it is denoted by a−1. A subsemigroup (subgroup)
of a semigroup S is a subset of S that is a semigroup (group).
The order of a semigroup is the number of elements. For S
and T semigroups, we write ST = {s · t | s ∈ S, t ∈ T};
we also write S1 = S and Sn = SSn−1. A semigroup S
is generated by a semigroup T if S =

⋃
n T

n. A homomor-
phism from a semigroup S to a semigroup T is a mapping
ψ : S → T such that ψ(s1 · s2) = ψ(s1) · ψ(s2) for every
s1, s2 ∈ S. If ψ is bijective, we say that S and T are isomor-
phic. Isomorphic semigroups are considered identical. Let G
be a group and let H be a subgroup of G. A right coset of G
is g · H = {g · h | h ∈ H} for g ∈ G, and a left coset of
G is H · g = {h · g | h ∈ H} for g ∈ G. Subgroup H is

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3550

normal if its left and right cosets coincide. A group is trivial
if it is the singleton {e}. A simple group is a group G such
that every normal subgroup of G is either trivial or G itself.
For g, h ∈ G, the commutator of g and h is g−1 · h−1 · g · h.
The derived subgroup of G is the subgroup generated by its
commutators. Setting G(0) = G, the n-th derived subgroup
G(n) is the derived subgroup of G(n−1). A group is solvable
if there exists n such that G(n) is trivial.

A flip-flop monoid is a three-element monoid {s, r, e}
where (r · s) = s, (s · s) = s, (r · r) = r, and (s · r) = r. All
flip-flop monoids are isomorphic, and hence one refers to the
flip-flop monoid. A cyclic group is a group that is isomorphic
to the groupCn of integers {0, . . . , n−1} with modular addi-
tion i · j = i+ jmodn. Again, one refers to any cyclic group
of order n as the cyclic group Cn. Two relevant properties of
cyclic groups are: (i) a cyclic group Cn is simple iff n is a
prime number; (ii) every cyclic group is solvable.

3 The Transformation Logics
We introduce the Transformation Logics. They are a propo-
sitional formalism, atoms are variables standing for proposi-
tions that can be true or false. The truth of some variables
is given as input, whereas the meaning of other variables is
given by a definition. Definitions allow us to avoid nested
expressions, and hence they aid intelligibility in this context.
A definition features either a Boolean expression, the delay
operator, or a transformation operator. The delay operator is
akin to the before operator from Past LTL. A transformation
operator has a domain of elements and a set of transforma-
tions over the domain—a transformation is a map from ele-
ments of a domain to elements of the same domain. At every
step a transformation operator has an associated domain ele-
ment to which it applies a transformation based on the truth
value of the operands. Then the evaluation value is a function
of the current domain element. Each transformation corre-
sponds to a specific functionality. For example, setting a bit
to one, or increasing a count. More intuition is given below
in the Paragraph ‘Explanation’ and later in Section 3.1.

Syntax. A static definition is

p := α

where p is a propositional variable, and α is a propositional
formula. A delay definition is

p := D q

where p and q are propositional variables, and D is called
the delay operator. A transformation operator T is a tu-
ple ⟨X,T, ϕ, ψ⟩ consisting of a non-empty set X , a non-
empty set T of transformations τ : X → X , a function
ϕ : Bm → T , and a function ψ : X → Bn. We call X the
transformation domain; we call m and n the input and output
arity, respectively. An operator is finite if its transformation
domain is finite—in which case all its other components are
necessarily finite. A transformation definition is

p1, . . . , pn := T (q1, . . . , qm | x0)
where T is a transformation operator with input arity m and
output arity n; p1, . . . , pn and q1, . . . , qm are variables; and

x0 ∈ X is the initial domain element. A definition is either
a static definition, a delay definition, or a transformation def-
inition. In a definition, the expression on the left of ‘ := ’ is
called head, and the expression on the right is called body.
A program is a finite set of definitions. A query is a pair
(P, q) consisting of a program P and a variable q occurring
in P . Programs are required to be nonrecursive, i.e., to have
an acyclic dependency graph. The dependency graph of a
program has one node for each variable in the program, and it
has a directed edge from a to b if there is a definition where a
is in the body and b is the head. Programs are also required to
define variables at most once, i.e., every variable p occurs at
most once in the head of a definition; if p occurs in the head
of a definition d, we say that d defines p. In a given program
P , a variable is a defined variable if there is a definition in P
that defines it, and it is an input variable otherwise.

For T a set of transformation operators, the Transforma-
tion Logic L(T) is the set of programs consisting of all static
definitions, all delay definitions, and all transformation defi-
nitions with operators from T.

