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Abstract
Logical conflicts are likely to arise in logic-based
intelligent systems. Managing these conflicts has
been intensely studied in various parts of Artificial
Intelligence (AI). So far, the AI research commu-
nity has paid more attention to measuring the de-
gree of inconsistency of knowledge bases. The key
question we address in the present paper is how
much a given formula contributes to the inconsis-
tency of a knowledge base. Different such mea-
sures are studied and compared in a principle-based
way against the backdrop of a list of desiderata.
Two families of inconsistency measures are intro-
duced and compared with measures from the litera-
ture: one is based on the notion of problematic for-
mulas, while the other one is defined via the notion
of free formulas in knowledge bases.

1 Introduction
Inconsistency is often a prominent issue in AI-based sys-
tems, and knowledge about real-world domains is essen-
tially inconsistent. It is a common idea that some sets of
information are more inconsistent than others, or that some
pieces of information are to be considered responsible for
logical conflicts while others are not. In order to gain a
better understanding of such scenarios we need to develop
formal methods: namely inconsistency measures. A rele-
vant way of doing that is by evaluating the amount of con-
flicts in knowledge-based systems. In recent years, inconsis-
tency measurement has become a vibrant trend of research
in AI [Hunter and Konieczny, 2010; Ammoura et al., 2017;
Jabbour et al., 2016; Jabbour et al., 2017; Bona et al., 2019;
Besnard and Grant, 2020; Grant and Hunter, 2023] and
Databases [Livshits et al., 2021; Grant et al., 2021; Parisi
and Grant, 2023]. Numerous existing proposals have been
devoted to evaluate at what point a knowledge base is con-
tradictory by means of minimal inconsistent sets of that base
(see [Thimm and Wallner, 2019] for a survey).

In contrast, we see comparatively little effort to investi-
gate the quantification of the contribution of individual for-
mulas to the inconsistency of knowledge bases. In this set-
ting, minimal inconsistent sets play a crucial role to evaluate
the amount of conflicts of formulas in knowledge bases. For

a broad range of practical applications, it is becoming crucial
to evaluate the responsibility of individual information of a
given knowledge base for the inconsistency of that base. No-
tably, applications include progress indication in consistency
recovering of inconsistent knowledge bases or ranking infor-
mation for belief revision (e.g., [Ribeiro and Thimm, 2021;
Raddaoui et al., 2023]. Moreover, quantifying the contri-
bution of a formula to conflicts is desirable in databases to
ranking user query explanations as discussed in [Livshits and
Kimelfeld, 2021], and also to improving formulas clustering
[Salhi, 2020]. Another concrete example includes model-
based diagnosis where filtering out the most faulty compo-
nents of a system can be done by prioritizing the formulas
modeling such components [Konieczny et al., 2003].

In the present paper, we focus exclusively on the mea-
sures that evaluate quantitatively the involvement of individ-
ual formulas in making a knowledge base inconsistent. These
measures can take different forms. Existing proposals are
mainly defined through the notion of minimal conflicts (usu-
ally called minimal inconsistent sets). A basic measure as-
signs the number of minimal conflicts the formula belongs
to, while another metric takes also the size of these minimal
conflicts into account [Hunter and Konieczny, 2010]. A more
recent inconsistency measure employs a dual notion of mini-
mal conflicts, called minimal correction set, to quantify how
inconsistency arises in particular formulas within a knowl-
edge base [Mu, 2015]. Despite their potentially fruitful suc-
cess, these basic measures violate some intuitive properties
(e.g., monotonicity, maximality). Similarly, one may use in-
consistency measures from the literature (e.g., [Thimm and
Wallner, 2019]) to determine the marginal contribution a for-
mula makes to the inconsistency of the whole base. For in-
stance, the participation of a formula α to the conflict could be
computed by simply considering the value I(K)−I(K⊖α),
where I is a measure that quantifies the contradiction of the
entire base K. However, we will show in the sequel that
this kind of measures violate some intuitive properties (e.g.,
monotonicity) for many existing global measures I.

In the rest of the paper, we first propose a set of postulates
to systematise our comparative study. We then study several
variants of inconsistency measures based on problematic and
free formulas, some proposed in the literature and some new
ones, ultimately introducing a new one that satisfies all pro-
posed criteria. Finally, we conclude the paper and present

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3541



some directions for future work.

2 Technical Background
We consider a finite set of propositional atoms or variables
denoted by V . This set, along with the standard connectives
(¬, ∨, ∧, →) and the Boolean constants (⊤ or true and ⊥ or
false) is used in the usual way to build the propositional lan-
guage L(V). Greek letters α, β, γ, . . . will be used to denote
well-formed formulas from L(V). A literal is a propositional
variable or its negation. A clause is a disjunction of literals
C =

