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Abstract
Scalability and training time are crucial for any
graph neural network model processing a knowl-
edge graph (KG). While partitioning knowledge
graphs helps reduce the training time, the predic-
tion accuracy reduces significantly compared to
training the model on the whole graph. In this pa-
per, we propose CPa-WAC: a lightweight architec-
ture that incorporates graph convolutional networks
and modularity maximization-based constellation
partitioning to harness the power of local graph
topology. The proposed CPa-WAC method reduces
the training time and memory cost of knowledge
graph embedding, making the learning model scal-
able. The results from our experiments on standard
databases, such as Wordnet and Freebase, show that
by achieving meaningful partitioning, any knowl-
edge graph can be broken down into subgraphs and
processed separately to learn embeddings. Fur-
thermore, these learned embeddings can be used
for knowledge graph completion, retaining simi-
lar performance to training a GCN on the whole
KG, while speeding up the training process by upto
five times. Additionally, the proposed CPa-WAC
method outperforms several other state-of-the-art
KG in terms of prediction accuracy.

1 Introduction
Knowledge graph (KG) has gained immense popularity in re-
cent years. A KG is a diverse multigraph consisting of more
than one type of directed relation [Zamini et al., 2022] be-
tween node entities. Each KG contains a collection of facts
organized as a graph to represent a group of linked enti-
ties and their semantic descriptions [Zamini et al., 2022].
First proposed in 2012 by Google, these semantic networks
are widely used today, from drug interaction prediction in
chemistry to fraud detection in financial transactions to entity
alignment [Surisetty et al., 2022; Chaurasiya et al., 2022]. To
date, many KGs have been created, such as Freebase [Bol-
lacker et al., 2008] and Wordnet [Miller, 1995], which illus-
trate real-life relations between entities. Knowledge graphs
are almost always incomplete [Ye et al., 2022]. Therefore,
to complete such graphs, it is essential to embed them and

use these embeddings to predict relations between entities.
Knowledge graph embedding (KGE) is considered a founda-
tion for several prediction tasks using KG [Ye et al., 2022].

Many methods utilize neural networks to compute embed-
dings of nodes and relations and use them for inference. Sim-
ilarly, some methods employ deep learning to learn recur-
sive logical rules [Meilicke et al., 2019; Cheng et al., 2022]
for reasoning over KG. Methods such as graph neural net-
works (GNN) [Wu et al., 2020; Surisetty et al., 2023] are
neural network-based frameworks that have recently been in-
tegrated into the KG domain and are primarily used to learn
embeddings of nodes and relations. Relational graph convo-
lutional networks (RGCN) [Schlichtkrull et al., 2018] was the
first GCN-based method introduced in the field. Since then,
more sophisticated approaches have been developed. Graph
convolutional and attention networks (GAT) [Veličković et
al., 2018] have also been quite successful in achieving high
accuracy of prediction, superseding convolutional networks
[Dettmers et al., 2018]. However, the information-rich em-
beddings from these algorithms come at a significant cost of
computational and memory usage.

Several state-of-the-art algorithms such as Comp-GCN
[Vashishth et al., 2019], RAGAT [Liu et al., 2021], and SE-
GNN [Li et al., 2022a] use high amounts of memory (GPU)
and require immense amounts of training time. With a large
number of nodes and edges, the time complexity to process
these graphs can be considered quadratic [Wu et al., 2020]
due to millions of trainable parameters. As a result, several
of these algorithms can only be trained with small batch sizes.
Partitioning KG into subgraphs and processing these sub-
graphs can be depicted as a solution to this problem [Puja et
al., 2013]. Partitioning reduces the number of computations
in both forward and backpropagation. At the same time, it en-
ables the training process to be carried out parallelly. While
a few methods employ partitioning and parallel training,
such as the ones presented in [Kochsiek and Gemulla, 2021;
Sheikh et al., 2022; Bai, 2023], it is evident that dedicated
partitioning approaches are required that can partition KGs
without the utilization of node or edge features.