Semantics. An input to a program P is a finite non-empty
sequence of subsets of the input variables of P . An assign-
ment to a transformation definition d is an expression d 7→ x
with x a domain element of the operator of d. The semantics
of programs is defined in terms of the following satisfiability
relation. Given a program P , an input I = I1, . . . , Iℓ to P ,
and an index t ∈ [1, ℓ], we define the satisfiability relation
(P, I, t) |= E where E is a propositional variable, a propo-
sitional formula, or an assignment to a transformation defini-
tion. We assume definitions are in the form given above; it
allows us to refer to the symbols mentioned there, e.g., sym-
bol pi for the i-th head variable of a transformation definition.

1. For a an input variable,

• (P, I, t) |= a iff a ∈ It;

2. For α and β formulas,

• (P, I, t) |= ¬α iff (P, I, t) ̸|= α;
• (P, I, t) |= α ∨ β iff (P, I, t) |= α or (P, I, t) |= β;
• (P, I, t) |= α ∧ β iff (P, I, t) |= α and (P, I, t) |= β;

3. For p a variable defined by a static definition,

• (P, I, t) |= p iff (P, I, t) |= α;

4. For p a variable defined by a delay definition,

• (P, I, t) |= p iff (P, I, t− 1) |= q;

5. For d 7→ x an assignment to a transformation definition d,

• (P, I, 0) |= (d 7→ x) iff x = x0;
• (P, I, t) |= (d 7→ x) iff

– (P, I, t− 1) |= (d 7→ x′),
– (P, I, t) |= (⟨q1, . . . , qm⟩ 7→ µ), and
– τ(x′) = x with τ = ϕ(µ);

6. For pi a variable defined by a transformation definition d,

• (P, I, t) |= pi iff
– (P, I, t) |= (d 7→ x), and
– ψ(x) = ⟨b1, . . . , bi, . . . , bn⟩ with bi = 1.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3551

Explanation. The index t can be thought of as a time point,
ranging over the positions of the given input I . Points 1 and 2
follow the standard semantics of propositional formulas, eval-
uated with respect to the assignment It. Points 3–5 define
the semantics of definitions, relying on the auxiliary Point 6.
Point 3 is the semantics of static definitions. It says that the
truth value of a variable p defined by a static definitions is
the truth value of the propositional formula α correspond-
ing to the body of the definition, evaluated at the same time
point. Point 4 is the semantics of delay definitions. It says
that the truth value of a variable p defined by a delay def-
inition is the truth value of the propositional variable q oc-
curring in the body the definition, evaluated at the previous
time point. Point 5 describes the element x that is currently
associated with a transformation definition. For t = 0, the
element is x0, the initial element specified in the definition.
For t > 0, the element x is determined as follows. We pick
an assignment ⟨q1, . . . , qm⟩ 7→ µ for the body variables of
the definition. Specifically, (P, I, t) |= (⟨q1, . . . , qm⟩ 7→ µ)
with µ = ⟨b1, . . . , bm⟩ means that (P, I, t) |= qi if bi = 1
and (P, I, t) ̸|= qi otherwise. The assignment determines
the transformation τ = ϕ(µ), which in turn determines the
next element x = τ(x′) from the previous one x′. Point 6
defines the semantics of transformation definitions. It spec-
ifies when variables p1, . . . , pn defined by a transformation
definition d are true. The semantics is defined considering
a single variable pi at a time, considered as part of the for-
mer list. There is an element x of the transformation do-
main of T = ⟨X,T, ϕ, ψ⟩ that is currently associated with
the definition d. Namely, the condition (P, I, t) |= (d 7→ x)
holds. Hence, the assignment ⟨b1, . . . , bn⟩ to the variables
p1, . . . , pn is given by ψ(x).

3.1 Examples of Operators
The mechanism to define transformation operators allows for
a great variety of operators. In this section we present several
examples of transformation operators, showing that one can
easily capture existing operators from the literature or design
novel operators to capture known patterns on sequences.

Temporal Operators. We can define operators in the style
of the temporal operators from Past LTL, cf. [Manna and
Pnueli, 1991]. For instance, we can define the operator

= ⟨B, T, ϕ, id⟩,

where T consists of the transformations set(x) = 1 and id ,
and the function ϕ is defined as ϕ(0) = id and ϕ(1) = set .
Then we can write a definition

p := (a | 0),

which defines p as true when a has happened. Here the only
meaningful choice of the initial transformation element is 0,
and hence it can be omitted. Thus we can write the same
definition as

p := a,

with the understanding that it corresponds to the one above.
Other temporal operators can be introduced in a similar way.