∨
1≤i≤n ai. From now on, we denote by ⊢ the classical

consequence relation. Two formulas α, β ∈ L(V) are said
to be logically equivalent, written as α ≡ β, if {α} ⊢ β
and {β} ⊢ α. A clause C is a prime implicate of a for-
mula α iff α ⊢ C and for every clause C ′, if α ⊢ C ′ and
C ′ ⊢ C, then C ≡ C ′ holds. We denote by PI(α) the set
of all prime implicates (i.e., set of clauses) of α. In this pa-
per, a knowledge base is a finite set of propositional formu-
las from L(V). We use K to represent the set of all knowl-
edge bases built over V . For a given knowledge base K,
we write Atoms(K) ⊆ V for the set of atoms present in K.
Given Atoms(K) = {p1, . . . , pn} and let {q1, . . . , qn} ⊆ V
be a set of atoms not occurring in Atoms(K), the notation
K[q1, . . . , qn] represents the syntactic substitution of each oc-
currence p1≤i≤n by q1≤i≤n in K. Additionally, K is incon-
sistent if there exists a formula α s.t. K ⊢ α and K ⊢ ¬α.
Otherwise, K is consistent. In what follows, we use K ⊕ α
(resp. K ⊖ α) as a shorthand for K ∪ {α} (resp. K \ {α}).
We recall below three notions employed for reasoning under
inconsistency
Definition 1. Let K ∈ K be a knowledge base. Then, a subset
of formulas M ⊆ K is a:

• minimal inconsistent subset of K iff M ⊢ ⊥ and ∀α ∈
M , M ⊖ α ̸⊢ ⊥.

• maximal consistent subset of K iff M ̸⊢ ⊥ and ∀α ∈
K \M , M ⊕ α ⊢ ⊥.

• minimal correction subset of K iff K \ M ̸⊢ ⊥, and
∀α ∈ M , (K \M)⊕ α ⊢ ⊥.

For convenience, we write ms(K), mc(K) and mi(K)
for the set of maximal consistent subsets, minimal correc-
tion subsets and minimal inconsistent subsets of K, respec-
tively. Let define mi(α,K) = {M ∈ mi(K) | α ∈ M},
ms(α,K) = {M ∈ ms(K) | α ∈ M}, and mc(α,K) =
{M ∈ mc(K) | α ∈ M}. It is straightforward to see that
mc(α,K) = {K \ M | M ∈ ms(K), α ̸∈ M}. A for-
mula α that is not part of any minimal inconsistent set of K
(i.e., mi(α,K) = ∅) is referred to as a free formula. We
denote the set of free formulas in K as free(K), in symbols
free(K) = K \

⋃
mi(K) =

⋂
ms(K). When a formula

α ∈ K is individually inconsistent, α is self-contradictory.
We denote the set of self-contradictory formulas in K as
⊥(K) = {α ∈ K | α ⊢ ⊥}. We also write prob(K) for
the set of problematic formulas (i.e., that are involved in at
least one conflict), prob(K) =

⋃
mi(K).

When a knowledge base is inconsistent, one can evaluate
quantitatively the amount of contradiction. Indeed, the field
of inconsistency measurement captures this principle through

the notion of inconsistency measure. The inconsistency
measures studied so far in the literature can be roughly split
in two classes. The first class, which we call here global in-
consistency measure1, allows for a quantification of the de-
gree of conflicts of the whole knowledge base. Whereas, the
second class, which we refer to as local inconsistency mea-
sure2, evaluates the level of responsibility of every individual
formula in producing inconsistencies in the knowledge base.
In this paper, we are interested in the second class of mea-
sures, namely designing new local inconsistency measures to
evaluate the inconsistency in propositional knowledge bases.
In the sequel, we will refer to the notion of local/global in-
consistency measure simply as local/global measure.

3 A Formal Framework for Local
Inconsistency Measures

We now present a general framework for ascribing the de-
gree of responsibility of formulas for the whole conflict of the
knowledge base. Let us first introduce formally the notion of
local inconsistency measure. Let for this K = {(ϕ,K) | K ∈
K, ϕ ∈ K}.
Definition 2. A local inconsistency measure is a function I
on K that associates a real value to each formula α in a given
knowledge base K, i.e., I : K → R+

0 ∪ {∞}.
In informal terms, every formula α is associated with a

non-negative real including ∞. Intuitively, these values rep-
resent degrees of responsibility of individual formulas to the
overall conflicts, with 0 for free formulas, and so on. Briefly
put, the intuition behind a local measure I is that the stronger
the involvement of a formula α in the production of inconsis-
tencies in K, the higher the value I(α,K).

3.1 Rationality Postulates
We begin this subsection by providing a set of meaningful
properties a reasonable local measure should have. As is
often the case with sets of formal postulates, they are hard
to ultimately justify, they largely rely on pre-theoretic intu-
itions, and exhaustiveness is hard to reach, which is why
we consider our set as merely providing a prima facie nor-
mative framework. Sometimes, a set of intuitive principles
turns out as not being mutually satisfiable: as we will see,
while most proposed measures sub-perform, we ultimately
identify a candidate that satisfies them all (see Table 1 for
an overview). Besides providing normative guidance, postu-
lates help to comparatively study and systematize measures
(see also [Hunter and Konieczny, 2010; Besnard, 2014] in the
context of global measures). Since intuitive appeal behind the
postulates should be largely self-explanatory we just list them
without much commentary:

• Syntax-Independence. I(α,K) =
I(α[q1, . . . , qn],K[q1, . . . , qn]) for every set
{q1, . . . , qn} ⊆ V s.t. Atoms(K) ∩ {q1, . . . , qn} = ∅.

1A global measure is formally defined as a function I : K →
R+

0 ∪ {∞} that maps every knowledge base K to a non-negative
real value such that I(K) = 0 if prob(K) = ∅.

2Local inconsistency measures are also called inconsistency val-
ues in [Hunter and Konieczny, 2010] and culpability measures in
[Ribeiro and Thimm, 2021].
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The Syntax-Independence states that the variables’
names do not play any role in quantifying inconsistency.

