
Instantiations and Computational Aspects of
Non-Flat Assumption-based Argumentation

Tuomo Lehtonen1 , Anna Rapberger2 , Francesca Toni2 ,
Markus Ulbricht3 and Johannes P. Wallner4

1University of Helsinki, Department of Computer Science
2Imperial College London, Department of Computing

3Leipzig University, ScaDS.AI Dresden/Leipzig
4Graz University of Technology, Institute of Software Technology

Abstract
Most existing computational tools for assumption-
based argumentation (ABA) focus on so-called flat
frameworks, disregarding the more general case.
In this paper, we study an instantiation-based ap-
proach for reasoning in possibly non-flat ABA. We
make use of a semantics-preserving translation be-
tween ABA and bipolar argumentation frameworks
(BAFs). By utilizing compilability theory, we es-
tablish that the constructed BAFs will in general be
of exponential size. To keep the number of argu-
ments and computational cost low, we present three
ways of identifying redundant arguments. More-
over, we identify fragments of ABA which admit a
poly-sized instantiation. We propose two algorith-
mic approaches for reasoning in non-flat ABA; the
first utilizes the BAF instantiation while the second
works directly without constructing arguments. An
empirical evaluation shows that the former outper-
forms the latter on many instances, reflecting the
lower complexity of BAF reasoning. This result
is in contrast to flat ABA, where direct approaches
dominate instantiation-based solvers.

1 Introduction
Formal argumentation constitutes a prominent branch of AI
that studies and develops computational approaches to rea-
son argumentatively [Baroni et al., 2018]. The heterogeneity
of this field is reflected in various formalizations and appli-
cation domains, such as legal reasoning, medical sciences,
and e-democracy [Atkinson et al., 2017]. Computational ap-
proaches to solve key reasoning tasks are critical to the de-
ployment of formal argumentation.

Argumentation formalisms are often classified as either ab-
stract or structured . Abstract argumentation [Dung, 1995] is
concerned with acceptability of arguments based exclusively
on the relations between them. Structured argumentation for-
malisms [Besnard et al., 2014] capture an entire argumenta-
tive workflow [Caminada and Amgoud, 2007]: starting from
knowledge bases, a process of argument generation or instan-
tiation is prescribed, upon which semantics can be deployed
to find acceptable arguments or conclusions thereof.

Computational approaches to structured argumentation
have gained increased attention in the research commu-
nity. The biannual International Competition on Compu-
tational Models of Argumentation (ICCMA) [Thimm and
Villata, 2017; Gaggl et al., 2020; Lagniez et al., 2020;
Bistarelli et al., 2021; Järvisalo et al., 2023] has recently
included a dedicated track for assumption-based argumenta-
tion (ABA) [Bondarenko et al., 1997]—one of the prominent
approaches to structured argumentation . Several algorith-
mic approaches to ABA or other well-known structured ar-
gumentation formalisms like ASPIC+ [Modgil and Prakken,
2013] have been proposed recently [Craven and Toni, 2016;
Lehtonen et al., 2017; Bao et al., 2017; Karamlou et al., 2019;
Lehtonen et al., 2020; Lehtonen et al., 2021a; Lehtonen
et al., 2021b; Diller et al., 2021; Lehtonen et al., 2022b;
Thimm, 2017; Lehtonen et al., 2022a; Lehtonen et al., 2023].

Within this surge of algorithmic efforts, many solutions fo-
cus on restricted fragments of structured argumentation. For
instance, most algorithms for ABA (e.g. [Craven and Toni,
2016; Lehtonen et al., 2021a; Diller et al., 2021]) focus on the
flat ABA fragment, which imposes a strong restriction on the
knowledge base by excluding derivations of ‘assumptions’.
The general ABA language, not restricted to the flat frag-
ment and referred to in this paper as non-flat ABA, is able
to capture more expressive settings such as auto-epistemic
reasoning [Bondarenko et al., 1997] and multi-agent settings
where merging information from different sources can result
in a non-flat knowledge base [Ulbricht et al., 2024]. More
broadly, non-flat ABA can capture situations where depen-
dencies between assumptions need to be taken into account,
and is therefore strictly more expressive than flat ABA. How-
ever, the few algorithms for non-flat ABA heavily restrict the
kind of ABA frameworks (ABAFs) to which they apply (in
[Karamlou et al., 2019] to bipolar ABA frameworks [Cyras
et al., 2017]). A possible reason for the focus on flat ABA is
the lower computational complexity. As shown by Dimopou-
los et al. (2002) and Čyras et al. (2021a), all major reasoning
tasks exhibit a one level jump in the polynomial hierarchy
when going from flat to non-flat ABA, which, again, reflects
the increased expressiveness of the general (not-flat) case.