Threshold Counter Operators. The threshold counter op-
erator with threshold value n is

Tn = ⟨N, T, ϕ, ψ⟩,
where T consists of the transformations inc and id , with
inc(x) = x + 1; the function ϕ is defined as ϕ(1) = inc
and ϕ(0) = id ; and the function ψ is defined as ψ(x) = 1
if x ≥ n and ψ(x) = 0 otherwise. The operator allows one
to check whether a given condition has occurred at least n
times. Notably, we can define the operator equivalently as a
finite operator by replacing the set of all natural numbers N
with the finite set [0, n] and modifying the increment trans-
formation as inc(x) = min(n, x + 1). They are equivalent
because ψ will not distinguish integers greater than n.
Example 3. An agent must collect at least 30 units of stone,
and at least 115 units of iron given that 13 have already been
collected. When it has collected a sufficient number of units,
it can deliver and get rewarded. The reward function is de-
scribed by the query (P, reward) where P consists of the fol-
lowing definitions:

enoughStone := T30(stone | 0),
enoughIron := T115(iron | 13),

successfulDelivery := enoughStone ∧ enoughIron

∧ delivery ,

alreadyDelivered := successfulDelivery ,

notAlreadyDelivered :=¬alreadyDelivered ,

reward := delivery ∧ notAlreadyDelivered .

The proposition reward holds true at the first time point when
the agent succeeds in a delivery.
Parity Operator. The parity operator is

P = ⟨B, T, ϕ, id⟩,
where T consists of the identity function id and the Boolean
negation function ¬; and the function ϕ is defined as ϕ(0) =
id and ϕ(1) = ¬. The operator checks whether the input vari-
able has been true an even number of times. It is exemplified
by the program

even := P(a | 0),
odd := ¬even.

which defines whether a has happened an even or odd number
of times.
Metric Temporal Operators. In the style of metric tem-
poral logic [Koymans, 1990], we can define operators such
as one that checks whether something happened in the last k
steps—with time isomorphic to the naturals rather than to the
reals as in the original metric temporal logic. The aforemen-
tioned operator is defined as

k = ⟨Z, T, ϕ, ψ⟩,
where the set T has transformations set and dec defined as
set(x) = k and dec(x) = x− 1; the function ϕ is defined as
ϕ(1) = set and ϕ(0) = dec; and the function ψ is defined as
ψ(x) = 1 if x > 0 and ψ(x) = 0 otherwise. The operator
can be equivalently defined as a finite operator by replacing
Z with [0, k], and definining dec(x) = max(0, x− 1).

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3552

Operators with infinite transformation domain. While
all the operators above can be defined as finite operators, one
can also include operators that require an infinite transforma-
tion domain. For instance, the operator

sameNum = ⟨Z, T, ϕ, ψ⟩,
where T consists of inc(x) = x + 1, id(x) = x, and
dec(x) = x − 1; the function ϕ is defined as ϕ(0, 0) =
ϕ(1, 1) = id , ϕ(1, 0) = inc, ϕ(0, 1) = dec; and the func-
tion ψ is defined as ψ(x) = 1 iff x = 0. When the operator is
used in a definition such as

p := sameNum(a, b | 0),
we have that variable p is true iff a and b have been true the
same number of times. The operator can be used to recog-
nise the Dyck language of balanced parentheses, which is not
regular. The existence of an equivalent finite operator would
imply the existence of a finite automaton, and hence regular-
ity of the language.

3.2 Finite Semigrouplike Operators
We present a principled way to define operators in terms of
finite semigroups.
Definition 1. Let us consider a finite semigroup S = (X, ·),
a surjective function ϕ : Bm → X , and an injective func-
tion ψ : X → Bn. They define the transformation oper-
ator ⟨X,T, ϕ, ψ⟩ where T consists of each transformation
y(x) = x · y for y ∈ X . We call it a semigrouplike oper-
ator.

Intuitively, ϕ is a binary decoding of the set X , and ψ is a
binary encoding. Note that y is seen both as an element of X
and as a function y : X → X . From now on we assume that
for every set X such an encoding and decoding is fixed. Any
choice will be valid for our purposes. Thus, we simply say
that a semigroup defines a semigrouplike operator, without
mentioning the functions ϕ and ψ explicitly.
Definition 2 (Prime operators). The flip-flop operator is the
transformation operator defined by the flip-flop monoid. An
operator is a (simple) group operator if it is defined by a (sim-
ple) finite group. The prime operators are the flip-flop opera-
tor and the simple group operators.