• Logical Invariance. If α ≡ β, then I(α,K) = I(β,K)
for every α, β ∈ K.
This principle stipulates that logical equivalent formulas
contribute equally to the inconsistency of K.

• Blameless.3 If prob(K) = ∅, then I(α,K) = 0 for all
α ∈ K.
This basic postulate states that the degree of inconsis-
tency of formulas in a consistent knowledge base is 0.

• Guiltless. For every α ∈ prob(K), I(α,K) > 0.
This requirement ensures that problematic formulas con-
tribute always in the inconsistency of K.

• Monotonicity. For every α ∈ K, I(α,K) ≤ I(α,K ⊕
β).

• Strict Monotonicity. For every α ∈ K, if mi(α,K) ⊂
mi(α,K ⊕ β), then I(α,K) < I(α,K ⊕ β).
The (strict) monotonicity property says that the amount
of conflict of an individual formula can only grow when
expanding the knowledge base by new information.

• Free Formula Independence. For every α ∈ K, if β ∈
free(K ⊕ β), then I(α,K) = I(α,K ⊕ β).
This property expresses that adding a formula not caus-
ing any contradiction cannot change the inconsistency
value of formulas in K.

• Minimality. (see [Hunter and Konieczny, 2010]) If α ∈
free(K), then I(α,K) = 0.
This property states that non problematic formulas are
free from inconsistency.

• Maximality.4 If α ∈ ⊥(K), then I(α,K) ≥ I(β,K)
for all β ∈ K.
This property ensures that self-contradictory formulas
are crucially regarded as the most conflicting pieces of
information.

• Centrality Conflict.5 For all α, β ∈ K, if K ⊖ α ̸⊢ ⊥
and K ⊖ β ⊢ ⊥, then I(α,K) > I(β,K).
This postulate states that a formula belonging to all min-
imal inconsistent sets involves a higher degree of incon-
sistency than any formulas in K.

• Dominance.6 If α ⊢ β with α ∈ K \ ⊥(K), then
I(α,K) ≥ I(β,K ⊖ α⊕ β).

• Conjunctive Dominance. If α ∧ β /∈ K and α ∈ K,
then I(α,K) ≤ I(α ∧ β,K ⊖ α⊕ α ∧ β).

3This property is called Consistency in [Hunter and Konieczny,
2010].

4A similar property, named Maximal Contradiction, is studied in
[Grant and Hunter, 2017] for global inconsistency measures. An-
other similar property, coined self-contradiction [Matt and Toni,
2008], used in argumentation to ranking self-attacking arguments
lower than any other arguments.

5A similar property has been pointed out in [Raddaoui et al.,
2023] to rank formulas.

6The original version of Dominance property is defined by
[Hunter and Konieczny, 2008].

• Weak Dominance. If PI(β) ⊆ PI(α) and α ∈ K \
⊥(K), then I(β,K ⊖ α⊕ β) ≤ I(α,K).
The last three properties ensure, under various condi-
tions, that the substitution of consistent formulas with
weaker ones does not lead to an increase in conflict.
Note that these postulates are intended to offer guidance
for a better understanding of local measures by facilitat-
ing a comparison between them based on precise formal
properties (see Table 1). Additionally, these postulates
specify intuitive desiderata and potentially help devising
new measures that satisfy sets of principles for which no
previous measures are known to jointly satisfy them as
shown in the subsequent sections.

The following proposition shows that Weak Dominance
ensues from the Dominance property.

Proposition 1. Given a local measure I, if I satisfies Dom-
inance, then I satisfies Weak Dominance. However, the con-
verses is not true.

The next result ensures that the previous postulates can be
satisfied all together by a local inconsistency measure.

Proposition 2. The properties Syntax Independence, Blame-
less, Guiltless, Logical Invariance, Monotonicity, Strict
Monotonicity, Free Formula Independence, Minimality, Max-
imality, Dominance, Conjunctive and Weak Dominance are
compatible.

3.2 A Closer Look at Existing Local Measures
Minimal inconsistent sets typically serve as the cornerstone to
quantify conflicts in knowledge bases, and numerous global
measures are very much tied to this notion. To date, rela-
tively few methods have been introduced in the literature to
evaluate the degree of inconsistency of formulas and no mea-
sure has a canonical status7. We next recall from [Hunter and
Konieczny, 2010; Mu, 2015] the three local measures Id, Imi

and I# mainly relying on minimal inconsistent sets, and the
last one, Idr, based on minimal correction sets (see Figure 1).

The drastic measure Id discriminates only between free
(with degree 0) and problematic (with degree 1) formulas.
The local measure I# counts the number of minimal incon-
sistent sets the formula α occurs in, while Imi considers in
addition the size of each of these minimal inconsistent sets
[Hunter and Konieczny, 2010].
Now, we make some observations about these aforemen-
tioned local measures. We start by noticing that the measures
Id, I# and Imi are the most popular and mainly built upon
the notion of minimal conflicts to quantify the contribution of
each formula to the whole inconsistency. In contrast, it turns
out that I# and Imi violate the maximality postulate, which
is a shortcoming. What we are aiming here for a new class of
local measures that consider self-contradictory formulas the
most conflictual ones. Our central aim in this paper is also to
investigate local measures that take into account all possible

7Some local measures have been studied for prioritized knowl-
edge bases by [Mu et al., 2012] and are out of the scope of this
paper.
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Id(α,K) =

{
0 if |mi(α,K)| = 0
1 otherwise. Idr(α,K) =

{
max{ 1

|M | ,M ∈ mc(α,K)} if mc(α,K) ̸= ∅
0 otherwise.