This research presents a novel composition-based KGE
method using graph neural networks that utilizes the power
of KG partitioning to make the training process fast and
efficient. We call the proposed algorithm constellation
partitioning-based weighted aggregation composition (CPa-
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WAC). We harness the power of modularity maximization
[Newman, 2006] through Louvain clustering to generate par-
titions from KG. By preserving the original graph topology,
the proposed method increases link prediction performance
compared to other partitioning-based state-of-the-art meth-
ods while decreasing the train time. Furthermore, we com-
pare the Louvain algorithm to the Leiden algorithm [Traag et
al., 2019] and empirically verify the effects of utilizing both
algorithms on KG partitioning.

The main contributions of this paper are as follows: i) A
novel KG partitioning algorithm (CPa) that utilizes fast Lou-
vain clustering [Blondel et al., 2008] to partition the KG into
several topological clusters. During partitioning, we aim to
minimize the number of lost links between clusters; ii) An
improved compositional-GCN algorithm, WAC. The compo-
sition operation is further coupled with the multiplication op-
eration that is presented in [Kazemi and Poole, 2018] and a
1D convolutional network that takes advantage of feature, en-
tity, and relation-specific weights to learn effective embed-
dings; iii) A global decoder framework that can use node and
relationship embeddings from different clusters to achieve a
global-level inference, and lastly (iv) exhaustive comparison
on four distinct datasets, namely, WN18, WN18RR [Miller,
1995], FB15K, and FB15K-237 [Bollacker et al., 2008] and
several state-of-the-art methods in the field, along with a de-
tailed analysis of each comparison is presented in the paper.

2 Related Work

2.1 Knowledge Graph Embedding

Several methods have been used to train a KG and obtain em-
beddings. Models such as the variants of Trans: TransE [Bor-
des et al., 2013], TransH [Wang et al., 2014], TransR [Lin
et al., 2015], TransD [Ji et al., 2015], and TransG [Wang et
al., 2017] were pivotal for KGE towards link prediction, node
classification, and reasoning tasks. However, more complex
semantic methods aimed to capture semantic relationships,
such as Conv2D [Dettmers et al., 2018], RESCAL [Bordes
et al., 2014], ComplEX [Zhou et al., 2017], TuckER [Bal-
azevic et al., 2019], HAKE [Zhang et al., 2020], and SimplE
[Kazemi and Poole, 2018]. While these methods are good at
capturing semantic relationships, they require a high dimen-
sionality in the embedding space [Chen et al., 2020] to embed
entities and relationships for more accurate predictions.

Recent architectures such as GCN [Schlichtkrull et al.,
2018] and graph attention networks (GAT) [Veličković et al.,
2018] have been utilized in studies such as [Vashishth et al.,
2019; Liu et al., 2021; Li et al., 2022a; Li et al., 2022b].
If pruned properly, these architectures produce better results
than their non-GCN-based counterparts. Nevertheless, GCN
and GAT-integrated models have high trainable parameters
and take enormous time to train on KG datasets. Even though
there are libraries available, such as Pytorch-Biggraph [Lerer
et al., 2019] and DGL-KE [Zheng et al., 2020], these libraries
do not address the scalability of GNN-based knowledge graph
embedding algorithms.

2.2 Reducing Training Time of Knowledge Graphs
One way to reduce training time lies in the task of KG aug-
mentation. KG augmentation can be used to learn embed-
dings in a lower dimensional vector space. As demonstrated
by [Wang et al., 2022a], KG augmentation, when used in se-
quence with a Trans or semantic series embedding model,
can reduce the processing time and increase the overall per-
formance of these models. Methods such as GreenKGC
[Wang et al., 2022b] and DGL-KE [Zheng et al., 2020] have
addressed the reduction of embedding dimensionality and
the training time using feature pruning, partitioning, parallel
training, and multi-GPU training.