We will focus in particular on the flip-flop operator and
on operators defined by cyclic groups. For these two oper-
ators we provide an explicit definition, which requires us to
commit to a choice of the encoding/decoding functions. The
definitions we provide are improved with respect to the ones
following from a direct application of Definition 1. In partic-
ular, we omit one element from the transformation domain of
the flip-flop operator, since it would be redundant.
Definition 3. The flip-flop operator is

F = ⟨B, T, ϕ, id⟩,
where T consists of the transformations set , reset , read de-
fined as

set(x) = 1, reset(x) = 0, read(x) = x,

and the function ϕ is defined as

ϕ(0, 0) = read , ϕ(1, 0) = ϕ(1, 1) = set , ϕ(0, 1) = reset .

The flip-flop operator corresponds to the flip-flop from dig-
ital circuits—it corresponds to an SR latch, where input 11 is
not allowed though, cf. [Roth et al., 2004]. The operator al-
lows us to specify a flip-flop with a definition as

storedBit := F(writeOne,writeZero).

Therefore the logic L(F) can be employed as a specification
language for digital circuits with logic gates and flip-flops.
Next we introduce the cyclic operators.

Definition 4. The cyclic operator of order n is

Cn = ⟨[0, n− 1], T, ϕ, ψ⟩,

where the transformations are T = {inci | i ∈ [0, n − 1]}
defined as

inci(x) = (x+ i) modn,

the function ϕ is defined as

ϕ(b1, . . . , bm) = inci,

where m is the minimum number of bits required to represent
n, and i is the minimum between n−1 and the number whose
binary representation is b1 . . . bm; finally, the function ψ(x)
yields the binary representation of x.

When a cyclic operator is used in a definition as

p1, . . . , pm := Cn(0, . . . , 0, a | 0),

variables p1, . . . , pm provide the binary representation of the
number of times a has been true modulo n. Note that the
parity operator introduced earlier coincides with C2. Next we
characterise the prime cyclic operators.

Proposition 1. A cyclic operator Cn is a prime operator iff n
is a prime number.

The other prime operators are defined by finite simple
groups as found in the classification of finite simple groups,
cf. [Gorenstein et al., 2018]. In addition to the infinite fam-
ily of cyclic groups of prime order, the classification also
includes the two infinite families of alternating groups and
groups of Lie type, along with the 27 sporadic groups.

4 Expressivity Results
We show expressivity results for Transformation Logics fea-
turing finite operators, with a focus on semigroup-like oper-
ators. We start by defining the notion of expressivity for a
Transformation Logic, in terms of formal languages.

Definition 5. Consider a program P with input variables
V = {p1, . . . , pn}. Every letter ⟨b1, . . . , bn⟩ of the alpha-
bet Bn defines an assignment ν to the variables in V , as
ν(pi) = bi. Then, every word w over Bn defines an in-
put Iw to P . A query (P, q) accepts a word w over Bn iff
(P, Iw, |w|) |= q; and it recognises a language L over Bn if
it accepts exactly the words in L.

Definition 6. The expressivity of a logic L is the set of lan-
guages recognised by its queries. A logic L1 is less expressive
than a logic L2, written L1 ⊏ L2, if the expressivity of L1 is
properly included in the expressivity of L2.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3553

First, we establish the expressivity when all finite operators
are included.

Theorem 1. For A the set of all finite operators, the expres-
sivity of L(A) is the regular languages.

The result follows from the fact that finite operators capture
finite automata; conversely, programs with finite operators
can be mapped to a composition of finite automata. In par-
ticular to a so-called cascade composition of automata. This
characterisation allows us to employ algebraic automata the-
ory, cf. [Ginzburg, 1968; Arbib, 1969; Dömösi and Nehaniv,
2005], in proving that prime operators suffice to capture reg-
ular languages.

Theorem 2. For P the set of all prime operators, the expres-
sivity of the logic L(P) is the regular languages.

The result is obtained by showing that every transformation
definition with a finite transformation operator can be cap-
tured by a program with prime operators only. The prime op-
erators to use are suggested by the prime decomposition the-
orem for finite automata [Krohn and Rhodes, 1965]. For star-
free regular languages, we obtain the following specialised
result.

Theorem 3. For F the flip-flop operator, the expressivity of
the logic L(F) is the star-free regular languages.

Beyond star-free, we have nameless fragments of the reg-
ular languages. Here we start their exploration. First, to go
beyond star-free it suffices to introduce group operators.