Imi(α,K) =
∑

M∈mi(α,K)

1

|M |
I#(α,K) = |mi(α,K)|

Figure 1: Existing local inconsistency measures

participation of individual formulas in generating conflicts in
the knowledge base.

The fourth local measure Idr [Mu, 2015], as depicted in
Figure 1, is defined based on the concept of minimal correc-
tion sets. Again, it is worth mentioning that this measure can
exhibit unintuitive results. We use the next examples to illus-
trate this issue.
Example 1. K = {p,¬p,¬q, p ∧ q} has three minimal cor-
rection sets: {p, p ∧ q}, {¬p, p ∧ q}, and {¬p,¬q}. p and
¬p are equally responsible for the conflict: Idr(p,K) =
Idr(¬p,K) = 1/2. However, one may find this unsatisfac-
tory because ¬p conflicts with p and p ∧ q. While, p occurs
in only one minimal inconsistent set, i.e., {p,¬p}.
Example 2. Let K = {p,¬p, q}. Then, we have Idr(p,K) =
1. Consider the base K′ = K ∪ {¬q}, we have Idr(p,K) =
1 ̸≤ Idr(p,K′) = 1/2, in violation of monotonicity.
Example 3. Let K = {p,¬p}, α = p, and β = ¬p∧q. Then,
Idr(α,K) = Idr(α,K⊕ β) = 1. Thus, Idr violates the strict
monotonicity.

Another approach to estimate the conflict of formulas is de-
fined on the basis of global measures. Basically, a first local
measure following this idea is the one based on the Shapley
value [Hunter and Konieczny, 2010], and it is defined as fol-
lows.
Definition 3. Let K ∈ K s.t. |K| = n, α ∈ K and let I be
a global measure. The Shapley inconsistency value w.r.t. I,
denoted by SI

K, is defined as:

S
I
K(α) =

∑
∅̸=Φ⊆K

(m − 1)!(n − m)!

n!
(I(Φ) − I(Φ ⊖ α))

where m = |Φ|, and I(Φ) = |mi(Φ)|.
What is remarkable with the measure I(K) = |mi(K)| is

that the induced Shapley value SI
K coincides with the local

measure Imi [Hunter and Konieczny, 2010]. The next exam-
ple shows that the (weak) dominance postulate is unsatisfiable
for the Shapley inconsistency value SI

K.
Example 4. Let K = {p∧q∧r∧s∧t,¬p, p∨¬q, p∨¬r, p∨
¬s, p∨¬t}. Let α = p∧q∧r∧s∧t and β = q∧r∧s∧t. We
have α ⊢ β, I#(α,K) = 1 ̸≥ I#(β,K ⊖ α⊕ β) = 4. In the
same way, SI

K(α,K) = 1/2 ̸≥ SI
K(β,K⊖α⊕β) = 4× 1/3 =

4/3. This is an example of the violation of dominance and
weak dominance for I# and SI

K.
The second idea for measuring inconsistency is based on

the marginal contribution a formula makes to the inconsis-
tency of K. Generally speaking, the degree of conflict of
a formula α is the global measure of the base minus the
global measure of that base when removing α, i.e., I(α,K) =

I(K) − I(K ⊖ α). A significant research effort so far has
been devoted to quantify the conflict of knowledge bases
(see [Thimm and Wallner, 2019; Bona et al., 2019] for an
overview). Note that despite this plethora of global incon-
sistency measures, it is still not fully understood how these
measures could be used to efficiently attribute the level of in-
consistency to individual formulas. Specifically, applying an
arbitrary global measure to define a local measure could lead
to unintuitive results as shown in Section 4.

Additionally, while all of the above local measures have
potentially fruitful success, none of them can be considered
as appropriate for quantifying the amount of contradiction
brought by individual formulas in all scenarios. This is why it
is necessary to continue investigation of more elaborate local
measures. We propose in the next section new local measures
to pave the way towards a robust quantification of the partic-
ipation of formulas to the overall inconsistency.

4 Towards New Classes of Local Measures
As argued in the introduction, there is a need for a quantitative
consistency metric that discriminates amongst individual for-
mulas in knowledge bases. Unlike previous efforts on local
measures, we strive in this section to devise more satisfactory
measures to estimate the level of responsibility of each for-
mula to the overall inconsistency, evaluated in terms of the
postulates defined in Subsection 3.1.

4.1 Problematic-based Local Measures
As mentioned earlier, we can use a global measure from
the literature to quantify the marginal contribution an indi-
vidual formula makes to the inconsistency of a knowledge
base. In this subsection, we use the global measure Iprob,
defined in [Grant and Hunter, 2011] as the number of formu-
las in minimal inconsistent sets of the knowledge base (i.e.,
I(K) = |prob(K)|). Then, the induced local measure can be
defined as follows.
Definition 4. Where α ∈ K let define the problematic-based
local measure of α, denoted Iprob, as follows:

Iprob(α,K) =

{
|prob(K)| − |prob(K ⊖ α)| if α ̸∈ ⊥(K)
∞ otherwise.

