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Abstract
We develop a fixed-parameter tractable (FPT)
algorithm for skeptical preferred reasoning in
assumption-based argumentation (ABA). To this
end we make use of so-called backdoors, i.e., sets
of assumptions that need to be evaluated s.t. the
remaining ABA framework (ABAF) belongs to a
computationally beneficial sub-class. In order to
identify such target classes, we employ a suitable
notion of a dependency graph of an ABAF. We
show that these graphs can be constructed in poly-
nomial time and that one can efficiently check suf-
ficient properties ensuring that reasoning in the un-
derlying ABAF is tractable. After establishing the
theoretical foundations, we test our implementation
against the ASPforABA solver which convincingly
won the ABA track of the ICCMA’23 competition.
As it turns out, our algorithm outperforms ASP-
forABA on instances with small backdoor sizes.

1 Introduction
Computational models of argumentation [Baroni et al., 2018]
play a central role in non-monotonic reasoning and have a
wide range of applications in various fields such as law and
healthcare [Atkinson et al., 2017]. A well-known computa-
tional model of argumentation are so-called abstract argu-
mentation frameworks, introduced by Dung [Dung, 1995].
In this work, Dung formalizes that a debate can be repre-
sented and evaluated by viewing arguments as atomic enti-
ties and attacks as a relation between them. This way, the
discussion is represented as a directed graph F = (A,R)
where A is a set of arguments and R ⊆ A × A the attack
relation. To study an AF in the field of formal argumenta-
tion, the notion of semantics was introduced, mapping an AF
to sets of jointly acceptable arguments [Baroni et al., 2011].
Several aspects of AFs have been studied extensively in the
literature, e.g. enforcing arguments [Wallner et al., 2017;
Niskanen et al., 2018], belief revision [Falappa et al., 2009;
Haret et al., 2018], repairing a semantical collapse [Baumann
and Ulbricht, 2019], or the role of formal argumentation for
explainability in AI [Cyras et al., 2021].

Since an AF F = (A,R) can be interpreted as a directed
graph, researchers make use of graph-theoretical properties

in order to study computationally beneficial argumentation
scenarios. For instance, the theoretical computational com-
plexity has not only been studied extensively for AFs in gen-
eral [Dvorák and Dunne, 2018], but also for sub-classes like
e.g. i) AFs without odd-length cycles (odd-cycle free AFs), ii)
AFs without even-length cycles (no-even AFs), iii) AFs with-
out any cycle whatsoever (acyclic AFs). Moreover, means to
compute models of F step-wise have been studied [Baroni et
al., 2005; Baumann, 2011; Baumann et al., 2020].

Another line of research is concerned with so-called
fixed-parameter tractability (FPT) for reasoning problems
in AFs [Dunne, 2007; Dvorák et al., 2012b; Dvorák et al.,
2022a] or e.g. probabilistic AFs [Liao et al., 2018]. The idea
is to identify a suitable parameter s.t. a given intractable prob-
lem becomes tractable whenever the parameter does not ex-
ceed a certain bound. In [Dvorák et al., 2012a] the notion of
backdoors has been considered: e.g. an acyclic backdoor is a
set of argument s.t. their removal from the graph results in an
acyclic AF. The authors show that, if the size of the smallest
acyclic backdoor is bounded, then many important reasoning
problems for AFs become tractable [Dvorák et al., 2012a],
i.e., these problems are FPT. This procedure has recently also
been lifted to argumentation frameworks with collective at-
tacks (SETAFs) [Dvorák et al., 2022b].

One key aspect in the argumentation pipeline is the use of
structured argumentation formalisms [Besnard et al., 2014],
which are employed to outline formal argumentative work-
flows from building blocks. Prominent approaches include
assumption-based argumentation (ABA) [Bondarenko et al.,
1997], ASPIC+ [Modgil and Prakken, 2013], defeasible logic
programming DeLP [Garcı́a and Simari, 2004], and deductive
argumentation [Besnard and Hunter, 2008]. The reasoning
process within these formalisms typically involves creating
argument structures and identifying conflicts among them in a
systematic manner from rule-based knowledge bases. The re-
sulting arguments and conflicts can be captured by construct-
ing a suitable AF. This AF can be utilized to determine the
acceptability of arguments and draw conclusions based on the
original knowledge bases.

In this paper, we focus on ABA as it is one of the key
structured argumentation formalisms [Čyras et al., 2018].
While the theoretical computational complexity of reason-
ing in ABA has also been investigated [Dvorák and Dunne,
2018] and solvers have been designed [Lehtonen et al., 2021;
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Lehtonen et al., 2023], the study of FPT algorithms is not yet
as extensive as in the case of AFs (one exception is a recent
dynamic programming approach based on a bounded tree-
width [Popescu and Wallner, 2023]). Since an ABA knowl-
edge base is a rule-based system and no graph, means to iden-
tify suitable sub-classes as in the case of AFs are not imme-
diate. Consequently, finding a notion of a no-even or acyclic
backdoor in ABA is a more involved endeavor. In this paper,
we approach this issue by identifying a suitable dependency
graph for ABA which entails the properties we desire; for in-
stance, we show that if there is no cycle in this graph, then
reasoning in the corresponding ABA framework is tractable
(a result similar to acyclic AFs). Building upon this cycle no-
tion, we devise and implement an FPT-algorithm for skeptical
preferred reasoning in ABA. Along the way, we establish sev-
eral required theoretical results, which are interesting on their
own, independent of our FPT procedure. Our main contribu-
tions can be summarized as follows.