Theorem 4. For any non-empty set G of group operators,
the logic L(F ,G) is strictly more expressive than L(F).

Next we focus on cyclic operators. We show them to yield
a core of the Transformation Logics with favourable proper-
ties. First, cyclic operators along with the flip-flop operator
form a canonical and universal set of operators for the logic
L(F ,S), where S is the set of all solvable group operators.
They are canonical and universal for L(F ,S) in the same way
the operators {∧,¬} are canonical and universal for proposi-
tional logic. We state universality and then canonicity.

Theorem 5 (Universality). For C the set of all cyclic opera-
tors of prime order, and S any set of solvable operators, the
expressivity of L(F ,C) includes the expressivity of L(F ,S).

Theorem 6 (Canonicity). Given two sets C1 and C2 of cyclic
operators of prime order, the logics L(F ,C1) and L(F ,C2)
have the same expressivity if and only if C1 = C2.

The canonicity result implies the existence of infinite ex-
pressivity hierarchies such as the following one, if we note
that every Cp is a prime operator when p is a prime number.

Corollary 1. L(C2) ⊏ L(C2, C3) ⊏ L(C2, C3, C5) ⊏ · · · .

It is worth noting that this form of canonicity does not hold
for prime operators in general.

Theorem 7. There are two sets P1 ⊂ P2 of prime operators
such that L(P1) and L(P2) have the same expressivity.

Combining our expressivity results together, we obtain the
following hierarchy theorem.

Theorem 8. For S all solvable group operators, and P all
prime operators, the following infinite hierarchy of expressiv-
ity holds:

L(F)⊏L(F , C2)⊏L(F , C2, C3)⊏ · · ·⊏L(F ,S)⊏L(P).

The theorem provides our current picture of the expressiv-
ity of the Transformation Logics. At the bottom of the hi-
erarchy we have L(F) with the expressivity of the star-free
regular languages. At the top of the hierarchy we have L(P)
with the expressivity of all regular languages. Between them
we have infinitely-many logics capturing distinct fragments
of the regular languages.

5 Complexity Results
We study the complexity of the evaluation problem for the
Transformation Logics.
Definition 7. The evaluation problem of a Transformation
Logic L is the problem to decide, given a query (P, q) with
P ∈ L, and an input I = I1, . . . , Iℓ for P , whether it holds
that (P, I, ℓ) |= q.

To study the complexity we need to assume a representa-
tion for the operators, which determines the size of an oper-
ator. The choice of a representation for operators in general
is beyond the scope of this paper. We discuss two concrete
cases below.
Definition 8. A family T of operators is polytime if, for ev-
ery operator ⟨X,T, ϕ, ψ⟩ ∈ T with ϕ : Bm → T and
ψ : X → Bn, it holds that, for every x ∈ X and every
µ ∈ Bm, the value ψ(τ(x)) with τ = ϕ(µ) can be computed
in time polynomial in the size of the operator.

Theorem 9. For any (possibly infinite) set T of polytime op-
erators, the evaluation problem of L(T) is in PTIME. Fur-
thermore, there exists a set H of polytime operators such that
the evaluation problem of L(H) is PTIME-complete.

We argue the upper bound applies to every finite set of fi-
nite operators, including prime operators. On the contrary,
infinite sets of finite operators may not be polytime.
Lemma 1. Every finite set of finite operators is polytime.
There exists a set of finite operators that is not polytime.

Theorem 10. For any finite set T of finite operators, the eval-
uation problem of L(T) is in PTIME.

Next we focus on threshold counter operators Tn and cyclic
operators Cn. We denote the complete families as {Tn} and
{Cn}. Notably, such operators can be represented compactly.
Definition 9. A representation for the family of threshold
counter operators {Tn} is said to be compact if the size of
the representation of Tn is O(log n). Similarly for the family
of cyclic operators {Cn}.

A compact representation can be obtained by encoding the
symbols T and C with a constant number of bits, and the
index n in binary with a logarithmic number of bits.
Proposition 2. The threshold-counter operators {Tn} and
the cyclic operators {Cn} admit a compact representation.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3554

Lemma 2. The families of operators {Tn} and {Cn} are
polytime, even when represented compactly.

Overall we obtain that polynomial time evaluation is pos-
sible for every Transformation Logic that includes any finite
number of finite operators, along with the threshold-counter
and cyclic operators.
Theorem 11. For any finite set A of finite operators, the eval-
uation problem of L(A, {Tn}, {Cn}) is in PTIME even under
compact representation of the operators {Tn} and {Cn}.