Intuitively, the Iprob measure counts the number of prob-
lematic formulas that become free when removing the for-
mula α from K, by including α itself. In other words, Iprob
considers the formulas that are problematic solely due to α
(in signs, |prob(K)| − |prob(K ⊖ α)|). The trade-off is the
greater this number of formulas, the higher is the participa-
tion of the formula α to make the base K inconsistent. At
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this point, Proposition 3 states that Iprob can be characterized
directly in terms of minimal inconsistent sets.
Proposition 3. Given a knowledge base K s.t. α ∈ K\⊥(K),
the following result holds:

Iprob(α,K) = |{β ∈ prob(K) | mi(β,K) ⊆ mi(α,K)}|

The local measure Iprob satisfies the following logical
properties.
Proposition 4. Iprob satisfies Syntax-Independence, Blame-
less, Guiltless, Logical Invariance, Free Formula Indepen-
dence, Centrality Conflict, and Minimality.

Example 5. Let K = {p,¬p ∧ q}, α = p and β = ¬q. We
have Iprob(α,K) = 2. Now in K ⊕ β, we have Iprob(α,K ⊕
β) = 1 < Iprob(α,K). This example shows that Iprob does
not satisfy monotonicity and strict monotonicity.
Example 6. Let K = {p ∧ q ∧ r,¬p,¬p ∨ ¬q, p ∨ ¬r}, α =
p∧q∧r and β = q∧r. Obviously, α ⊢ β and PI(β) ⊆ PI(α).
We have Iprob(α,K) = 2 − 0 = 2, while Iprob(α,K ⊖ α ⊕
β) = 4 − 0 = 4, here a violation of dominance and weak
dominance.

Noticeably, the two local measures Imi and Iprob look like
reproducing, at a first glance, the same behavior in the sense
that for α, β ∈ K, Iprob(α,K) ≤ Iprob(β,K) iff Imi(α,K) ≤
Imi(β,K). However, this property does not hold in general as
shown in the following example.
Example 7. Consider K = {p,¬p, q,¬q ∨ r,¬r}. Clearly,
K has two minimal inconsistent sets, namely {p,¬p} and
{q,¬q ∨ r,¬r}. Then, we have Iprob(p,K) = 2 <
Iprob(q,K) = 3, but Imi(p,K) = 1/2 > Imi(q,K) = 1/3.

Recall that the local measure Iprob is too restrictive since it
considers only the formulas of the minimal conflicts of α that
do not appear in any other minimal inconsistent sets of K. To
make a more generalized version of this problematic-based
measure, we present below a second more accurate variant of
Iprob.
Definition 5. Where α ∈ K let define the extended
problematic-based local measure of α, denoted I+

prob, is de-
fined as:

I+
prob(α,K) =

{
|
⋃
mi(α,K)| if α /∈ ⊥(K)

∞ otherwise.

Intuitively, the local measure I+
prob computes all formulas

contained in any minimal inconsistent set that also involves
α. Note that in contrast to Iprob, this measure satisfies (strict)
monotonicity and centrality conflict. Nevertheless, the domi-
nance postulate remains unsatisfiable.
Example 8. Consider K = {p,¬q,¬p ∧ q}. Clearly, K has
two minimal inconsistent sets: {p,¬p∧ q} and {¬q,¬p∧ q}.
Then, Iprob(p,K) = 3− 2 = 1, however I+

prob(p,K) = 2.

Example 8 shows that, unlike Iprob, I+
prob only considers

those problematic formulas which are relevantly conflicting
relative to p: ¬q does not matter in the computation of I+

prob.
Note that, differently from Iprob, the (strict) monotonicity
property holds for the I+

prob local measure.

Proposition 5. The local measure I+
prob satisfies Syntax-

Independence, Blameless, Guiltless, Logical Invariance,
Monotonicity, Strict Monotonicity, Free Formula Indepen-
dence, Centrality Conflict, Minimality and Maximality.

Proof excerpt. Monotonicity. Since mi(α,K) ⊆ mi(α,K ⊕
β),

⋃
M∈mi(α,K) M ⊆

⋃
M∈mi(α,K⊕β) M . Then,

I+
prob(α,K) ≤ I+

prob(α,K ⊕ β).
Strict Monotonicity. If mi(α,K) ⊂ mi(α,K ⊕ β), then

β ̸∈
⋃

M∈mi(α,K) M and β ∈
⋃

M∈mi(α,K⊕β) M . Moreover,
since

⋃
M∈mi(α,K) M ⊆

⋃
M∈mi(α,K⊕β) M , we conclude that

I+
prob(α,K) < I+

prob(α,K ⊕ β).

Nevertheless, the I+
prob measure violates the dominance

property. In fact, weakening a formula can give rise to the
appearance of new conflicts in a knowledge base. This is a
trivial reason behind the violation of the (conjunctive/weak)
dominance property.

Example 9. Let K = {p ∧ q ∧ r,¬p, p,¬q, p ∨ ¬r}, α =
p ∧ q ∧ r and β = q ∧ r. We have α ⊢ β, PI(β) ⊆ PI(α),
I+
prob(α,K) = 3 and I+

prob(β,K⊖α⊕β) = 4. Consequently,
I+
prob(α,K) < I+

prob(β,K). This shows that dominance and
weak dominance are violated for I+

prob.

Example 10. Let K = {q∧r,¬p, p¬q, p∨¬r} and α = q∧r.
We have I+

prob(α,K) = 4. Let β = p. Then, I+
prob(α∧β,K⊖

α⊕α∧β) = 3, illustrating a failure of conjunctive dominance
for I+

prob.

To overcome issues with weak and conjunctive dominance,
we propose to extend the I+

prob measure by considering the
formulas that conflict with α both directly and indirectly.
More specifically, the new local measure IPI introduced be-
low considers all the formulas that participate explicitly and
implicitly to create conflicts in the knowledge base. This can
be achieved under special consideration of prime implicates.