• We study ABA classes induced by a polynomial-time
computable dependency graph. Section 3

• We show how to perform computations in ABA in a
modular way. Section 4

• We design and implement a backdoor algorithm for
skeptical preferred reasoning in ABA. Section 5

The source code for our algorithm can be found online1.

2 Background
Abstract Argumentation. An argumentation framework
(AF) [Dung, 1995] is a directed graph F = (A,R) where A
represents a set of arguments and R ⊆ A×A models attacks
between them. For two arguments x, y ∈ A, if (x, y) ∈ R we
say that x attacks y. We let E+ = {x ∈ A | E attacks x}
for a set E ⊆ A. A set E ⊆ A is conflict-free in F iff for no
x, y ∈ E, (x, y) ∈ R; E defends an argument x if E attacks
each attacker of x. A conflict-free set E is admissible in F
(E ∈ ad(F )) iff it defends all its elements. A semantics is
a function with F 7→ σ(F ) ⊆ 2A. This means, given an AF
F = (A,R) a semantics returns a set of subsets of A. These
subsets are called σ-extensions. In this paper we consider so-
called complete, grounded, preferred, and stable semantics
(abbr. co, gr , pr , stb).

Definition 2.1. Let F = (A,R) be an AF and E ∈ ad(F ).

• E ∈ co(F ) iff E contains all arguments it defends;

• E ∈ gr(F ) iff E is ⊆-minimal in co(F );

• E ∈ pr(F ) iff E is ⊆-maximal in co(F );

• E ∈ stb(F ) iff E+ = A \ E.

Assumption-based Argumentation. We assume a deduc-
tive system (L,R), where L is a formal language, i.e., a set
of sentences, and R is a set of inference rules over L. A rule
r ∈ R has the form a0 ← a1, . . . , an with ai ∈ L. We denote
the head of r by head(r) = a0 and the (possibly empty) body
of r with body(r) = {a1, . . . , an}.

1https://github.com/kietGithubUser/
ABA-Backdoor-Implementation

Definition 2.2. An ABAF is a tuple D = (L,R,A, ), where
(L,R) is a deductive system, A ⊆ L a set of assumptions,
and a partial contrary function : A → L.

Note that we allow for assumptions without any contrary
since is partial. This does not make any conceptual differ-
ence, but is more convenient for our purpose.
Assumption 2.3. In this work, we focus on ABA frameworks
which are flat, i.e., for each rule r ∈ R, head(r) /∈ A (no as-
sumption can be derived), and finite, i.e., L, R, A are finite;
moreover, we assume L to be a set of atoms.

We say that a sentence p ∈ L is derivable from assump-
tions S ⊆ A and rules R ⊆ R, denoted by S ⊢R p, if there is
a finite rooted labeled tree T such that the root is labeled with
p, the set of labels for the leaves of T is equal to S or S∪{⊤},
and for every inner node v of T there is a rule r ∈ R such that
v is labelled with head(r), the number of successors of v is
|body(r)| and every successor of v is labelled with a distinct
a ∈ body(r) or ⊤ if body(r) = ∅

By ThD(S) = {p ∈ L | ∃S′ ⊆ S : S′ ⊢R p} we denote
the set of all conclusions derivable from an assumption set S
in D. Observe that S ⊆ ThD(S) as a ∈ A is derivable from
{a} ⊢∅ a. For S ⊆ A, let S = {a | a ∈ S}; moreover, for a
derivation S ⊢ p we write asms(S ⊢ p) = S and for a set E
of derivations we let asms(E) =

⋃
x∈E asms(x). Also, we

often write S ⊢R p simply as S ⊢ p.
A set S ⊆ A attacks a set T ⊆ A, if for some a ∈ T we

have that a ∈ ThD(S). A set S is conflict-free, denoted S ∈
cf (D), if it does not attack itself; it is admissible, denoted
S ∈ ad(D), if S is conflict-free and S defends itself, i.e., for
each set T ⊆ A, we have that if T attacks S, then S attacks
T as well. With a little notational abuse we say S attacks a if
S attacks the singleton {a}.

We next recall grounded, complete, preferred, and stable
ABA semantics (abbr. gr , co, pr , stb).
Definition 2.4. Let D = (L,R,A, ) be an ABAF. Further,
let S ⊆ A be admissible in D.

• S ∈ co(D) iff S contains all assumptions it defends;
• S ∈ gr(D) iff S is ⊆-minimal in co(D);
• S ∈ pr(D) iff S is ⊆-maximal in co(D);
• S ∈ stb(D) iff S attacks each {x} ⊆ A \ S.
We say that an assumption a ∈ A is credulously accepted

(skeptically accepted) wrt. a semantics σ in an ABAF D iff
a ∈

⋃
σ(D) (iff σ(D) ̸= ∅ and a ∈

⋂
σ(D)). In this case,

we write a ∈ credσ(D) resp. a ∈ skepσ(D).
An ABAF induces an AF as follows.

Definition 2.5. The associated AF FD = (A,R) of an ABAF
D= (L,R,A, ) is given by A = {S ⊢ p | S ⊆ A, p ∈ L}
and attack relation (S ⊢ p, S′ ⊢ p′) ∈ R iff p ∈ S′.