Partitioning is critical to scalable GNN-based KG embed-
ding generation. Partitioning can be used to split a KG into
multiple subgraphs without destroying the original topology
of the graphs. This statement is backed by the analysis of Jain
et al. in their work presented in [Jain et al., 2021], which
showcased that the semantic representations of embeddings
are not foolproof over the entire graph. Instead, semantic
features are only contained locally, implying that partition-
ing will not distort the overall graph structure. Ontology-
based KG partitioning has been employed by Bai in his work
in [Bai, 2023], which breaks the KG into multi-partitions.
The method shows high performance on partitioned datasets,
compared to the performance on the full dataset. Similarly,
METIS [Karypis and Kumar, 1998] and k-means clustering
have been utilized in [Wang et al., 2022b] and [Zheng et
al., 2020], respectively, followed by Trans series algorithms
to partition KG into disjoint clusters to reduce the training
time. Apart from traditional k-means and METIS partition-
ing, some novel KG partitioning methods are presented in
the works [Sheikh et al., 2022] and [Priyadarshi and Kochut,
2021]. The work in [Sheikh et al., 2022] presents an edge-cut
partitioning method that can aggregate information from only
essential nodes from connected subgraphs after partitioning.
Similarly, the work presented in [Priyadarshi and Kochut,
2021] has proposed a workload-aware knowledge graph par-
titioning that analyses training triples and the connected KG
to form partitions.

Despite several studies on KG partitioning-based embed-
ding models, properly partitioning a KG with the least cross
partition edges remains challenging. Furthermore, a frame-
work is required to merge these individual embeddings into
one complete graph structure. Considering these methods in
the field, a dedicated KG partitioning architecture is required
that ensures the least cross-cluster relations. Furthermore,
developing a lightweight GCN-based architecture is essen-
tial, which can be coupled with partitioning to learn effective
embeddings from KG faster. In this paper, we address this
problem by proposing a novel KG partitioning method and
a composition-based aggregation method to achieve faster
training while keeping the prediction accuracy high.

3 Materials and Methods
The methodology is divided into three stages: Partition gen-
eration (3.2), Weighted Aggregation Composition Convolu-
tion (3.3), and the partitioning-based decoder framework for
link prediction, (3.4). The proposed CPa-WAC algorithm is
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summarized in Figure 1. The code is made available for the
research community1, and summarized in Algorithm 1.

3.1 Problem Definition and Notations
A knowledge graph is a semantic network, represented as KG
= {E,R, T}. Here E, R, and T represent entities, relations,
and triples, respectively. The triples in a KG can be regarded
as T = {ϱ, µ, ξ}, where ϱ, µ, and ξ symbolizes a head, re-
lation, and tail, respectively. The relations are directed and
represent a link between two entities. This study aims to em-
pirically verify that partitioning can be used to speed up KGE
without destroying the structure of the KG and jumbling the
inference logic.

3.2 Constellation Partitioning: CPa
As the first step towards speed-up, the proposed method
employs Louvain clustering (LC) [Blondel et al., 2008] as
its base. The essence of LC lies in community detec-
tion/subgraph generation, which partitions a given homoge-
neous graph based on the density of its edges. This method
exclusively suits graphs without node and edge attributes,
making it a perfect fit for KG partitioning. The proposed con-
stellation partitioning (CPa) algorithm utilizes the LC algo-
rithm on KG to partition it into several topological structures.
The process starts by creating a symmetric adjacency matrix
(A). If a link exists between two nodes in a graph, then a 1 is
added at positions in A representing the connection. This pro-
cess is repeated for every type of relation for all nodes. This
weighted adjacency matrix can be fed to the LC algorithm to
obtain the initial number of clusters using modularity score
maximization. The modularity score Mc for each cluster c is
given as:

Mc =
αin

2ω
−
(αall

2ω

)2

, (1)

Here, αin is the summation of the total weights of all links
contained only within cluster c. Similarly, αall represents the
summation of the weights of links that the nodes of cluster c
have with each other and also with nodes from other clusters.
The variable ω is the total weight of all links in the graph.
Once the initial number of clusters are formed using the LC
algorithm, using a hard threshold of δ, clusters having only a
few entities are all merged into one cluster. This groups those
few outlier entities in KG that have very few links and can
distort the embedding process. Here, threshold δ is a KG-
specific hyperparameter.