In this paper we fill this gap and address computational
challenges of non-flat ABA. In particular, we investigate al-
gorithmic approaches to reasoning in non-flat ABA, establish

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3457

new theoretical insights and evaluate them in practice.
Algorithms for flat ABAFs can be divided into (i) in-

stantiating a semantics-preserving argumentation framework
(AF) [Dung, 1995] and then performing the reasoning
task in the AF; and (ii) direct approaches operating on
the given ABAF without instantiation. There are benefits
to instantiation-based approaches, such as explainability in
the form of more abstract, cognitively tractable explana-
tions [Čyras et al., 2021b]. For performance, direct ap-
proaches, specifically ones using modern declarative meth-
ods, such as answer set programming (ASP) [Gelfond and
Lifschitz, 1988; Niemelä, 1999], typically have an edge over
instantiation-based solvers in structured argumentation (e.g.
[Lehtonen et al., 2021a; Lehtonen et al., 2023]). However,
in the case of non-flat ABA this might plausibly not be the
case. A recent instantiation [Ulbricht et al., 2024] translates
a given non-flat ABAF into a bipolar AF (BAF) [Amgoud et
al., 2008] such that reasoning in the constructed BAF is com-
putationally milder compared to the initial ABAF . This is in
contrast to the classical translation of flat ABAFs into AFs,
where the complexity of reasoning is as high for the AFs.

In this work, we study the advantage this lower complex-
ity can give for reasoning in non-flat ABAFs via instantiation
to BAFs. While ideally the resulting BAF would be of poly-
nomial size, similarly to a recently proposed translation from
flat ABA to AF [Lehtonen et al., 2023], we show that this
is impossible in non-flat ABA. Instead, we investigate redun-
dancies that can be eliminated to optimize the instantiation.

In more detail, our main contributions are:
• We present a result based on compilability theory, sug-

gesting that an instantiation in BAFs cannot avoid an ex-
ponential number of arguments. Section 3.1

• Motivated by the lower complexity in instantiated BAFs
compared to non-flat ABAFs, we show how to effi-
ciently instantiate BAFs. We present three redundancy
notions for argument generation. Section 3.2

• Towards a greater reach for applications, we also iden-
tify fragments of non-flat ABA with milder complexity:
atomic and additive non-flat ABAFs. Section 3.3

• We propose two algorithmic approaches for reasoning in
non-flat ABAFs. The first one efficiently instantiates a
BAF via ASP using our redundancy notions, followed
by SAT-based reasoning on the BAF. Section 4
The second one performs reasoning directly on the given
non-flat ABAF using iterative ASP calls, similarly to
state-of-the-art approaches for other beyond-NP struc-
tured argumentation problems. Section 5

• We show empirically that both algorithms are competi-
tive, with relative performance depending on the bench-
mark set. This contrasts with the dominance of non-
instantiation approaches for other structured argumen-
tation formalisms. Section 6

We focus on complete, grounded, stable and a complete-
based version of preferred semantics. In a technical ap-
pendix [Lehtonen et al., 2024], we expand on proof details,
encodings, and how to approach admissible-based semantics,
which was shown to be more involved [Ulbricht et al., 2024].

2 Background
We recall preliminaries for assumption-based argumentation
frameworks (ABAFs) [Bondarenko et al., 1997; Čyras et al.,
2018], bipolar argumentation frameworks (BAFs) [Amgoud
et al., 2008], instantiation of BAFs to capture ABAFs [Ul-
bricht et al., 2024] and basics of computational complexity
.
Assumption-based Argumentation. We assume a deduc-
tive system (L,R), withL restricted to a set of atoms andR a
set of rules overL. A rule r∈R has the form a0←a1, . . . , an
with ai ∈L. We denote the head of r by head(r) = a0 and
the (possibly empty) body of r with body(r) = {a1, . . . , an}.
Definition 2.1. An ABAF is a tuple (L,R,A,), where
(L,R) is a deductive system, A ⊆ L is a non-empty set of
assumptions, and : A → L is a (total) contrary function.

Here, we focus on finite ABAFs, i.e., L andR are finite.
An atom p ∈ L is derivable from assumptions S ⊆A and

rules R ⊆ R, denoted by S `R p, if there is a finite rooted
labeled tree G such that the root is labeled with p, the set of
labels for the leaves of G is S or S ∪ {>}, and for every
inner node v of G there is a rule r ∈ R such that v is labelled
with head(r), the number of children of v is |body(r)| and
every child of v is labelled with a distinct a ∈ body(r) or
> if body(r) = ∅. We call such a G a tree-based argument.
A sub-argument of G is a finite rooted labelled sub-tree G′
such that the leafs of G′ are a subset of the leafs of G. We
will denote with AD the set of all tree-based arguments of an
ABAF D. Following Toni (2014), we will often compactly
denote a tree-based argument with root p and leafs S as S ` p.

For S ⊆A, we let S = {a | a ∈ S}. By ThD(S) = {p ∈
L | ∃S′⊆S : S′ `R p} we denote the set of all conclusions
derivable from S. Note that S ⊆ ThD(S) as each a ∈A is
derivable via {a} `∅ a. For S ` p ∈AD, we let asms(S `
p)=S; for E⊆AD we let asms(E) =

⋃
x∈E asms(x).