ABA and AFs are closely related (see [Čyras et al., 2018]).
Proposition 2.6. Given an ABAF D = (L,R,A, ), its cor-
responding AF FD and a semantics σ ∈ {gr , co, pr , stb}.
If E ∈ σ(FD) then asms(E) ∈ σ(D); if S ∈ σ(D) then
{S′ ⊢ p | ∃S′ ⊆ S,R ⊆ R : S′ ⊢R p} ∈ σ(FD).

Since it suffices to instantiate only finitely many arguments
(see e.g. [Lehtonen et al., 2023]) we assume that the AF cor-
responding to some ABA D is finite, if not stated otherwise.
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3 ABA Classes
In the context of AFs, several graph classes have been stud-
ied in the literature with corresponding computational bene-
fits [Dvorák and Dunne, 2018]. For instance, AFs without
any even-length cycle (also called no-even AFs) have exactly
one complete extension (which, in this case, can be computed
in polynomial time).

However, since ABA is a rule-based system, designing
such algorithms in terms of suitable graph-classes is not im-
mediate. A natural starting point would be to utilize Propo-
sition 2.6 in order to obtain the desired properties from the
instantiated AF FD. Indeed, the following observation is a
direct corollary of known ABA properties.
Fact 3.1. Let D = (L,R,A, ) be an ABAF. If FD is

• odd-cycle free, then pr(D) = stb(D);
• even-cycle free, then gr(D) = co(D) = pr(D);
• acyclic, then gr(D) = co(D) = pr(D) = stb(D).
This result is, however, impractical as it requires comput-

ing the (possibly exponential) argumentation graph FD. In
this section, we seek to analyze a given ABAF D in a similar
way, but thereby avoid computing FD.

3.1 ABA Dependency Graphs
A natural way to extract a graph from ABA is the notion of
a dependency graph. Such graphs have been constructed in
e.g. [Craven and Toni, 2016], but we need to differ from this
notion to obtain a graph that is suitable for our purpose.

Our notion of dependency graphs is inspired by similar
concepts for logic programming [Apt and Bol, 1994, Defini-
tion 2.2] and the more recent ABA dependency graph [Rap-
berger et al., 2022]; we require, however, a different path no-
tion. The idea is that the graph captures the dependencies
between atoms, i.e., there is an edge from p to q whenever
there is some rule with p in the body and q in its head. In
addition, we draw an edge from a to a for each assumption
a ∈ A to account for attacks.
Definition 3.2. The dependency graph GD = (V,E, l) for a
given ABA D = (L,R,A, ) is an edge-labelled graph with

• V = L is the set of vertices,
• there is an edge e = (s, t) ∈ E iff i) there is some r ∈ R

with s ∈ body(r) and head(r) = t, in this case l(e) =
+; or ii) t ∈ A and t = s, in this case, l(e) = −.

Recall that our goal is to obtain a result in the spirit of
Fact 3.1 in terms of the dependency graph GD. The ques-
tion is thus how to define paths and cycles in GD. Since the
“−” labeled edges account for attacks in the ABAF, it makes
senses to define the length of a path by the number of “−” la-
beled edges. However, there is some technical issue we need
to take consideration, as illustrated in the following.
Example 3.3. Let D = (L,R,A, ) be the ABAF with A =
{a, b}, L = A∪{ac, bc}, the expected contraries, i.e., a = ac
as well as b = bc, and the following rulesR:

r1 : bc ← a r2 : bc ← b r3 : ac ← bc

Then the dependency graph GD is given as follows (we high-
light the assumptions in the graph to enhance readability).

b

bc

a

ac

+−

+

−
+

We can construct a path form a to b, namely a, bc, b, but
then we cannot continue this path to turn it into a cycle
a, bc, b, bc, ac, a since this sequence visits bc twice. However,
ABA is tailored to investigate the interaction of assumptions
and ordinary atoms are mere intermediate steps in deriva-
tions. We would thus expect GD to contain an even-cycle.

The problem in the previous example was that visiting bc
twice prevented us from constructing an even-cycle from a
to b and back. This can be circumvented by allowing to visit
ordinary atoms multiple times. We thus define paths and their
length in dependency graphs as follows.
Definition 3.4. LetD = (L,R,A, ) be an ABAF and GD =
(V,E, l) its dependency graph. A weak path is a sequence
p1, ..., pn with n ≥ 1, pi ∈ V , and (pi, pi+1) ∈ E for each
i < n and pi ̸= pj for i ̸= j, whenever pi, pj ∈ A. If
p1 = pn, then the weak path is a weak cycle. The length of a
weak path is the number of “−” labeled edges e = (pi, pi+1).
Example 3.5. The dependency graph GD from Example 3.3
contains a weak odd-cycle b, bc, b of length 1 and a weak
even-cycle b, bc, ac, a, bc, b of length 2.

It is clear that, in contrast to FD, the dependency graph GD
can be computed in polynomial time. This provides us with
the desired computational advantage.
Proposition 3.6. GD can be computed in polynomial time.

Now we define the classes of ABAFs based on the cycle
properties of the underlying dependency graph.
Definition 3.7. LetD = (L,R,A, ) be an ABAF and GD =
(V,E, l) its dependency graph. Then D is called

• acyclic iff GD contains no weak cycle of length n ≥ 1;
• odd-cycle free iff GD contains no odd-length weak cycle;
• even-cycle free iff GD contains no even-length weak cy-

cle of length n ≥ 2.
From now on we just say “cycle” instead of “weak cycle”.