Despite creating one merged cluster with a threshold δ,
some clusters with a small number of entities may remain.
This is due to the LC algorithm’s limitation in partitioning
heterogeneous directed graphs. Therefore, merging these
small clusters with bigger and denser clusters is essential in
avoiding loss of structural information. To do so, we utilize
three levels of hierarchical merging using Φ=γ×β×δ. Here,
δ is the initial threshold from the previous step, γ is the in-
cremental step, and β is also a hyperparameter to control the
number of clusters created. This finally gives us the C num-
ber of clusters. The logic is that if the number of entities in a
cluster is below a threshold Φ, it will be merged with a cluster

1https://github.com/ganzagun/CPa-WAC

Algorithm 1 Louvain Constellation Partitioning

1: Initialize: A, A’ as square matrices of zeroes with each
dimension equal to the number of nodes, N

2: Initialize: γ, β, δ, σ
3: For i = 1 : length(T )
4: Add 1 to positions in A(T(i,0),T(i,2))

5: Add 1 to positions in A(T(i,2),T(i,0))

6: A
′

(T(i,0),T(i,2))
=1

7: A
′

(T(i,2),T(i,0))
=1

8: End
9: Apply LC to A

10: Maximize modularity using Equation 1
11: Cluster outliers with threshold δ
12: For j = 1 : 3 (for three levels of hierarchical merging)
13: Obtain k number of clusters and store in vector L to

map each entity to a cluster
14: Create a list U with all entities present in each

cluster
15: For m = 1 : N
16: B = A′

(m) × L
17: The label at position A′

(m,m) = l
18: For p = 1: k
19: x = Number of entities in B with label p
20: Store x in vector F at position F(p)

21: End
22: Find argmax(F) whose label is not l
23: Store p in vector M at position Mm. This is the

cluster that is adjacent to node m
24: End
25: For q = 1 : k
26: Identify positions in vector L with label q
27: Take the corresponding positions from vector M

and store them in vector D
28: Based on Majority voting of nodes in vector D

select the nearest cluster, y
29: Φ= γ × β × δ
30: If length(U(y)) < σ and length(U(q)) < Φ
31: Merge the two clusters by applying labels from

the bigger cluster y, to the smaller cluster q
32: End
33: End
34: γ= 2 * γ (incremental step)
35: End

with a higher number of entities with the most links. We call
this the nearest linked neighbor (NLN). The three incremen-
tal thresholds applied to the clusters ensure steady growth of
entities in highly dense clusters. To avoid entity explosion,
a second threshold of σ is used to cap the maximum number
of entities in a cluster. If the number of entities in a clus-
ter > σ, then a smaller cluster will not be merged with it
even if this cluster is its NLN. Hence, for clusters containing
a higher number of entities, smaller clusters that are desig-
nated as NLN will be merged iteratively with them. Thus, a
relatively similar number of entities is obtained for each clus-
ter while the overall modularity of the graph remains high.
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Figure 1: Block diagram of the proposed method a.) Using the LCP to divide the training triples for different clusters and train the partitions
separately. b.) Concatenation of node and relation features along with retraining the Global encoder for link prediction.

3.3 Weighted Aggregation Composition (WAC)
Convolution

In this section, we present an improved version of compo-
sitional message-passing [Vashishth et al., 2019], namely
Weighted Aggregation Composition (WAC) Convolution. We
harness the power of graph attention layers [Liu et al., 2021]
to obtain the embeddings of entities and relations by pass-
ing through two different composition functions for message
aggregation. These functions are denoted by,

hu = egu × wg
u × rgu, (2)

hv = Σz
b=1Σ

f
v=1(e

g
v × wg

v × rgb + egv × wg
b ), (3)

where eu is the embedding of the entity number u and r is the
relation embeddings. The variables, wu, wv , and wb, denote
the learnable weight vectors needed to transform the entities
and relationships. Here, hu and hv represent the composition
operations needed to transform a particular entity, once up-
dating itself using its entity weight and self-loop (Eq. 2) and
a second time by the weights and messages from its neigh-
bors (Eq. 3). The term g represents the current state of em-
beddings, v represents the neighbor number of the uth entity,
b represents the relation type number out of z number of re-
lations that connects the uth entity to its neighbors, and f
represents the total number of neighbors that the uth entity is
connected to, and, ‘×’ is element-wise feature multiplication.