Definition 6. Where α ∈ K we define the prime implicate
based conflict set of α in K as: ConfPI(α,K) =

⋃
{M ⊆

K ⊖ β | PI(β) ⊆ PI(α),M ⊕ β ∈ mi(β,K ⊕ β)}. Then,
the prime implicate-based local measure of α, denoted IPI, is
defined as:

IPI(α,K) =

{
|ConfPI(α,K)| if α /∈ ⊥(K)
|K| otherwise.

Let us note that requiring that PI(β) ⊆ PI(α) allows us to
avoid blaming innocent formulas. In fact, we cannot consider
the condition α ⊢ β instead of PI(β) ⊆ PI(α). For instance,
if we consider K = {p,¬p, q}, we have IPI(p) = 1, while if
we were to replace PI(β) ⊆ PI(α) by α ⊢ β, we would also
have to consider p ⊢ p∨¬q and thus the less relevant conflict
{p ∨ ¬q,¬p, q} leading to an inconsistency value for p of 2.

Proposition 6. The local measure IPI satisfies Syntax-
Independence, Blameless, Guiltless, Logical Invariance,
Monotonicity, Strict Monotonicity, Minimality, Maximality,
Minimality, Dominance, Conjunctive, and Weak Dominance.
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Principles MI/MC Problematic IPI Ifree I℘Id I# SI
K Idr Iprob I+

prob

Syntax-Independence
√ √ √ √ √ √ √ √ √

Blameless
√ √ √ √ √ √ √ √ √

Guiltless
√ √ √ √ √ √ √ √ √

Logical Invariance
√ √ √ √ √ √ √ √ √

Monotonicity
√ √ √

⊗ ⊗
√ √ √ √

Strict Monotonicity ⊗
√ √

⊗ ⊗
√ √

⊗
√

Free Formula Independence
√ √ √ √ √ √

⊗
√ √

Centrality Conflict ⊗
√ √ √ √ √

⊗ ⊗
√

Minimality
√ √ √ √ √ √ √ √ √

Maximality
√

⊗ ⊗
√ √ √ √ √ √

Dominance
√

⊗ ⊗
√

⊗ ⊗ ⊗
√ √

Conjunctive Dominance
√

⊗ ⊗
√

⊗ ⊗
√ √ √

Weak Dominance
√

⊗ ⊗
√

⊗ ⊗
√ √ √

Table 1: Postulates for local inconsistency measures:
√

indicates satisfaction and ⊗ dissatisfaction of a property. We list counter-examples,
where applicable.

Proof excerpt. Weak dominance. Let α ∈ K and PI(β) ⊆
PI(α). Then, one can show that

⋃
({M ⊆ (K ⊖ α ⊕ β) ⊖

γ | PI(γ) ⊆ PI(β)M ⊕ γ ∈ mi(γ,K ⊖ α ⊕ β ⊕ γ)} ⊆⋃
({M ⊆ K ⊖ γ | PI(γ) ⊆ PI(α)M ⊕ γ ∈ mi(γ,K ⊕ γ)}.

Consequently, IPI(β,K) ≤ IPI(α,K).

Example 11. Let K = {p∧ q∧ r,¬p, p∨¬q∨¬r}, α = p∧
q ∧ r and β = q ∧ r. There is no subset M ⊆ K that conflicts
β. Now, let M = {¬p, p ∨ ¬q ∨ ¬r}. Clearly, M ⊂ K ⊖ β.
Moreover, PI(β) ⊆ PI(α) and M ⊕ β ∈ mi(β,K ⊕ β).
By Definition 6, all the formulas of M are considered in the
computation of the inconsistency value of α. This illustrates
a violation of the free formula independence, since p ∨ ¬q ∨
¬r ∈ free(K).

The next example shows the independence of dominance
and conjunctive dominance properties.

Example 12. Let K = {p,¬p, q} and α = p. We have
IPI(α,K) = 1. Let β = p ∨ ¬q. We have α ⊢ β
and IPI(β,K ⊖ α ⊕ β) = 2 since K ⊖ α ⊕ β = {p ∨
¬q,¬p, q} consisting of a single minimal inconsistent set.
Thus, IPI(α,K) < IPI(β,K). So, IPI violates the domi-
nance postulate.

Next, we propose a new class of local measures that sat-
isfy at least the free formula independence, monotonicity, and
dominance postulates. Moreover, we prove in our principle-
based study (Table 1) that one of our new measures, named
I℘, satisfies all the proposed criteria.

4.2 Freeness and Conflict-based Local Measures
We now move on to the second class of local measures. To
start this, let us first recall that free formulas belong to all
maximal consistent sets of the knowledge base. Clearly, the
contraction of free formulas leaves the set of minimal incon-
sistent sets, and thus the set of problematic formulas, of the
original base unchanged. Then, the contribution of a (non-
free) formula α to the overall conflict of a knowledge base K
can be measured by its impact on the “freeness” when α is re-
tracted from K. Based on this observation, a way to compute
the inconsistency of a formula is to evaluate the cost required

to make it free while maximizing the remaining problematic
formulas of K. In other words, we determine the number of
problematic formulas that remain in K after the removal of
a minimal subset of formulas from K to make α free. This
allows us to quantify the portion of conflicts in K that depend
essentially on the presence of α in K. It gives rise to the local
measure Ifree defined as follows.