Definition 2.2. LetD = (L,R,A,) be an ABAF, S, T ⊆A,
and a ∈ A. The closure cl(S) of S is cl(S)=ThD(S)∩A. S
is closed iff S = cl(S); S attacks T iff b ∈ ThD(S) for some
b ∈ T ; S defends a iff for each closed V ⊆ A s.t. V attacks
a, S attacks V ; S defends itself iff S defends each b ∈ S.

An ABAF where each set of assumptions is closed is called
flat. We refer to an ABAF not restricted to be flat as non-flat.

For a ∈ A, we also say S attacks a if S attacks the single-
ton {a}, and we write cl(a) instead of cl({a}).

A set S ⊆ A is conflict-free inD, denotedE ∈ cf (D), ifE
is not self-attacking; S is admissible, denoted S ∈ adm(D),
if S is closed, conflict-free and it defends itself. We focus on
grounded, complete, ⊆-maximal complete, and stable ABA
semantics (abbr. grd , com , prf ′, stb), as follows.1

Definition 2.3. Let D = (L,R,A,) be an ABAF and S ⊆
A be a set of assumptions s.t. S ∈ adm(S). We say

1In the paper we show results for grd , com , stb and prf ′ defined
as ⊆-maximal complete sets (a variant to the usual prf semantics
given as ⊆-maximal admissible sets). We give results for adm and
the standard prf in [Lehtonen et al., 2024]. Although the intersec-
tion of all complete sets has been originally termed well-founded se-
mantics [Bondarenko et al., 1997], we stick to the usual convention
in the argumentation literature and call it “grounded”.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3458

• S ∈ com(D) iff it contains every T ⊆ A it defends,
• S ∈ prf ′(D) iff S is ⊆-maximal in com(D),
• S ∈ grd(D) iff S =

⋂
T∈com(D) T , and

• S ∈ stb(D) iff S attacks each x ∈ A \ S.
In this paper we stipulate that the empty intersection is in-

terpreted as ∅, thus if com(D) = ∅, then grd(D) = ∅.
Example 2.4. We let D be an ABAF with assumptions A =
{a, b, c}, rules R = {(p ← a), (q ← b), (c ← p, q)}, and
b = p. The set {a, c} is (⊆-maximal) complete and stable
in D since {a, c} is unattacked and {a} attacks b. Note that
{a, b} is not closed since cl({a, b}) = {a, b, c}.
Bipolar Argumentation. Bipolar argumentation features
adversarial and supportive relations between arguments.
Definition 2.5. A bipolar argumentation framework (BAF)
F is a tuple F = (A,Att, Sup) where A represents a set of
arguments, Att ⊆ A × A models attack, and Sup ⊆ A × A
models support between them.

Thus, in the tradition of Dung’s abstract argumentation
frameworks (AFs) (1995), arguments in BAFs are considered
abstract, but BAFs extend AFs by integrating support. We
call F = (A,Att) the underlying AF of F = (A,Att, Sup).

For two arguments x, y ∈ A, if (x, y) ∈ Att ((x, y) ∈
Sup) we say that x attacks (supports) y as well as x attacks
(supports) (the set) E ⊆ A given that y ∈ E.

We utilize the BAF semantics introduced by Ulbricht et
al. (2024). For a set E ⊆ A, we let cl(E) = E ∪ {a ∈
A | ∃e ∈ E : (e, a) ∈ Sup}. The set E is closed if E =
cl(E); E is conflict-free in F , denoted E ∈ cf (F), if for
no x, y ∈ E, (x, y) ∈ Att; E defends a ∈ A if E attacks
each closed set S ⊆ A which attacks a. The characteristic
function of F is Γ(E) = {a ∈ A | E defends a}. We say E
is admissible, denoted E ∈ adm(F), if E is closed, conflict-
free, and E ⊆ Γ(E).
Definition 2.6. Let F be a BAF. For a set E ∈ adm(F),

• E ∈ com(F) iff E = Γ(E);
• E ∈ grd(F) iff E =

⋂
S∈com(F) S;

• E ∈ prf ′(F) iff E ⊆-maximal in com(F);
• E ∈ stb(F) iff E attacks all a ∈ A \ E.

ABA and Bipolar Argumentation. Each ABAF can be
captured as a BAF as follows [Ulbricht et al., 2024].
Definition 2.7. For an ABAF D = (L,R,A,), the instan-
tiated BAF FD = (A,Att, Sup) is given by A = AD and

Att = {(S ` p, T ` q) ∈ A×A | p ∈ T},
Sup = {(S ` p, {a} ` a) ∈ A×A | a ∈ cl(S)}.