Once hv and hu are calculated, an activation function is
used for each level of message aggregation. The Gaussian er-
ror linear unit (GELU) activation function ψ is chosen to up-
date the message-passing function. Next, the summation of
neighborhood messages (hv) is passed through an attention
layer after normalizing the messages with the degree matrix
G. The attention layer, Γ, adds specific attention to all fea-
tures for each entity. Finally, we take a weighted sum of hv
and hu to produce the embeddings eu. The entire process can
be summarized using the following equation,

eg+1
u = ζ × ψ(hu) + θ × ψ(Γ(G−0.5

v × hv ×G−0.5
v )), (4)

where g + 1 represents the next stage of the entity embed-
dings, and ζ and θ are scalar weights and are separate for
each level of aggregation. The relation embeddings are up-
dated using,

rg+1
b = rgb × vgb , (5)

where vb represents a separate learnable weight vector from
wb and can be updated using backpropagation to emphasize
more dominant relations in the KG.

Finally, a 1D convolutional neural network (1D-CNN) de-
codes the embedding. It uses a multiplication operation of en-
tities and relation embeddings, similar to the work in [Kazemi
and Poole, 2018]. This module consists of several filters and
a dense layer, which is trained iteratively to produce mean-
ingful features from obtained embeddings. Batch normaliza-
tion is utilized twice, once after the convolutional process and
the second after passing through the dense layer. The binary
cross-entropy (BCE) loss function trains models on each clus-
ter of entities and relationships separately.

3.4 Global Decoder (GD) Framework & Inference
Once the embeddings for entities and relations are obtained,
the method moves to its last stage where a separate framework
is created and trained for inference. This module is named the
global decoder (GD) framework entire training data is fed to
this network a second time to train the weights of the MLP

This framework concatenates the feature vectors for all
nodes and relations. Let an entity embedding ecu for uth en-
tity from a cluster c be of dimension 1×s. Considering C
generated clusters, embedding ecu is upscaled to a dimension
1×Cs. In upscaled ecu, a portion of values is the same embed-
ding, while the remaining 1×(C−1)s values are zeros. These
features are then fed into an MLP after multiplying the em-
beddings with trainable weight matrices, We and Wr. Here,
We and Wr are the weight matrix that projects the upscaled
entity and relation embeddings to lower dimensions, respec-
tively. These weights are then trained along with the weights
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for the MLP in an end-to-end fashion utilizing a multiclass
BCE loss. The final model and the embeddings of nodes and
relations are then used for inference. For testing, the nodes
and relations of the test set are fed to the model to predict the
tail. Similarly, the reverse is done for predicting the head.

4 Experimental Setting
4.1 Implementation and Database Details
All experiments have been conducted on an I7-13700, 2.1
GHz system with 32 GB RAM and NVIDIA RTX A2000
12 GB GPU. The AdamW optimizer is utilized to train the
weights of the proposed architecture for a total of 400 epochs
for all partition-based experimentation. Consequently, for
comparing the WAC convolution to other architectures, we
show results for a model trained on 400 and 1500 epochs
(as some papers in literature use 1500 epochs as their set-
ting). Furthermore, all state-of-the-art models have been im-
plemented using the same hyperparameter settings as the pro-
posed architecture. This setting includes batch number, regu-
larization rate, weight decay, learning rate, and the same em-
bedding dimensions for each model.

As summarized in Table 1, we use the most widely used
Wordnet [Miller, 1995] and Freebase [Bollacker et al., 2008]
for our experiments. Two versions of each dataset are used,
namely WN18 and WN18RR for Wordnet and FB15K and
FB15K-237 for Freebase. These four datasets capture differ-
ent denseness and scales of the graph. Particularly, FB15K
and FB15K-237 are large-scale KG, making them vital for
research on scalable KG.

Dataset E R Training Valid Test

FB15K 14,951 1,345 483,142 50,000 59,071
FB15K-237 14,541 237 272,115 17,535 20,466

WN18 40,943 18 141,442 5,000 5,000
WN18RR 40,943 11 86,835 3,034 3,134

Table 1: Description of Knowledge Graph Datasets.