Definition 7. Where α ∈ K we define the freeness-based
measure of α, denoted Ifree:

Ifree(α,K) =


minM⊆prob(K)\{α}

α∈free(K\M)

|M | if α /∈ ⊥(K)

|prob(K)| otherwise.

In words, the local measure Ifree assesses the cost associ-
ated with making α free (i.e., resolving conflicts within α) in
K. Now, we provide a characterization of the Ifree measure
through the notion of conflict-hitting-set.

Where α ∈ K we let M ⊆ prob(K) \ {α} be a conflict-
hitting-set (CHS, for short) for α in K iff for every M ′ ∈
mi(α,K), M ′ ∩M ̸= ∅. A CHSM for α in K is minimal iff
|M | is minimal among all CHSs for α in K.

Fact 1. Let α ∈ K\⊥(K). Then, there is a minimal CHS for
α in K.

Proposition 7. Let α ∈ K \ ⊥(K). Then, Ifree(α,K) = |M |
for any minimal CHS M for α in K.

Proof. Let M be a minimal CHS for α in K and let N ⊆
prob(K)\{α} be such that α ∈ free(K\N) and Ifree(α,K) =
|N |. Then, M ⊆ prob(K) \ {α}. Assume for a contraction,
that α /∈ free(K \M). So, there is an M ′ ∈ mi(α,K \M).
But then M ′ ∈ free(α,K) and so M ∩ M ′ ̸= ∅, which is a
contraction. So, α ∈ free(K \M) and hence, |N | ≤ |M | by
the minimality of N .

We now show that N is a CHS for α in K. Let for this
M ′ ∈ mi(α,K). Assume for a contradiction that M ′∩N = ∅.
But then M ′ ∈ mi(α,K\N) and so α /∈ free(K\N). This is
a contradiction. So N is a CHS for α in K. By the minimality
of M therefore |M | ≤ |N |. Altogether |M | = |N |.
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Proposition 8. Let α ∈ K \ ⊥(K). Then, we have:

Ifree(α,K) = |prob(K)| − max
M⊆prob(K)\{α}
α∈free(K\M)

|prob(K) \M |

Proposition 9. Ifree satisfies Syntax-Independence, Blame-
less, Guiltless, Logical Invariance, Monotonicity, Free For-
mula Independence, Maximality, Minimality, Dominance,
Conjunctive Dominance, and Weak Dominance.

Proof excerpt. Monotonicity. Let α ∈ ⊥(K ∪ K′). Then,
Ifree(α,K) ≤ |prob(K)| ≤ |prob(K∪K′)| = Ifree(α,K∪K′).
Let α ∈ K \ ⊥(K ∪ K′). So, by Proposition 7, Ifree(α,K ∪
K′) = |M | for some minimal CHSM for α in K ∪K′. Note
that mi(α,K) ⊆ mi(α,K ∪ K′), and therefore M is also an
CHS for α in K. Thus, by Proposition 7, Ifree(α,K) ≤ |M |.

Dominance. Let α ⊢ β and α ⊬ ⊥. Let M ∈ mi(β,K ⊖
α ⊕ β). So, M ⊢ ⊥ and since α ⊢ β also M ⊖ β ⊕ α ⊢
⊥. Also, M ⊖ β ⊬ ⊥. So, there is a M ′ ⊆ M such that
M ′ ⊕ α ∈ mi(α,K). Thus, for every CHS M for α in K,
there is an M ′ ⊆ M that is an CHS for β in K ⊖ α ⊕ β.
So, where M is a minimal CHS for β in K ⊖ α ⊕ β and
M ′ is a minimal CHS for α in K, |M | ≤ |M ′. By Prop. 7,
Ifree(β,K ⊖ α⊕ β) ≤ Ifree(α,K).

Conjunctive Dominance. Let α ∈ K. Note that where
N ∈ mi(α,K), N ⊖ α ⊕ α ∧ β ⊢ ⊥ and N ⊖ α ⊬ ⊥. So,
there is a N ′ ⊆ N ⊖ α such that N ′ ⊕ α ∧ β ∈ mi(α ∧
β,K ⊖ α ⊕ α ∧ β). This implies that every CHS for α ∧ β
in K ⊖ α ⊕ α ∧ β is also a CHS for α in K. Thus, where M
is a minimal CHS for α in K and M ′ is a minimal CHS for
α ∧ β in K ⊖ α ⊕ α ∧ β, |M | ≤ |M ′|. By Proposition 7,
Ifree(α,K) ≤ Ifree(α ∧ β,K ⊖ α⊕ α ∧ β).

Example 13. Let K = {p, q∧ q′,¬(p∧ q),¬(p∧ q′)}. Then,
K ⊖ p ⊬ ⊥ and K ⊖ ¬(p ∧ q) ⊢ ⊥. Nevertheless, Ifree(p) =
1 = Ifree(¬(p ∧ q)) in violation of centrality conflict.