Example 2.8. The ABAF from Example 2.4 yields the fol-
lowing BAF, with attacks as solid and supports as dashed
lines, and arguments depicted as trees (with root at the top).

p

a

A1

q

b

A2
c

p q

a b

A3

a

A4

b

A5

c

A6

This BAF construction captures semantics for ABAFs, as
recently shown [Ulbricht et al., 2024].

Theorem 2.9. Let D be an ABAF, FD = (A,Att, Sup) the
associated BAF, and σ ∈ {com, prf ′, grd , stb}. Then

• if E ∈ σ(FD), then asms(E) ∈ σ(D), and

• if S ∈ σ(D), then {x ∈ A | asms(x) ⊆ S} ∈ σ(FD).

Computational Complexity. We assume the reader to be
familiar with the polynomial hierarchy. We focus on the cred-
ulous reasoning task. For a BAF F and a semantics σ, an
argument a ∈ A is credulously accepted if a ∈ E for some
E ∈ σ(F); for an ABAF D and a semantics σ, a conclu-
sion p ∈ L is credulously accepted if p ∈ ThD(E) for
some E ∈ σ(D). The induced decision problems are de-
noted by CredBAFσ and CredABAσ , respectively. We note that
CredCcom = CredCprf ′ for C ∈ {BAF,ABA}.

Deciding credulous reasoning for non-flat ABA is ΣP
2 -

complete for complete, DP2-complete for grounded, and
NP-complete for stable semantics [Dimopoulos et al., 2002;
Čyras et al., 2021a]. As recently shown [Ulbricht et al.,
2024], the corresponding decision problems for BAFs exhibit
lower complexity for main semantics: DP-completeness for
grounded and NP-completeness for complete and stable.

3 BAF Generation in Theory
For instantiation-based algorithms the number of arguments
is critical for the run time performance. Direct instantiation
methods which compute all tree-based arguments may yield
unfeasibly large argumentation graphs. This has already been
pointed out for flat ABA, which motivated the study of means
to reduce their size [Lehtonen et al., 2023]. In this section, we
analyze redundancies for the non-flat case as well. However,
our first observation is that the computation of exponentially
many arguments can in general not be avoided for non-flat
ABA. A result of this kind is, to the best of our knowledge,
novel for structured argumentation.

3.1 A Lower Bound For Non-Flat Instantiations
We give a formal line of reasoning that it is impossible to
instantiate a given non-flat ABAF in a “reasonable” way and
thereby obtain a polynomial-sized graph (i.e., AF or BAF).

In more detail, we show a complexity result based on com-
pilability theory [Cadoli et al., 2002] stating that, unless the
polynomial hierarchy collapses, one cannot transform a given
non-flat ABAF D into some structure χ with the following
properties: i) χ is of polynomial size w.r.t. D; and ii) in χ
one can decide in polynomial time whether a given set E of
assumptions is admissible or complete in D. Since verifying
admissible sets in non-flat ABA is NP-complete, it is clearly
impossible to construct such χ in polynomial time. However,
we do not need this restriction. That is, even given exponen-
tial time, such χ cannot be constructed. Conceptually, this re-
sult excludes usual argument-centric instantiations of D into
AFs or BAFs, because here we expect checking whether a set
of arguments is admissible to be tractable.

That is, under complexity theoretic assumptions, our result
states that it is impossible to apply instantiations of D into a

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3459

polynomial-sized AF or BAF which have the usual correspon-
dences between sets of arguments and sets of assumptions.
Theorem 3.1. Unless the polynomial hierarchy collapses one
cannot transform a non-flat ABAF into a polynomial-sized
AF or BAF from which one can in polynomial-time decide
whether a given set of assumptions is admissible or complete.

3.2 Towards Feasible BAF Instantiations
The previous subsection shows that instantiation of non-flat
ABAFs will require exponentially many arguments in gen-
eral. We strive to construct as few as possible nonetheless.
We identify three redundancy notions to reduce the number
of arguments. We consider an arbitrary but fixed semantics
σ ∈ {com, grd , stb, prf ′} throughout this subsection.
Derivation Redundancy. We call the first notion derivation
redundant arguments as it spots “inefficient” derivations.
Definition 3.2. For an ABAFD and its set of argumentsAD,
we call an argument (S ` p) ∈ AD derivation redundant iff
there is an argument (S′ ` p) ∈ AD with S′ (S.
Example 3.3. Recall Example 2.4. Suppose we consider an
ABAF D′ by setting R′ = R ∪ {c ← p}. Then we would
obtain a new argument {a} ` c. Then the existing argument
A3 representing {a, b} ` c becomes derivation redundant.

We observe that derivation redundant arguments can be re-
moved without altering the sets of accepted assumptions.
Proposition 3.4. LetD be an ABAF and FD the correspond-
ing BAF. Let x ∈ AD be derivation redundant and let G be
the BAF after removing the argument x from FD. Then

{asms(E) | E ∈ σ(FD)} = {asms(E) | E ∈ σ(G)}.