4.2 Evaluation Metrics
We evaluate the proposed method using popular KGE evalu-
ation metrics of mean reciprocal rank (MRR) and Hits@K.
Furthermore, partitioning is evaluated using a novel proposed
evaluation metric, that is, tail and head in the same partition
(THP ). The metrics are defined as follows:

MRR =
1

Q
ΣQ

d=1

1

rankd
, (6)

Hits@K =
o+
Sall

, (7)

THP =
ΣC

n=1Sn

Sall
× 100, (8)

where Q is the number of reciprocal ranks, d is the element
number, and rank is the position of the highest-ranked an-
swer (1, 2, 3, ..., X) for X answers returned in a query. Here,

o+ is the number of positives occurring in the top-X posi-
tions, and Sall is the total number of triples in the dataset.
For C number of obtained partitions, THP can be defined
as the number of triples Sn with the head and tail within the
same partition compared to the total number of triples, Sall.

5 Results and Analysis
This section talks about results and comparisons from pro-
posed CPa-WAC and other state-of-the-art methods in the
field of KG partitioning and optimization.

5.1 Partition Analysis
Using THP as an evaluation metric for partitioning, we eval-
uate the proposed partitioning method CPa over four KG
datasets in Table 2. Over varying cluster counts, we observe
that over 70% of the training triples have their head and tail
within the same partition. This even true at as high as eight
separate clusters. For the test and validation sets, except for
dataset FB15k-237, all datasets show a high THP over 70%.
Despite THP being inversely proportional to the number of
clusters, the proposed CPa method can retain much of the
original structure of the KG even after partitioning. This is
particularly evident for dense KG such as FB15k and WN18.

5.2 Embedding Method Analysis
As the next step, we analyze the effectiveness of the proposed
WAC Convolution method on link prediction and compare it
to state-of-the-art methods that employ GNN in their archi-
tectures. The comparison is done in terms of the MRR and
average time per epoch of training (T/epoch) in seconds. For
this experiment, we consider the whole KG for each dataset
with predefined training, valid, and test sets.

From Table 3, we observe that the proposed method shows
slightly better performance in terms of MRR. Alongside
marginally better performance, the reduction in time for each
epoch is considerably high, giving WAC an edge over the
rest in terms of faster training of embeddings. The proposed
WAC not only improves the MRR for denser graphs such as
FB15k and WN18 but also speeds up the training immensely
for these graphs. For sparser graphs such as FB15k-237 and
WN18RR, while the MRR does not show much improve-
ment, the performance speedup is twice compared to SE-
GNN [Li et al., 2022a] and approximately 1.7 times com-
pared to RAGAT [Liu et al., 2021].

5.3 Partition Performance Analysis
We analyze the acceleration rate in comparison to the perfor-
mance drop by applying the proposed method on several KG.
Figure 2 depicts the effects of CPa coupled with LC and WAC
on MRR and Hits@K for C number of clusters. In this ex-
periment, we train a separate architecture to infer links using
our global decoder framework. In this setting, the obtained
features from partitions are used to retrain the dense layers as
described in Section 3.4.

From the experiments, we can conclude that disjoint sub-
graphs created by the proposed CPa-WAC method retains the
essence of the original structure. With a global decoder, CPa-
WAC outperforms, with the observed MRR and Hit@K
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Dataset Split
Number of Partitions (C)

2 3 4 5 6 7 8

FB15k-237
Train 99.98% 85.28% 79.50% N/A 73.30% 73.09% 72.50%
Valid 99.82% 81.25% 72.72% N/A 65.15% 64.86% 64.06%
Test 99.91% 81.79% 73.08% N/A 65.59% 65.49% 64.45%

FB15k
Train 99.89% 89.44% 87.87% 75.12% 74.14% 73.99% 73.54%
Valid 99.88% 89.23% 87.63% 74.34% 73.4% 73.26% 72.52%
Test 99.86% 89.24% 87.56% 74.15% 73.11% 72.98% 72.78%

WN18RR
Train 100% 93.97% 94.38% N/A 92.17% N/A 90.71%
Valid 92.76% 79.64% 81.49% N/A 76.00% N/A 73.20%
Test 92.56% 80.32% 80.52% N/A 77.19% N/A 73.60%

WN18
Train 100% 94.43% 92.79% 91.22% N/A 90.79% 90.11%
Valid 100% 88.46% 85.46% 81.82% N/A 81.16% 79.40%
Test 100% 89.62% 86.24% 83.34% N/A 83.08% 81.12%

Table 2: Partition Analysis: Evaluation of the proposed CPa coupled with LC in terms of head and tail achieved in the same partition (THP ).
The method is evaluated on different numbers of partitions on each dataset using the training set to generate partitions. Here N/A indicates
that the proposed method did not generate the specific number of clusters for the dataset.