3.2 Computational Properties
The question arises whether or not cycles in GD are a weaker,
stronger, or equivalent notion compared to cycles in FD. That
is, can we lift Fact 3.1 to the underlying dependency graph?
It turns out that under mild conditions, the dependency graph
GD is capable of identifying the cycles we need. In fact, in a
certain sense GD gives rise to an even a more efficient cycle
notion since it detects fewer cycles, but induces all computa-
tional properties we seek.

To see that not every cycle in FD induces a cycle in GD, we
consider the following example.
Example 3.8. Let D = (L,R,A, ) be an ABAF with A =
{a, b, c, d, e}, L = A∪{ac | a ∈ A}, the expected contraries,
and the following rulesR:
dc ← a. bc ← a. cc ← b. ac ← c. ec ← d. ac ← e.

The reader may verify that the induced AF FD contains an
even-cycle, where the dependency graph GD does not.
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Now let us head to the other direction, i.e., suppose we are
given a cycle in GD. Here it might be the case that the cycle is
due to atoms that can never be derived from any assumption.
We exclude this case with the following notion.
Definition 3.9. An ABAF D = (L,R,A, ) is called trim if
L = ThD(A).

In a trim ABAF, each atom p ∈ L can be derived and thus,
each rule r ∈ R is applicable. Note that a simple unit prop-
agation suffices to turn any ABAF into a trim one in polyno-
mial time. Given a trim D, the following can be inferred.
Proposition 3.10. If D is trim and there is a weak cycle of
length n ≥ 1 in GD, then there is a cycle of length n in FD.

Example 3.11. Recall Example 3.3. We depict the instanti-
ated AF FD next to the dependency graph we already com-
puted. In FD, xi stems from rule ri for each i ∈ {1, 2} and
x31 and x32 are due to combining x1 and x2 with r3.

b

bc

a

ac

+−

+

−
+

a b

x1 x2x32

x31

The even-length cycle a, bc, b, bc, ac, a in the dependency
graph GD can be traced back to a entailing the contrary of
b (via argument x1) and b entailing the contrary of a (via ar-
gument x32). Indeed, x1 and x32 form an even-cycle in FD.

Putting together the previous observations shows that GD
is more cautious in terms of cycles compared to FD. It is thus
not clear whether this notion is strong enough for our purpose,
i.e., whether Fact 3.1 can be lifted to ABAFs by means of
these graphs. The following theorem answers this question
affirmatively.
Theorem 3.12. Let D = (L,R,A, ) be an ABAF. If D is

• odd-cycle free, then pr(D) = stb(D);
• even-cycle free, then gr(D) = co(D) = pr(D);
• acyclic, then gr(D) = co(D) = pr(D) = stb(D).
Intuitively, even-cycles in GD induce the non-determinism

underlying co, pr , and stb; odd-cycles are responsible for
the potential collapse of stb as they serve as constraints for
acceptability; and without any cycle whatsoever, many rea-
soning tasks coincide with the simple gr reasoning.

As a final remark, we want to mention that our notion of
cycles is in a certain sense independent of the tree derivations
in a given ABAF: while the term “acyclic” in e.g. [Craven
and Toni, 2016] is used to ensure that for each tree derivation
S ⊢ p, there is no cyclic dependency between atoms, our de-
pendency graphs GD are not tailored to examine such depen-
dencies. To illustrate this, we mention that even for acyclic
ABAFs, there might be infinitely many tree-based arguments.
Proposition 3.13. There is an acyclic ABAFD that gives rise
to infinitely many tree-based arguments.

To summarize, by inspecting GD we can anticipate the
class to which D belongs, without computing FD. This is
even the case for situations where FD might be large, while
GD on the other hand always has at most |L| nodes.

4 Partial Evaluations in ABA
We now have a target class of ABAFs for our backdoor al-
gorithm: the idea is to guess the label of assumptions occur-
ring in a cycle in D and then evaluate the remaining ABAF
by propagating the labels. Doing so, however, requires us to
have tools to partially evaluate a given ABAF. To this end we
define the reduct as in the case for AFs [Baumann et al., 2022]
to conveniently study our backdoor algorithm in Section 5.

4.1 The ABA Reduct
First we define what we mean by the range S⊕ of a set S of
assumptions. As in the case of AFs, S+ is the set of assump-
tions attacked by S and the range is their union, i.e., we let
S⊕ = S ∪ S+.
Definition 4.1. Let D = (L,R,A, ) be an ABAF. For S ⊆
A we let S+

D = {a ∈ A | S attacks a} and call S⊕
D = S∪S+

D
the range of S.

Now given an ABAF D we define the reduct w.r.t. some
set S of assumptions in the way thatD is (partially) evaluated
w.r.t. S. That is, we assume S to be true and thus evaluate
S+ as false. Hence assumptions in S can be removed from
rule bodies, whereas rules relying on assumptions in S+ can
be deleted entirely. This amounts to the following notion.
Definition 4.2. Let D = (L,R,A, ) be an ABAF. The S-
reduct of D is the ABAF DS = (L′,R′,A′, ′) where L′ =
L \ S⊕

D , A′ = A \ S⊕
D ,

R′ = {head(r)← body(r)\S | r ∈ R, body(r)∩S+
D = ∅},

and for a ∈ A′, a′ = a iff a ∈ L′ and UNDEFINED otherwise.
Example 4.3. Consider the ABAF D = (L,R,A, ) with
A = {a, b, c}, L = A ∪ {ac, bc, cc}, the expected contraries,
and the following rulesR:

r1 : bc ← a r2 : ac ← b r3 : ac ← c

Let S = {c}. In the reduct DS , c is set to true and since
ac ∈ ThD(S), we set a to false. This yields the ABAF DS

given as DS = ({b, ac, bc, cc},R′, {b}, ′) with rules R′ =
{r′2 = (ac ← b), r′3 = (ac ←)}. The only assumption is b.