5.1 Constant-Depth and Data Complexity
We study the complexity of evaluation of programs having a
constant depth. It implies data complexity results. Specifi-
cally, all membership complexity results for constant-depth
programs imply also membership in data complexity, when
the program is fixed and the size of the input to the program
is arbitrary. Data complexity measures how evaluation of a
fixed program scales with the size of the input [Vardi, 1982].
We first define the depth of a program, and corresponding
classes of constant-depth programs.
Definition 10. Consider a program P . The depth of an input
variable of P is zero. The depth of a variable defined by a
static definition d ∈ P is the maximum depth of a variable in
the body of d plus the depth of the parse-tree of the body of d.
The depth of a variable defined by a delay or transformation
definition d ∈ P is the maximum depth of a variable in the
body of d plus one. The depth of P is the maximum depth of
a variable in P .
Definition 11. For any set of transformation operators T,
and any depth k, the Transformation Logic L(T | k) is the
subset of L(T) with programs of depth at most k.

Our results are phrased in terms of three circuit complexity
classes, reported below with the known inclusions.

AC0 ⊊ ACC0 ⊆ NC1

The first result is for the flip-flop operator, and it builds on a
result for the complexity of group-free semigroups [Chandra
et al., 1985].
Theorem 12. For any k, evaluation of L(F | k) is in AC0.

Cyclic group operators, and solvable group operators in
general, increase the complexity of the evaluation problem.
Theorem 13. For any depth k, and any finite set S of solv-
able group operators, evaluation of L(F ,S | k) is in ACC0.
Furhermore, there is a solvable group operator G such that,
for every depth k ≥ 1, evaluation of L(G | k) is not in AC0.

The upper bound makes use of a result for the complex-
ity of solvable groups [Barrington, 1989]. The lower bound
relies on the fact that the cyclic (hence solvable) group C2

captures the parity function, known not to be in AC0 [Furst
et al., 1984].

Non-solvable groups introduce an exact correspondence
with the larger cicuit complexity class NC1. Our result builds
on a result for the complexity of non-solvable groups [Bar-
rington, 1989].
Theorem 14. For any depth k, and any finite set G of groups
containing a non-solvable group, the evaluation problem of
L(F ,G | k) is complete for NC1 under AC0 reductions.

6 Relationship with Past LTL
We show the Transformation Logic L(F) captures Past LTL.
First, the before and since operators correspond to the delay
and flip-flop operators, respectively.
Lemma 3. Consider a Past LTL formula φ = p. Let P be
the singleton program consisting of the definition q := D p.
For every interpretation I of φ and every time point t, it holds
that (I, t) |= φ iff (P, I, t) |= q.

Lemma 4. Consider a Past LTL formula φ = aS b. Let P
be the program consisting of the two definitions c := ¬a and
p := F(b, c | 0). For every interpretation I of φ and every
time point t, it holds that (I, t) |= φ iff (P, I, t) |= p.

Given the lemmas above, we can build a program for any
given Past LTL formula by induction on its parse-tree, intro-
ducing one static definition for each occurence of a Boolean
operator, one delay definition for each occurrence of the be-
fore operator, and one transformation definition for each oc-
currence of the since operator.
Theorem 15. Every Past LTL formula φ can be translated
into a program of L(F). Such a program has size linear in the
size of φ, and it can computed from φ in logarithmic space.

7 Related Work
The Transformation Logics are a valuable addition to the
rich set of temporal and dynamic logics adopted in AI.
Such logics include propositional temporal logics of the past
such as Past LTL, cf. [Manna and Pnueli, 1991]; tempo-
ral logics of the future interpreted both on finite and infi-
nite traces [Pnueli, 1977; Wolper, 1983; De Giacomo and
Vardi, 2013]; dynamic logics such as PDL, cf. [Harel et al.,
2000], and linear dynamic logic on finite traces [De Giacomo
and Vardi, 2013]; logics with a dense interpretation of time
such as metric temporal logic [Koymans, 1990]. They also
include first-order variants such as Past FOTL [Chomicki,
1995]. Finally, they include rule-based logics of several
kinds: propositional modal temporal logics such as Tem-
plog [Abadi and Manna, 1989; Baudinet, 1995]; logics with
first-order variables where time occurs explicitly as an ar-
gument of a special sort such as Datalog1S [Chomicki and
Imielinski, 1988], and Temporal Datalog [Ronca et al., 2018;
Ronca et al., 2022]; logics with metric temporal operators
such as DatalogMTL [Brandt et al., 2018; Walega et al.,
2019; Walega et al., 2020]; and propositional modal log-
ics specialised for reasoning on streams [Beck et al., 2018],
and weighted variants thereof [Eiter and Kiesel, 2020] which
share an algebraic flavour with our work.