Figure 2: Performance of various datasets with different numbers of partitions produced using LC, CPa, WAC and GDF (a) MRR at different
numbers of generated partitions (b) Hits@K at different numbers of generated partitions (c) Time per epoch without parallelization at different
numbers of generated partitions (d) Performance Speedup evaluation with parallelization.

Dataset Method Comp-GCN RAGAT SE-GNN WAC

FB15k-237
MRR (400) 0.338 0.349 0.364 0.341

MRR (1500) 0.350 0.355 N/A 0.351
T/epoch (s) 57.92 65.20 113.33 24.98

FB15k
MRR (400) 0.600 0.598 O/M 0.723

MRR (1500) 0.621 0.637 O/M 0.742
T/epoch (s) 95.98 168.23 N/A 65.16

WN18RR
MRR (400) 0.452 0.472 0.482 0.468

MRR (1500) 0.464 0.478 N/A 0.481
T/epoch (s) 47.20 70.76 98.26 42.39

WN18
MRR (400) 0.938 0.941 0.940 0.947

MRR (1500) 0.940 0.944 0.942 0.952
T/epoch (s) 50.41 62.60 105.86 42.78

Table 3: Comparison of the proposed embedding method to state-of-
the-art methods for 400 and 1500 epochs. The models are compared
in terms of MRR and time required per epoch in seconds. Here O/M
represents out-of-memory for a certain set of hyperparameters.

higher than the whole KG (for 4 and 5 different partitions).
From Figure 2, we see that despite a slight reduction inMRR

and Hits@K with increasing partitions, the dip is small up
to 6 partitions. Note that setting C=1 translates to process-
ing the whole KG together. In most cases, the acceleration
increases with the increase in the number of partitions. We
further employ parallelization of partitions on a single GPU
by invoking subprocesses. As the number of entities and rela-
tionships is far less for each partition compared to the original
KG, a single GPU can process these subgraphs separately.
The system can be used to train models on eight separate
partitions simultaneously with the same memory cost com-
pared to processing the entire graph using WAC. Figure 2(d)
represents the speedup obtained during the training process.
This speedup is calculated as the ratio of time to processes C
number of partitions parallelly against the processing time of
the entire KG together using WAC. While the acceleration re-
mains between 2 to 4 times the average training time for most
datasets, FB15k shows the most acceleration going up to 4.5
times for 7 and 8 clusters. However, using a multi-GPU sys-
tem can further accelerate the process. Figure 2(c) shows that
for denserKG (FB15K and WN18), the acceleration is better
than their sparser counterparts (FB15K-237 and WN18RR).
This implies that density also affects speed-up.
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Dataset FB15k-237 FB15k WN18RR

Method MRR Hit@10 MRR Hit@10 MRR Hit@10
[Bai, 2023] 0.291 0.486 0.695 0.872 - -

[Sheikh et al., 2022] 0.220 0.138 - - - -
[Wang et al., 2022b] 0.345 0.507 - - 0.411 0.491

LC + CPa + WAC 0.331 0.506 0.759 0.878 0.468 0.521

Table 4: Comparison with state-of-the-art methods on Partitioning-
based Embedding generation and inference. (-) denotes unreported
results for the respective dataset in the original paper.

We compare the best performance achieved by the pro-
posed method for each dataset and compare them with state-
of-the-art methods of KG partitioning. These results are il-
lustrated in Table 4. The comparative methods are selected as
all of these use partitioning to achieve faster training. Over-
all, the proposed method achieves the best performance and
second best for the FB15k-237 dataset, as observed by im-
proved MRR and Hit@10. Furthermore, on the FB15k-237
dataset, [Sheikh et al., 2022] reports speed up using multi-
GPU distributed training to be four times. In comparison,
the proposed method shows a similar speed-up at 3.7 times
with just a single GPU with a considerable improvement in
MRR and Hit@10. Hence, we conclude that the proposed
method shows an overall edge in performance compared to
other methods in the field that combine partitioning and KGE.