4.2 The Modularization Property
Our backdoor algorithm requires us to evaluate a given ABAF
partially and then compute a single assumption set S. The
technical underpinning we will develop to this end is in-
spired by the modularization property for AFs [Baumann et
al., 2022]. In the previous Example 4.3, the assumption b
is unattacked in the reduct DS since a is rendered false (and
DS has been evaluated accordingly). Assuming that S = {c}
is compatible with b in some formal sense, we would expect
that b can be added to S in order to obtain a novel extension
S ∪ {b}. Indeed, S ∪ {b} ∈ co(D) is true.

In the context of AFs, the so-called modularization prop-
erty has been introduced in order to capture such step-wise
computations of extensions [Baumann et al., 2022]. Phrased
within our setting, we obtain the following notion for ABAFs.
Definition 4.4. A semantics σ satisfies the modularization
property if for each ABAF D, it holds that S ∈ σ(D) and
S′ ∈ σ(DS) implies S ∪ S′ ∈ σ(D).
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Example 4.5. Recall Example 4.3. We have that S = {c} ∈
ad(D) and S′ = {b} ∈ ad(DS). Moreover, S ∪ S′ ∈ ad(D)
so the requirements for ad to satisfy modularization are sat-
isfied for this ABAF.

It turns out that this observation is no coincidence. In fact,
like for AFs, all considered semantics satisfy modularization.
Proposition 4.6. Each semantics σ ∈ {ad , co, pr , gr , stb}
satisfies modularization.

For ad and co semantics, we can even show some kind of
inverse statement, in the following sense.
Proposition 4.7. Let D = (L,R,A, ) be an ABAF and let
σ ∈ {ad , co}. If S = S′ ∪ S′′ with S′ ∩ S′′ = ∅ and S′ ∈
σ(D) as well as S ∈ σ(D), then S′′ ∈ σ(DS′

).
Example 4.8. Recall Example 4.3. We have that S =
{b, c} ∈ ad(D). Since S′ = {c} ∈ ad(D) we can be cer-
tain that {b} ∈ ad(DS′

).
Combining Propositions 4.6 and 4.7 yields the following

characterizations of the standard ABA semantics.
Theorem 4.9. LetD = (L,R,A, ) be an ABAF, S ∈ cf (D)
and DS = (L′,R′,A′, ′) the reduct. It holds that

• S ∈ stb(D) iff DS = (L′,R′, ∅, ′),
• S ∈ ad(D) iff T attacks S in D implies T \ S ̸⊆ A′,
• S ∈ pr(D) iff S ∈ ad(D) und

⋃
ad(DS) = ∅, and

• S ∈ co(D) iff S ∈ ad(D) und no assumption in DS is
unattacked.

As a final remark in this section, we recall the charac-
terization [Baumann and Ulbricht, 2021b, Theorem 5.7] for
the existence of a stable extension: There is a stable ex-
tension E ∈ stb(F ) iff there is some admissible extension
E′ ∈ ad(F ) s.t. E′ attacks each odd-cycle in F . This trans-
lates to ABA in the following way.
Theorem 4.10. Let D = (L,R,A, ) be a trim ABAF. Then
stb(D) ̸= ∅ iff there is some S ∈ ad(D) s.t. each assumption
a occurring in an odd-cycle in GD satisfies a ∈ S⊕.

5 Breaking Cycles: A Backdoor Algorithm
We are ready to design our backdoor algorithm. Our idea
is inspired by the recent work on backdoor algorithms for
SETAFs [Dvorák et al., 2022b] which are similar in spirit to
ABA [König et al., 2022]. We will guess a set B of assump-
tions in such a way that after their acceptance status is eval-
uated, the remaining ABAF is acyclic. Since acyclic ABAFs
only have a unique complete extension, we can propagate the
effect of this evaluation through the framework. We then have
to check whether this propagation is compatible with our ini-
tial guess (implying we found an extension) or not (implying
we have to backtrack).

We consider the following example to illustrate this idea.
Example 5.1. Let D = (L,R,A, ) be the ABAF with A =
{a, b, c, d, e}, L = A ∪ {x, y, w, z,m, n}, contraries a = y,
b = x, c = m, d = w, e = n, and rulesR:

x← a. y ← a. z ← b. w ← z. w ← w.

m← b. x← c. m← e. m← m. n← c.

The dependency graph is given as follows.

a b c

d

exy

zw

m n

+

−

+ −

+
+−

+

+ −

+

+ −

+

+

From the dependency graph we can extract that e.g. removing
b and e renders the ABAF even-cycle free. That is, if we fix the
labels of these two assumptions, then the non-determinism is
removed from D. Consequently, the remaining labels follow
by propagating the effect of guessing b and e.

Suppose e.g. we set b and e to true. Then, by applying
the given rules, z is entailed and thus w as well which is the
contrary of d; hence it follows that d is defeated. Moreover,
from e we entail m which means c is rendered defeated as
well. Since c is the only attacker of e (by entailing n), we
obtain that {b, e} indeed defends e. Nonetheless, {b, e} does
not induce an admissible extension since the attack from a
against b (by entailing x) cannot be defended. We thus have to
correct the status of b and remove it from our extension again.
This, however, has no effect on d and we find the admissible
extension E = {e}.