Expendable Arguments. We derive another redundancy
notion based on the conclusion of arguments: if x = (S ` p)
is an argument where p is neither an assumption nor a con-
trary, then x merely represents an intermediate derivation
step. Arguments of this kind do not need to be instantiated
if one is interested in assumption extensions only.
Definition 3.5. For an ABAF D and its set of arguments AD
we call an argument (S ` p) ∈ AD expendable iff p /∈ A∪A.
Example 3.6. In our Example 2.4, for instance the argument
A2 representing {b} ` q is expendable since q is neither a
contrary nor an assumption.

Since arguments of this kind have no out-going attacks,
they do not contribute to the semantics of the instantiated
BAF. However, keep in mind that we still construct relevant
super-arguments of expendable ones.
Proposition 3.7. LetD be an ABAF and FD the correspond-
ing BAF. Let x ∈ AD be an expendable argument and let G
be the BAF after removing the argument x from FD. Then

{asms(E) | E ∈ σ(FD)} = {asms(E) | E ∈ σ(G)}.

Assumption Redundancy. This final redundancy notion is
specific to non-flat ABAFs. It states that arguments that make
use of assumptions in intermediate steps can be neglected.
This requires rules with assumptions in their head and is thus
not possible for flat ABA.

Definition 3.8. For an ABAFD = (L,R,A,) and its set of
arguments AD, an argument x = (S ` p) ∈ AD is assump-
tion redundant iff it contains a sub-argument x′ s.t.

• x′ is a proper sub-argument of x, i.e., x′ 6= x,
• x is of the form S′ ` a where S′ ⊆ S and a ∈ A.

Example 3.9. Suppose we augment Example 2.4 with the
additional rule “a← b”. This would lead to a novel argument
A7 for p by first applying the rule “a← b” and then “p← a”.
However, since a is an assumption itself, it is more efficient to
infer p from a directly, which is represented by the argument
A1. Thus A7 would be assumption redundant.

As for the other redundancy notions, arguments of this kind
can be removed without altering the semantics.
Proposition 3.10. Let D be an ABAF and FD the corre-
sponding BAF. Let x ∈ AD be an assumption redundant ar-
gument and let G be the BAF after removing x fromFD. Then
{asms(E) | E ∈ σ(FD)} = {asms(E) | E ∈ σ(G)}.

Summary. With our redundancy notions, the instantiated
BAF can be reduced as follows. From AD we construct the
set A∗D of non-redundant arguments by i) first removing all
derivation redundant arguments from AD; ii) then removing
all expendable arguments from the result of i); and finally iii)
removing all assumption redundant arguments from the result
of ii). Now we define the redundancy-free core of D.
Definition 3.11. Let D = (L,R,A,) be an ABAF. The
BAF G = (A,Att, Sup) is the non-redundant core of D
where A = {(S, p) | S ` p is an argument in A∗D}, Att is
the set of all attacks between arguments in A, and Sup is the
set of all supports between arguments in A.

Due to Propositions 3.4, 3.7 and 3.10 this representation is
semantically equivalent.
Corollary 3.12. Let D be an ABAF and FD its correspond-
ing BAF. If G is the redundancy-free core of D, then we have
that {asms(E) | E ∈ σ(FD)} = {asms(E) | E ∈ σ(G)}.

By our previous results, the non-redundant core preserves
the semantics of the given ABAF, since only redundant ar-
guments are omitted and the representation streamlined. By
applying this representation, we still have exponentially many
arguments in general, but finiteness is guaranteed.
Proposition 3.13. The redundancy-free core G of an ABAF
D has at most |2A| · |L| arguments.

3.3 Fragments
As we just saw, non-flat ABA instantiations will in general
have exponentially many arguments. In this subsection, we
investigate fragments inducing fewer arguments. Since rea-
soning in BAFs is milder than in non-flat ABAFs, we expect
such fragments to admit lower complexity. Indeed, if the core
computation is polynomial, then the complexity drops.
Proposition 3.14. Let C be a class of ABAFs s.t. the non-
redundant core of D can be computed in polynomial time.
Then, the computational complexity of reasoning problems in
D is not harder than in the instantiated BAF, i.e., CredABAσ is
in NP for σ ∈ {adm, com, prf ′, stb} and in DP for σ = grd .

Indeed, in our empirical evaluation in Section 6 we will see
that these fragments are milder in practice as well.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3460

Atomic ABAFs The first fragment we consider is atomic,
which has been studied for flat ABA as well [Rapberger and
Ulbricht, 2023; Lehtonen et al., 2023]. For an ABAF to be
atomic, each rule body element has to be an assumption.

Definition 3.15. Let D = (L,R,A,) be an ABAF. A rule
r ∈ R is called atomic if body(r) ⊆ A. The ABAF D is
called atomic if each rule r ∈ R is atomic.

For flat ABA, this means that D has |R| + |A| arguments
(each rule induces exactly one tree-based argument) [Lehto-
nen et al., 2023]. In contrast, the same is not immediate for
non-flat ABA as the derivation of assumptions is allowed.
Nevertheless, due to our notion of assumption redundancy
from Definition 3.8, we can show that the number of non-
redundant arguments is indeed linear in D.