6 Ablation Study
In this section, we conduct an ablation study to analyze the
contribution of the CPa component in the proposed KGE
method on three aspects. (i) We compare the test MRR and
Hit@K for an alternate setup: border entity addition (BEA).
This method utilizes the addition of triples with a head or a
tail in another partition to the training data of each partition.
This will enable some entities to be present in more than one
cluster. This experiment aims to study the effects of over-
lapping partitioning and deduce its effect on the performance
of KGE; (ii) We conduct another study that utilizes separate
models for inference. In this setting, we save each model sep-
arately for each partition and use the saved model (SM) for in-
ference using a reasoning framework. Under this scenario, if
the head of a test triple falls within a particular partition, then
the tail will only be selected from the same partition. Thus,
in this setup, the architecture can not predict any link that ex-
ists between partitions, and so the MRR for these triples is
considered as 0. When inferred through separate embedding
models, the drop in performance is significant; (iii) We re-
run our experiments utilizing a different partitioning method,
namely, Leiden partitioning (LeP) [Traag et al., 2019]. Given
both are modularity maximization methods, both can be used
due to quicker runtime and find application in community de-
tection in homogenous graphs. This algorithm utilizes mod-
ularity vertex partitioning that only considers links between
nodes. Other methods like METIS and spectral clustering are
computationally expensive.

Table 5 shows the outcome of different iterations on the
performance of the architecture on four partitions. In this

Dataset FB15k WN18

Models MRR T/epoch MRR T/epoch

LC+ CPa + WAC + GD 0.729 31.18 0.940 23.98
LC+ CPa + WAC + SM 0.651 26.86 0.822 16.89

LC+ CPa + WAC + BEA + GD 0.734 52.49 0.934 28.55
LC+ CPa + WAC + BEA + SM 0.589 48.17 0.811 21.46

LeP + CPa + WAC + SM 0.591 24.16 0.815 16.80
LeP + CPa + WAC + GD 0.753 28.49 0.941 23.12

Table 5: Ablation study of different combinations of modules for
four clusters generated on larger datasets (FB15k and WN18).

table, the LC+CPa+WAC+GD signifies the results from the
proposed algorithm. As seen from the results, adding border
entities degrades the performance of KG when relationship
types are less (while increasing the training time slightly).
However, for denser KG such as FB15k that have a high
number of relationship types, the addition of border entities
enhances the performance by a small margin at the expense
of an increase in training time. Therefore, we conclude that
for sparse graphs containing a lower number of relationship
types, border entity addition has overall negative effects on
the performance of the KGE algorithm. Contrarily, for dense
KG with a high number of relationship types, positive effects
on performance can be achieved at expense of higher time.

Furthermore, using Leiden clustering to initialize the par-
titions yields better performance for denser graphs such as
FB15k while the performance remains comparatively the
same for sparser graphs such as WN18. Similarly, LeP shows
a reduction in the training time compared to the LC for both
datasets. This highlights that the proposed constellation parti-
tioning algorithm (CPa) works perfectly when coupled with
any homogenous graph partitioning algorithm that only con-
siders the modularity of graphs.

7 Conclusion
In this paper, we present a combination of a novel method of
partitioning KG along with an improved GCN-based embed-
ding architecture. Results show that the proposed architecture
performs well with a significant reduction in time complexity
for GCN-based embedding generation architectures. Addi-
tionally, a comparison of three state-of-the-art methods with
the proposed method has also been provided in this study,
highlighting their embedding performance on KGE. The re-
sults have conclusively pointed toward the superior perfor-
mance of the proposed method, both at the partitioning and
the embedding levels. For future studies, we intend to develop
a sophisticated reasoning algorithm that would replace the
global merging algorithm to reduce the retraining time. From
ethical standpoint, we recommend selecting train time vs.
performance trade-off based on the metrics, properties of the
graph, and criticality of the application.
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