The idea is thus to find a set of assumptions breaking all
cycles in D (called a backdoor), guessing their acceptance
status and then propagating the consequences of this guess.
Due to our results from Theorem 3.12 we know that the non-
determinism is due to the even-cycles in GD and Section 4
provides us with convenient tools to partially evaluate D.

5.1 Theoretical Foundations
Our procedure works by propagating labels on assumptions,
denoting whether they are in an extension (“in”), attacked by
the given extension (“out”), or neither (“undec”). To this end
we need to formally introduce labels for ABA. We will only
recall the necessary technical tools here; a comprehensive dis-
cussion of labeling-based semantics in ABA can be found in
[Schulz and Toni, 2017].
Definition 5.2. LetD = (L,R,A, ) be an ABAF. A labeling
is a mapping λ : A → {IN, OUT, UNDEC}. We let IN(λ) =
{a ∈ A | λ(a) = IN}, OUT(λ) = {a ∈ A | λ(a) = OUT},
UNDEC(λ) = {a ∈ A | λ(a) = UNDEC}, and DEF(λ) =
IN(λ) ∪ OUT(λ) ∪ UNDEC(λ).

A complete labeling is defined s.t. it corresponds to some
complete extension in the expected way [Schulz and Toni,
2017, Theorem 4].
Definition 5.3. LetD = (L,R,A, ) be an ABAF. A labeling
λ is called complete whenever:

• if a ∈ IN(λ), then for each set S ⊆ A attacking a, it
holds that S ∩ OUT(λ) ̸= ∅;

• if a ∈ OUT(λ), then there is some S ⊆ A attacking a
with S ⊆ IN(λ);

• if a ∈ UNDEC(λ), then i) for each set S ⊆ A attacking
a, it holds that some b ∈ S satisfies b /∈ IN(λ) and ii)
there is some S′ ⊆ A attacking a s.t. S′ ∩ OUT(λ) = ∅.

A labeling λ is called preferred if there is no complete label-
ing λ′ s.t. IN(λ) ⊊ IN(λ′).
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Since our backdoor algorithm is based on partially evalu-
ating D, we require the notion of a partial labeling.

Definition 5.4. Let D = (L,R,A, ) be an ABAF. A partial
labeling is a partial mapping λ : A → {IN, OUT, UNDEC}.

Now we are ready to describe our procedure. Our first step
will be to select a set B of assumptions in a way that GD be-
longs to a certain target class of graphs whenever the nodes
corresponding to B are removed. For this we define the re-
striction of a dependency graph GD in the natural way.

Definition 5.5. Let D = (L,R,A, ) be an ABAF and
GD = (V,E, l) its dependency graph. Then (GD) ↓V \B=
(V ′, E′, l′) is given via V ′ = V \ B, E′ = E ∩ (V ′ × V ′),
and l′(e) = l(e) for each e ∈ E′.

Now B is called a C-backdoor whenever (GD)↓V \B be-
longs to the class C of graphs, i.e., if removing B from GD
turns it into a graph with the desired properties.

Definition 5.6. Let D = (L,R,A, ) be an ABAF and let C
be a class of graphs. A set B ⊆ A of assumptions is called a
C-backdoor if (GD)↓V \B belongs to the class C of graphs.

By ACYCDG we denote the class of acyclic dependency
graphs and by NOEVENDG the class of no-even ones.

Example 5.7. In Example 5.1, B = {b, e} is a NOEVENDG-
backdoor since (GD)↓V \B does not contain any even-cycle.
It is, however, not an ACYCDG-backdoor since it still contains
the self-attacker a.

We are now ready to formalize how to treat the ABAFD af-
ter we guessed the labels on the backdoor B. Recall from Ex-
ample 5.1 that we propagated the consequences of our guess.
In general, we apply the following rules.

Definition 5.8. Let D = (L,R,A, ) be an ABAF and let λ
be a partial labeling. We define λ∗ via

1. set λ∗(a) = OUT if a ∈ ThD(IN(λ∗)) and

2. set λ∗(a) = IN if a /∈ ThD(A \ OUT(λ∗)).

We denote the result of applying these rules to λ (i.e., for
each a ∈ A \ DEF(λ)) until a fixed point is reached as
PROPAGATEIO(D,λ). Then we define λ† via

3. set λ†(a) = UNDEC if λ†(a) = IN and a ∈ ThD(A \
OUT (λ†)) and

4. set λ†(a) = UNDEC if λ†(a) = OUT and a /∈
ThD(IN(λ†)).

We denote the result of applying these rules to λ (i.e., for
each a ∈ IN(λ) ∪ OUT(λ)) until a fixed point is reached as
PROPAGATEUNDEC(D,λ).

Intuitively, the first rule simply formalizes that an assump-
tion a must be labelled out whenever its contrary can be en-
tailed from the assumptions we already assume to be true (e.g.
in Example 5.1 d being labelled OUT is a consequence of b
being labelled IN). In the same vein, if the contrary of a can
only be deduced from assumptions that are already labelled
OUT, then a can surely be labelled IN. Then, rules 3. and
4. are necessary in case our guess on the backdoor assump-
tions is not consistent with the performed propagation (for
instance, if we guess a to be true in Example 5.1 it will turn

out that this must be corrected as it attacks itself). Thus, rule
3. corrects labels from IN to UNDEC if necessary; and finally,
rule 4. corrects wrongly labelled OUT assumptions.