Proposition 3.16. The non-redundant core of atomic ABAFs
D consists of at most |R|+ |A| many arguments.

Example 3.17. Consider an ABAF D with A = {a, b, c},
rules R = {(p ← a), (q ← b), (a ← c)}, and an arbitrary
contrary function. D is atomic since each rule body consists
of assumptions. While it is possible to construct more that |R|
+ |A| arguments (by applying “a ← c” and then “p ← a”),
these additional arguments are assumption redundant.

As a consequence, Proposition 3.14 applies to the class of
atomic ABAFs, inducing lower complexity of reasoning.

Additive Closure In an atomic ABAF, each non-redundant
argument has a derivation depth of 1. We can also bound the
body size of rules, obtaining so-called additive ABAFs.

Definition 3.18. We call an ABAF D = (L,R,A,) addi-
tive if for each rule r ∈ R it holds that |body(r)| ≤ 1.

The reason for calling ABAFs of this kind additive is that
they induce an additive ThD mapping, that is, for each set S
of assumptions, ThD(S) =

⋃
s∈S ThD(s).

Example 3.19. Consider an ABAF D with A = {a, b, c},
L = A ∪ {p, q, r, s}, rules R = {(p ← a), (q ← b), (r ←
p), (s← q)}, and an arbitrary contrary function. This ABAF
is additive since each rule body has size one. Consequently,
each constructible argument is based on one assumption only
(in contrast to e.g. A3 in Example 2.8 relying on a and b).

Note that Bipolar ABA [Cyras et al., 2017] is a special kind
of non-flat ABA restricted to being both atomic and additive.

As suggested by the previous example, each argument in
an additive ABAF has the form {} ` p or {a} ` p for some
assumption a. This induces the following bound.

Proposition 3.20. The non-redundant core of an additive
ABAF D consists of at most (|A|+ 1) · |L| many arguments.

Also in this case, Proposition 3.14 is applicable, including
the computational benefits of lower complexity.

4 Algorithms for Non-flat ABA via BAFs
We introduce an approach for solving reasoning problems in
non-flat ABA by instantiating a BAF and solving the corre-
sponding reasoning problem in the BAF. We focus on cred-
ulous reasoning for complete (and so preferred′) and stable
semantics. We employ efficient declarative methods, namely

Listing 1: Program Πgen arg

1 {in(X) : assumption(X)}.
2 derivable(X) ← assumption(X), in(X).
3 derivable(X) ← head(R,X), usable_rule(R).
4 usable_rule(R) ← head(R,_), derivable(X) : body(R,X).

answer set programming (ASP) [Gelfond and Lifschitz, 1988;
Niemelä, 1999] for generating arguments, and Boolean satis-
fiability (SAT) [Biere et al., 2021] for BAF reasoning.

4.1 BAF Generation
We introduce a novel approach for generating non-redundant
arguments (see Section 3.2) from an ABAF, using the state-
of-the-art ASP solver CLINGO [Gebser et al., 2016].

Firstly, we present an ABAF D = (L,R,A,) with R =
{r1, . . . , rn} in ASP as follows.

ABA(D) ={assumption(a). | a ∈ A} ∪
{head(i, b). | ri ∈ R, b = head(ri)} ∪
{body(i, b). | ri ∈ R, b ∈ body(ri)} ∪
{contrary(a, b). | b = a, a ∈ A}.

Then, we introduce the ASP program Πgen arg (see List-
ing 1), which by itself enumerates each assumption set and
determines what can be derived from it. The following pro-
cedure limits redundancy in the set of arguments.2 Firstly,
by Proposition 3.4, we eliminate derivation redundant argu-
ments. We use CLINGO heuristics [Gebser et al., 2013] for
this, adding the heuristic that each assumption is by default
not in. Secondly, by Proposition 3.7, one retains seman-
tic equivalence even if expendable arguments are ignored.
As we are interested in credulous acceptance, we also con-
struct arguments for atoms whose acceptance we want to
query. Optionally, instead of a query atom, a set of atoms
can be specified, so that the acceptance of any of these
atoms can be decided from a single BAF. We enumerate an-
swers to ABA(D) ∪ Πarg gen together with a constraint that
derivable(a) holds, for each atom of interest a, resulting in
answer sets corresponding to non-derivation redundant, non-
expendable arguments for a. The attack and support rela-
tions over the arguments can be straightforwardly determined
based on the assumptions and conclusion of each argument.

4.2 SAT Encodings for BAFs
We move on to proposing SAT encodings that capture the
BAF semantics of interest , following Definition 2.6. Our
encodings are based on the standard SAT encodings for
AFs [Besnard and Doutre, 2004] with modifications to cap-
ture the additional aspects of BAFs. Given a BAF F =
(A,Att, Sup) and the closure cl(a) of each argument a ∈ A
(which can be precomputed in polynomial time), we capture
conflict-free, closed, self-defending, and complete sets of ar-
guments, respectively, as follows. We use variables xa for
a ∈ A to denote that a is in the extension.