Interestingly, we show next that there is a local measure
that satisfies all the postulates considered in this paper. Intu-
itively, our measure can be considered in the spirit of the pre-
vious prime implicate-based measure. It takes into account
all consistent subsets involved in generating conflicts with the
formula α.
Definition 8. Let Conf(α,K) = {M ⊆ K ⊖ α | (∃M ′ ⊆
M)M ′ ⊬ ⊥ and M ′ ⊕ α ⊢ ⊥} and ℘(K) the powerset of K.
The conflict-based local measure, denoted I℘, is defined as:

I℘(α,K) =
|Conf(α,K)|

|℘(K)|

Intuitively, the set Conf(α,K) considers all consistent sets
of formulas in K that conflict with α. Since this leads to dou-
ble counting (in terms of also computing strict supersets of
sets conflicting with α), we normalize by dividing through the
size of the powerset of K. Now, one can rewrite the conflict-
based local measure as:

I℘(α,K) =
|Conf(α,K \ free(K))|

|℘(K \ free(K))|

Proposition 10. The local measure I℘ satisfies Syntax-
Independence, Blameless, Guiltless, Logical Invariance,

Monotonicity, Strict Monotonicity, Free Formula Indepen-
dence, Minimality, Maximality, Centrality Conflict, Domi-
nance, Conjunctive Dominance, and Weak Dominance.

Proof excerpt. Monotonicity. We note that Conf(α,K) ⊆
{M ⊕ β | M ∈ Conf(α,K)} ∪ Conf(α,K) ⊆ Conf(α,K ⊕
β) and so I℘(α,K) = |Conf(α,K)|

|℘(K)| = 2·|Conf(α,K)|
2·|℘(K)| =

|Conf(α,K)|+|{M⊕β|M∈Conf(α,K)}|
|℘(K⊕β)| ≤ |Conf(α,K⊕β)|

|℘(K⊕β)| =

I℘(α,K ⊕ β).
Strict Monotonicity. Suppose mi(α,K) ⊂ mi(α,K ⊕ β).

Thus, β /∈ K. Since Conf(α,K) ⊆ Conf(α,K⊕β) and there
is a M ∈ Conf(α,K ⊕ β) for which β ∈ M , Conf(α,K) ⊆
{M ⊕ β | M ∈ Conf(α,K)} ∪ Conf(α,K) ⊂ Conf(α,K ⊕
β). So, I℘(α,K) = |Conf(α,K)|

|℘(K)| = 2·|Conf(α,K)|
2·|℘(K)| =

|Conf(α,K)|+|{M⊕β|M∈Conf(α,K)}|
|℘(K⊕β)| < |Conf(α,K⊕β)|

|℘(K⊕β)| =

I℘(α,K ⊕ β). So, I℘(α,K) < I℘(α,K ⊕ β).
Centrality Conflict. Suppose α, β ∈ K, K ⊖ α ⊬ ⊥ and

K ⊖ β ⊢ ⊥. We note that Conf(β,K) = {M ∈ Conf(β,K) |
α ∈ M} ∪ {M ∈ Conf(β,K) | α /∈ M}. Since K ⊖ α ⊬ ⊥,
{M ∈ Conf(β,K) | α /∈ M} = ∅ and so Conf(β,K) =
{M ∈ Conf(β,K) | α ∈ M}.

We now show that for every M ∈ Conf(β,K), M ⊖ α ⊕
β ∈ Conf(α,K) and therefore |Conf(α,K)| ≥ |Conf(β,K)|.
Let M ∈ Conf(β,K). So, there is a M ′ ⊆ M for which
M ′⊕β ⊢ ⊥ while M ′ ⊬ ⊥. So, α ∈ M ′, M ′⊖α, β ⊬ ⊥ and
M ′⊖α⊕β⊕α ⊢ ⊥ and therefore M⊖α⊕β ∈ Conf(α,K).

We also note that K⊖α⊖β⊕α ⊢ ⊥ while K⊖α⊖β ⊬ ⊥
and therefore K ⊖ β ∈ Conf(α,K). So, |Conf(α,K)| ≥
|{K ⊖ β}| + |{M ⊖ α ⊕ β | M ∈ Conf(β,K)}| >
|Conf(β,K)|. Thus, I℘(α,K) > I℘(β,K).

Maximality. Suppose α ∈ ⊥(K). So, Conf(α,K) =
℘(K ⊖ α). For every β ∈ K, Conf(β,K) ⊆ ℘(K ⊖ β).
So, I℘(α,K) = |℘(K⊖α)|

|℘(K)| = 1
2 ≥ |Conf(β,K)|

|℘(K)| = I℘(β,K).
Dominance. Suppose α ⊢ β and let n = |℘(K)|. Let M ∈

Conf(β,K⊖α⊕β). So, M ⊆ K⊖α⊖β and there is a M ′ ⊆
M for which M ′ ⊬ ⊥ and M ′⊕β ⊢ ⊥. So, M ′⊕α ⊢ ⊥ and
so M ∈ Conf(α,K). Thus, |Conf(α,K)| ≥ |Conf(β,K ⊖
α⊕ β)| and so I℘(α,K) = |Conf(α,K)|

n ≥ |Conf(β,K⊖α⊕β)|
n =

|Conf(β,K⊖α⊕β)|
|℘(K⊖α⊕β)| = I℘(β,K ⊖ α⊕ β).

5 Concluding Remarks
In this paper, we have analysed existing and new local incon-
sistency measures in the propositional logic setting by means
of a postulate-based evaluation and comparison. We investi-
gated several rationales to local measures, based on free and
problematic formulas. Ultimately, we identified one measure,
I℘ that outperforms previous attempts by satisfying all pre-
sented postulates.

Our paper opens potentially fruitful future research: we
will investigate characterization results for postulate-based
studies of local measures, the relation between local and
global measures (e.g. issues of interdefinabilitiy) as well as
applications of local measures, e.g., in the context of belief
revision and deontic logic.
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