The induced procedure can be found in Algorithm 1.
The following theorem formalizes that Algorithm 1 finds all

Algorithm 1 Computing Admissible Candidates
Input: ABAF D = (L,R,A, ), NOEVENDG-backdoor B
Output: admissible candidates of D: pref∗(D,B)

1: procedure GETADMISSIBLECANDIDATES(D,B)
2: pref∗(D, B) = ∅
3: foreach I ⊆ B do
4: let λ be a partial labeling
5: set λ(a) = IN for a ∈ I
6: set λ(a) = OUT for a ∈ B \ I
7: λ∗ = PROPAGATEIO(D,λ)
8: set λ∗(a) = UNDEC for a ∈ A \ DEF(λ∗)
9: λ† = PROPAGATEUNDEC(D,λ∗)

10: if IN(λ†) ∩B == I then
11: pref∗(D, B) = pref∗(D, B) ∪ {IN(λ†)}
12: end if
13: end for
14: return pref∗(D,B)
15: end procedure

preferred extensions of the input ABAF D. It also finds
some complete sets which are not preferred, which is why
pr∗(D, B) does not coincide with pr(D).
Theorem 5.9. LetD = (L,R,A, ) be a trim ABAF and GD
be its dependency graph. Let C ∈ {ACYCDG,NOEVENDG}
and let B be a C-backdoor. For the output pr∗(D, B) of Al-
gorithm 1 it holds that pr(D) ⊆ pr∗(D, B).

We now establish that this procedure is fixed-parameter
tractable for ACYCDG-backdoors. First of all, the algo-
rithm itself runs in time 2|B| × O(p(n)) for some polyno-
mial p, independent of whether B is a ACYCDG-backdoor or
a NOEVENDG-backdoor.
Proposition 5.10. Algorithm 1 runs in time 2k × O(p(n))
where p is some polynomial, n is the size of the input ABAF,
and k the size of the (ACYCDG/NOEVENDG)-backdoor B.

In Algorithm 1, the backdoor B is given. Thus the question
arises whether or not a backdoor can be computed efficiently.
Due to our dependency graph results, this boils down to find-
ing such backdoors in directed graphs. For NOEVENDG-
backdoors the fastest known procedure requires time nO(k)

[Dvorák et al., 2012a] (where k is the backdoor size). For
ACYCDG-backdoors, however, we find the following.
Proposition 5.11. Let D be an ABAF, k be an integer, p be
some polynomial and n be size ofD. There is a function f s.t.
we can find an ACYCDG-backdoor of size at most k in time
f(k)× p(n) or detect if no such backdoor exists.

As a corollary, we obtain that skeptical reasoning for pre-
ferred semantics is fixed-parameter tractable in ABA w.r.t. the
size of the smallest ACYCDG-backdoor of D.
Corollary 5.12. Skeptical acceptance for σ ∈ {pr , stb} of a
query assumption is fixed-parameter tractable w.r.t. the size
of the smallest ACYCDG-backdoor of an ABAF.
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5.2 Empirical Evaluation
We now discuss some computational shortcuts we utilize for
our actual implementation. We first note that before delv-
ing into the cycles of our given ABAF, we can compute the
grounded extension G ofD as well as the reductDG, and then
remove unnecessary atoms and rules in order to make it trim.
Soundness of this is a corollary of Proposition 4.6 and the fact
that G ⊆ E holds for each preferred extension E ∈ pr(D).
Corollary 5.13. Let D be an ABAF and G ∈ gr(D). Then
E ∈ pr(D) iff E \G ∈ pr(DG).

This way we can apply our algorithm to DG which admits
smaller backdoors in general compared to D.

We also consider two further shortcuts in Algorithm 1:
First, if line 9 labels one of the assumptions in I as UNDEC,
we can immediately skip the guess (due to line 10). Second,
if line 9 does not correct any label in B to UNDEC, then we
know that the propagation in line 7 must have been correct as
well. So we always iterate through the backdoor B first and
if no label is changed in line 9, we can immediately return the
IN labeled assumptions.
Setup. We implemented the backdoor approach in Python.
We used the ASP-solver Clingo [Gebser et al., 2018] to
compute a minimal ACYCDG-backdoor. Since we have to
compute the deductive closure ThD(S) several times for
different assumption sets S, we utilized the Glucose SAT-
solver [Audemard and Simon, 2018] based on MiniSat [Eén
and Sörensson, 2004]. This SAT-solver is accessed through
the PySAT library [Ignatiev et al., 2018].

Computations were done using resources of the Leipzig
University Computing Center. There we used the Paul Clus-
ter with a memory limit of 32GB ram and with the CPU: 2x
AMD EPYC 7713 @ 2.0GHz - Turbo 3.7GHz (64 cores). As
experimental data, 400 ABAFs from the ICCMA 2023 com-
petition benchmark generator2 were used. The ABA track
was won convincingly by the ASPforABA solver [Lehtonen
et al., 2021] against which we evaluated our backdoor algo-
rithm. As problem, we enumerated all preferred extensions
for some arbitrary ABAF D. A timeout of 90s is used.
Results. Our evaluation shows that, as expected, the perfor-
mance of the backdoor algorithm is quite sensitive to the size
of the smallest ACYCDG. We divided the instances into three
groups, backdoor size between 0 and 5, between 6 and 10,
and greater than 10. Most of the 400 instances (220) belong
to the first group with small backdoor sizes in which the back-
door procedure outperforms the state-of-the-art ASPforABA
solver (first row in Table 1). There are only few instances
with backdoor size 5 − 10. Both algorithms are quite fast in
these instances, but ASPforABA is better by a small margin
(second row). For larger backdoor sizes, however, the ASP-
forABA solver is much better due to the large search space
the backdoor algorithm has to handle here (last row).