8 Conclusions
The Transformation Logics provide a general framework for
logics over sequences. The flexibility given by the transfor-
mation operators allows for defining logics with the expres-
sivity of many different fragments of the regular languages,
under the guidance of group theory. While the star-free reg-
ular languages are well-known as they are the expressivity
of many well-established formalisms, the fragments beyond
them are less known. The Transformation Logics provide a
way to explore them.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3555

Acknowledgments
Alessandro Ronca is supported by the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (Grant agreement No.
852769, ARiAT). For the purpose of Open Access, the author
has applied a CC BY public copyright licence to any Author
Accepted Manuscript (AAM) version arising from this sub-
mission.

References
[Abadi and Manna, 1989] Martı́n Abadi and Zohar Manna.

Temporal logic programming. J. Symb. Comput., 8, 1989.
[Arbib, 1969] Michael Arbib. Theories of Abstract Au-

tomata. Automatic Computation. Prentice-Hall, 1969.
[Bacchus et al., 1996] Fahiem Bacchus, Craig Boutilier, and

Adam J. Grove. Rewarding behaviors. In AAAI, 1996.
[Barrington, 1989] David A. Mix Barrington. Bounded-

width polynomial-size branching programs recognize ex-
actly those languages in NC1. J. Comput. Syst. Sci., 38,
1989.

[Baudinet, 1995] Marianne Baudinet. On the expressiveness
of temporal logic programming. Inf. Comput., 117, 1995.

[Beck et al., 2018] Harald Beck, Minh Dao-Tran, and
Thomas Eiter. LARS: A logic-based framework for an-
alytic reasoning over streams. Artif. Intell., 261, 2018.

[Bonassi et al., 2023] Luigi Bonassi, Giuseppe De Giacomo,
Marco Favorito, Francesco Fuggitti, Alfonso Emilio
Gerevini, and Enrico Scala. Planning for temporally ex-
tended goals in pure-past linear temporal logic. In ICAPS,
2023.

[Brafman and De Giacomo, 2019] Ronen I. Brafman and
Giuseppe De Giacomo. Planning for LTLf/LDLf goals
in non-markovian fully observable nondeterministic do-
mains. In IJCAI, 2019.

[Brafman et al., 2018] Ronen I. Brafman, Giuseppe De Gia-
como, and Fabio Patrizi. LTLf/LDLf non-markovian re-
wards. In AAAI, 2018.

[Brandt et al., 2018] Sebastian Brandt, Elem Güzel Kalayci,
Vladislav Ryzhikov, Guohui Xiao, and Michael Za-
kharyaschev. Querying log data with metric temporal
logic. J. Artif. Intell. Res., 62, 2018.

[Camacho et al., 2017] Alberto Camacho, Eleni Triantafil-
lou, Christian J. Muise, Jorge A. Baier, and Sheila A.
McIlraith. Non-deterministic planning with temporally ex-
tended goals: LTL over finite and infinite traces. In AAAI,
2017.

[Camacho et al., 2019] Alberto Camacho, Rodrigo Toro
Icarte, Toryn Q. Klassen, Richard Anthony Valenzano, and
Sheila A. McIlraith. LTL and beyond: Formal languages
for reward function specification in reinforcement learn-
ing. In IJCAI, 2019.

[Chandra et al., 1985] Ashok K. Chandra, Steven Fortune,
and Richard J. Lipton. Unbounded fan-in circuits and as-
sociative functions. J. Comput. Syst. Sci., 30, 1985.

[Chomicki and Imielinski, 1988] Jan Chomicki and Tomasz
Imielinski. Temporal deductive databases and infinite ob-
jects. In PODS, 1988.

[Chomicki, 1995] Jan Chomicki. Efficient checking of tem-
poral integrity constraints using bounded history encoding.
ACM Trans. Database Syst., 20, 1995.

[De Giacomo and Rubin, 2018] Giuseppe De Giacomo and
Sasha Rubin. Automata-theoretic foundations of FOND
planning for LTLf and LDLf goals. In IJCAI, 2018.

[De Giacomo and Vardi, 2013] Giuseppe De Giacomo and
Moshe Y. Vardi. Linear temporal logic and linear dynamic
logic on finite traces. In IJCAI, 2013.

[De Giacomo et al., 2020a] Giuseppe De Giacomo, Marco
Favorito, Luca Iocchi, Fabio Patrizi, and Alessandro
Ronca. Temporal logic monitoring rewards via transduc-
ers. In KR, 2020.