Conflict-freeness is encoded as for AFs: cf(F) =∧
(a,b)∈Att(¬xa ∨ ¬xb). For closedness, if an argument a

2We chose to include assumption redundant arguments still, leav-
ing their elimination to future work.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3461

is in an extension, then each argument b that a supports must
be in the extension, too: closed(F) =

∧
(a,b)∈Sup(¬xa∨xb).

Note that a set of argumentsE defends an argument b if and
only if E attacks the closure of every argument a that attacks
b [Ulbricht et al., 2024, Lemma 3.4]. Thus an extension E
defends itself iff it holds that, if b ∈ E, then for each a that
attacks b, some argument d that attacks an argument c in the
closure of a must be in the extension.

self defense(F) =
∧

(a,b)∈Att

xb → ∨
(d,c)∈Att,
c∈cl(a)

xd

For a complete extension E, any argument b must be in E

if it holds that an argument in the closure of each argument a
that attacks b is attacked by an argument in the extension.

defended(F) =
∧
b∈A

 ∧

(a,b)∈Att

∨
(d,c)∈Att,
c∈cl(a)

xd

→ xb

Taken together, we encode complete semantics by com(F) =
cf(F) ∧ closed(F) ∧ self defense(F) ∧ defended(F).

We can encode stability similarly to the standard encoding
for AFs, with only the addition that an extension is closed:
stb(F) = cf(F)∧closed(F)∧

∧
a∈A

(
xa ∨

∨
(b,a)∈Att xb

)
.

To decide credulous acceptance under σ ∈ {com, stb} ,
we add the clause cred(F , α) =

∨
a∈Aα

xa where Aα ⊆ A
is the set of arguments concluding α.
Proposition 4.1. Given an ABAF D = (L,R,A,), σ ∈
{com, stb} and α ∈ L, let F be the BAF constructed from D
via the procedure of Section 4.1. Then σ(F) ∧ cred(F , α) is
satisfiable iff α is credulously accepted under σ.

5 ASP Algorithms for Non-flat ABA
In this section we introduce an ASP-based approach for cred-
ulous acceptance in non-flat ABA without constructing ar-
guments. We propose a counterexample-guided abstraction
refinement (CEGAR) [Clarke et al., 2004; Clarke et al.,
2003] algorithm for complete semantics, inspired by state-
of-the-art algorithms for other problems in structured argu-
mentation, including flat ABA, that are hard for the second
level of the polynomial hierarchy [Lehtonen et al., 2021b;
Lehtonen et al., 2022b; Lehtonen et al., 2022a]. For stable se-
mantics, we propose an ASP encoding , reflecting the fact that
credulous acceptance is NP-complete under stable semantics.

We use ASP to generate candidates based on an abstrac-
tion of the original problem, and another ASP solver to verify
whether a counterexample to the candidate being a solution
exists. We use the ASP encoding of ABAFs from Section 4.1,
and the notation solve(Π) to refer to solving the ASP pro-
gram Π and assume that solve(Π) either returns an answer
set or reports that the program is unsatisfiable. Details of the
ASP programs are available in [Lehtonen et al., 2024].

We introduce Algorithm 1 for credulous acceptance un-
der complete semantics. As subprocedures, we introduce

Algorithm 1: Credulous acceptance, complete semantics

Require: ABA framework F = (L,R,A,), s ∈ L
Ensure: return YES if s is credulously accepted under com-

plete semantics in F , NO otherwise
1: while C := solve(Πabs) do
2: flag := T
3: if solve(Πnot adm(C)) unsatisfiable then
4: for a ∈ A s.t. a /∈ C and a not attacked by C do
5: if solve(Πdefends(C, a)) then flag := F ; break
6: if flag = T then return YES
7: Add constraint excluding C to Πabs

8: return NO

three ASP programs: the abstraction Πabs , a program that
checks for a counterexample to admissibility Πnot adm , and
Πdefends(C, a) for checking counterexamples to complete-
ness, i.e., if particular assumptions are defended. The ab-
straction Πabs admits as answers closed and conflict-free as-
sumption sets from which the query is derivable, along with
a stronger condition for complete semantics. Namely, if an
assumption is not in the candidate and not attacked by the
set of undefeated assumptions, the candidate cannot be com-
plete (since this assumption cannot be attacked by any closed
assumption set in particular, and is thus defended by the can-
didate). The program Πnot adm is satisfiable iff a closed set
of assumptions that is not attacked by the candidate attacks
the candidate, implying that the candidate is not admissible.
Finally, given a candidate C ⊆ A and an assumption a ∈ A,
the program Πdefends(C, a) is satisfiable iff there is a set of
assumptions that is not attacked by C, is closed, and attacks
a. In such a case the candidate does not defend a.