6 Conclusion
We developed and implemented an FPT-algorithm for enu-
merating preferred extensions in ABA. To this end we con-
sidered acyclic backdoors w.r.t. a suitable dependency graph

2https://iccma2023.github.io/benchmarks.html

Approach Av. Total Solved Instances

k ≤ 5
Backdoor 0.17 37.29 100% (220/220)

ASPforABA 1.28 282.30 100% (220/220)

k∈ [6, 10]
Backdoor 0.17 4.08 100% (24/24)

ASPforABA 0.06 1.46 100% (24/24)

11 ≤ k
Backdoor 89.31 13932.87 1.28% (2/156)

ASPforABA 22.40 3494.80 80.13% (125/156)

Table 1: Runtimes of our Algorithm 1 and ASPforABA in s

notion. The main theoretical observation for this algo-
rithm is that preferred reasoning in ABAFs is fixed-parameter
tractable w.r.t. the size of the smallest ACYCDG-backdoor.
More broadly, our study shows that the dependency graph can
be utilized to examine computational beneficial sub-classes
of ABA, similar in spirit to AFs (see e.g. [Dvorák and Dunne,
2018]). This is in contrast to common cycle notions for ABA
focusing on tree derivations [Craven and Toni, 2016], but sim-
ilar in spirit to logic programming dependency graphs [Apt
and Bol, 1994]. Our empirical evaluation demonstrates that
our procedure is competitive with state-of-the-art solvers up
until an acyclic backdoor size of around 10, which is the case
for a significant proportion of the ICCMA’23 instances.

Exploiting graph-specific properties for incremental com-
putations has also been done for AFs [Baroni et al., 2005;
Baumann and Ulbricht, 2021a; Alfano et al., 2023; Liao,
2013; Liao, 2014]. For instance in [Liao, 2013; Liao, 2014]
the AF is divided into sub-graphs in order to utilize the fact
that these sub-graphs might fall into certain computationally
beneficial fragments. Our modularization notion does not
make explicit use of the topology of the dependency graph,
but the backdoor algorithm could benefit from a similar de-
composition of the knowledge base in order to exploit proper-
ties of its subsets. The dependency graph lays the foundation
for such a procedure in the context of ABA.

Similar in spirit to our work is [Alfano et al., 2021] in the
context of defeasible logic programming. In order to analyze
dynamic reasoning environments, a hypergraph is used to ex-
amine the dependency of literals within the given knowledge
base. This work differs from ours as notions such as “acyclic”
or “no-even” knowledge bases are not studied to gain a com-
putational boost, because the focus is on (efficiency of) dy-
namic reasoning. Our work, however, is a potential first step
towards pushing such an analysis into the realm of ABA.

In future work, our theoretical analysis could be continued
by considering further ABA classes and theoretical proper-
ties induced by dependency graphs. For instance, research
for AFs based on the topology of the given argumentation
graph can now be rigorously extended to ABA, e.g. the di-
rectionality principle [Baroni and Giacomin, 2007] or se-
mantics based on strongly connected components SCCs [Ba-
roni et al., 2005]. Since the backdoor size appears to be the
bottleneck for our procedure, another natural avenue for fu-
ture work consist in adjusting it to NOEVENDG-backdoors.
Here, the main challenge will be finding the backdoor ef-
ficiently. Moreover, our approach could be generalized to
non-flat ABAFs or other rule-based formalisms like ASPIC+
[Modgil and Prakken, 2013].

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3529



Acknowledgements
This word was funded by the Federal Ministry of Education
and Research of Germany and by Sächsische Staatsminis-
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Schulz, and Francesca Toni. Assumption-based argumen-
tation: Disputes, explanations, preferences. In Handbook
of Formal Argumentation, chapter 7, pages 365–408. Col-
lege Publications, 2018.

[Cyras et al., 2021] Kristijonas Cyras, Antonio Rago,
Emanuele Albini, Pietro Baroni, and Francesca Toni.
Argumentative XAI: A survey. In Proc. IJCAI, pages
4392–4399. ijcai.org, 2021.

[Dung, 1995] Phan Minh Dung. On the acceptability of ar-
guments and its fundamental role in nonmonotonic reason-
ing, logic programming and n-person games. Artif. Intell.,
77(2):321–357, 1995.

[Dunne, 2007] Paul E. Dunne. Computational properties of
argument systems satisfying graph-theoretic constraints.
Artif. Intell., 171(10-15):701–729, 2007.

[Dvorák and Dunne, 2018] Wolfgang Dvorák and Paul E.
Dunne. Computational problems in formal argumentation
and their complexity. In Handbook of Formal Argumenta-
tion. College Publications, February 2018.

[Dvorák et al., 2012a] Wolfgang Dvorák, Sebastian Ordy-
niak, and Stefan Szeider. Augmenting tractable fragments
of abstract argumentation. Artif. Intell., 186:157–173,
2012.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3530



[Dvorák et al., 2012b] Wolfgang Dvorák, Reinhard Pichler,
and Stefan Woltran. Towards fixed-parameter tractable al-
gorithms for abstract argumentation. Artif. Intell., 186:1–
37, 2012.

[Dvorák et al., 2022a] Wolfgang Dvorák, Markus Hecher,
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