[De Giacomo et al., 2020b] Giuseppe De Giacomo, Luca
Iocchi, Marco Favorito, and Fabio Patrizi. Restraining
bolts for reinforcement learning agents. In AAAI, 2020.

[Dömösi and Nehaniv, 2005] Pál Dömösi and Chrysto-
pher L. Nehaniv. Algebraic theory of automata networks:
An introduction. SIAM, 2005.

[Eiter and Kiesel, 2020] Thomas Eiter and Rafael Kiesel.
Weighted LARS for quantitative stream reasoning. In
ECAI, 2020.

[Furst et al., 1984] Merrick L. Furst, James B. Saxe, and
Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. Math. Syst. Theory, 17, 1984.

[Ginzburg, 1968] Abraham Ginzburg. Algebraic Theory of
Automata. Academic Press, 1968.

[Gorenstein et al., 2018] Daniel Gorenstein, Richard Lyons,
and Ronald Solomon. The Classification of the Finite
Simple Groups, Number 8. American Mathematical Soc.,
2018.

[Harel et al., 2000] David Harel, Jerzy Tiuryn, and Dexter
Kozen. Dynamic Logic. MIT Press, 2000.

[Icarte et al., 2018] Rodrigo Toro Icarte, Toryn Q. Klassen,
Richard Anthony Valenzano, and Sheila A. McIlraith.
Teaching multiple tasks to an RL agent using LTL. In AA-
MAS, 2018.

[Kleene, 1956] Stephen C. Kleene. Representation of events
in nerve nets and finite automata. Automata studies, 34,
1956.

[Koymans, 1990] Ron Koymans. Specifying real-time prop-
erties with metric temporal logic. Real Time Syst., 2, 1990.

[Krohn and Rhodes, 1965] Kenneth Krohn and John
Rhodes. Algebraic theory of machines. I. Prime decompo-
sition theorem for finite semigroups and machines. Trans.
Am. Math. Soc., 116, 1965.

[Manna and Pnueli, 1991] Zohar Manna and Amir Pnueli.
Completing the temporal picture. Theor. Comput. Sci., 83,
1991.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3556

[Pnueli, 1977] Amir Pnueli. The temporal logic of programs.
In FOCS, 1977.

[Ronca et al., 2018] Alessandro Ronca, Mark Kaminski,
Bernardo Cuenca Grau, Boris Motik, and Ian Horrocks.
Stream reasoning in Temporal Datalog. In AAAI, 2018.

[Ronca et al., 2022] Alessandro Ronca, Mark Kaminski,
Bernardo Cuenca Grau, and Ian Horrocks. The delay and
window size problems in rule-based stream reasoning. Ar-
tif. Intell., 306, 2022.

[Ronca, 2024] Alessandro Ronca. The Transformation Log-
ics. arXiv, 2304.09639, 2024.

[Roth et al., 2004] Charles Roth, Larry Kinney, and Eu-
gene John. Fundamentals of logic design. Thomson
Brooks/Cole, 2004.

[Torres and Baier, 2015] Jorge Torres and Jorge A. Baier.
Polynomial-time reformulations of LTL temporally ex-
tended goals into final-state goals. In IJCAI, 2015.

[Vardi, 1982] Moshe Y. Vardi. The complexity of relational
query languages (extended abstract). In STOC, 1982.

[Walega et al., 2019] Przemyslaw Andrzej Walega,
Bernardo Cuenca Grau, Mark Kaminski, and Egor V.
Kostylev. DatalogMTL: Computational complexity and
expressive power. In IJCAI, 2019.

[Walega et al., 2020] Przemyslaw Andrzej Walega,
Bernardo Cuenca Grau, Mark Kaminski, and Egor V.
Kostylev. DatalogMTL over the integer timeline. In KR,
2020.

[Walega et al., 2023] Przemyslaw Andrzej Walega, Mark
Kaminski, Dingmin Wang, and Bernardo Cuenca Grau.
Stream reasoning with DatalogMTL. J. Web Semant., 76,
2023.

[Wolper, 1983] Pierre Wolper. Temporal logic can be more
expressive. Inf. Control., 56, 1983.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3557

	Introduction
	Preliminaries
	Formal Languages
	Propositional Logic
	Semigroups and Groups

	The Transformation Logics
	Examples of Operators
	Finite Semigrouplike Operators

	Expressivity Results
	Complexity Results
	Constant-Depth and Data Complexity

	Relationship with Past LTL
	Related Work
	Conclusions