Algorithm 1 iteratively generates candidates (Line 1) and
checks admissibility (Line 3). In case a candidate is ad-
missible, it is further checked whether there is an assump-
tion that is not in the candidate or attacked by the candidate
(Line 4), such that this assumption is defended by the candi-
date (Line 5). If not, the candidate is complete and thus the
queried atom is credulously accepted (Line 6). Otherwise (if
C is either not admissible or not complete) the abstraction is
refined by excluding the candidate from further consideration
(Line 7). Finally, if no complete assumption set is found, the
queried atom is not credulously accepted (Line 8).
Proposition 5.1. Given an ABAF D = (L,R,A,) and a
query α ∈ L, Algorithm 1 outputs YES if and only if α is
credulously accepted under complete semantics in D.

Stable semantics can be encoded by slightly adapting the
encoding for flat ABAFs [Lehtonen et al., 2021a]. Namely,
we add a constraint for the assumption set being closed. For
finding the credulous acceptance of s ∈ L, we add a con-
straint requiring that s is derivable from the assumption set.

6 Empirical Evaluation
We present an evaluation of the algorithms proposed in Sec-
tions 4 and 5, named ABABAF3 and ASPFORABA4, respec-

3Available at https://bitbucket.org/lehtonen/ababaf.
4Available at https://bitbucket.org/coreo-group/aspforaba.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3462

https://bitbucket.org/lehtonen/ababaf
https://bitbucket.org/coreo-group/aspforaba

tively. We implemented both approaches in Python, us-
ing CLINGO (version 5.5.1) [Gebser et al., 2016] for ASP-
FORABA and for generating the arguments in ABABAF. We
used PYSAT (version 0.1.7) [Ignatiev et al., 2018] with GLU-
COSE (version 1.0.3) [Audemard and Simon, 2009; Eén and
Sörensson, 2003] as the SAT solver in ABABAF. We used 2.50
GHz Intel Xeon Gold 6248 machines under a per-instance
time limit of 600 seconds and memory limit of 32 GB.

Lacking a standard benchmark library for non-flat ABA,
we generated two benchmark sets adapted from flat ABA
benchmarks [Järvisalo et al., 2023]. Set 1 has the following
parameters: number of atoms in {80, 120, 160, 200}, ratio of
atoms that are assumptions in {0.2, 0.4}, ratio of assumptions
occurring as rule heads in {0.2, 0.5}, and both number of
rules deriving any given atom and rule size (number of atoms
in the body of rule) selected at random from the interval [1, n]
for n ∈ {1, 2, 5}. We call the maximum rules per atom mr
and maximum rule size ms; instances with ms = 1 are addi-
tive. For benchmark set 2, we limited mr and ms to {2, 5},
and generated instances a certain distance from atomic. For
this, a slack parameter specifies how many atoms in each rule
body can be non-assumptions. Here slack is 0, 1 or 2, the
first resulting in atomic ABAFs. We generated 5 instances
for each combination of parameters for both benchmark sets.

Table 1 summarizes results for credulous acceptance un-
der complete semantics. On benchmark set 1 (Table 1,
left), generally ABABAF performs better than ASPFORABA
when the parameters take lower values. ABABAF outper-
forms ASPFORABA when ms = 1, corresponding to ad-
ditive ABA frameworks, but also for ms = 2 when mr is
1 or 2. ASPFORABA, on the other hand, performs best
with mr = 5. The results for benchmark set 2 (for cred-
ulous acceptance under complete semantics) can be seen in
Table 1 (right). On atomic instances (slack = 0) ABABAF
outperforms ASPFORABA. As the slack increases, the per-
formance of ABABAF decreases, while ASPFORABA some-
what improves. Evidently, ABABAF is able to take advantage
of the lower complexity of additive and atomic instances. The
results suggest that the approaches are complementary and
their relative performance varies by parameters.

We show the run times of both algorithms against the num-
ber of arguments a given instance gives rise to in Figure 1
(for instances solved byABABAF; timeouts of ASPFORABA
shown as 600 seconds). For ABABAF, there is a clear corre-
lation between run time and size of the constructed BAF, as
can be expected given that the arguments construction is time-
consuming and the BAF is the input for a SAT call. In con-
trast, BAF size does not predict run time for ASPFORABA,
since ASPFORABA does not instantiate arguments.

We also evaluated our algorithms under stable semantics.
As expected given the lower complexity compared to com-
plete semantics, ASPFORABA performs better, solving all
instances. On the other hand, ABABAF constructs the BAF
for stable semantics too, and accordingly the performance of
ABABAF is significantly worse than ASPFORABA, with mul-
tiple timeouts. This highlights that a crucial component in the
performance of ABABAF on complete semantics is the lower
complexity of deciding acceptance in BAF compared to the
corresponding ABAF.

#solved (mean run time (s))

ms mr ABABAF ASPFORABA

1 80 (0.2) 56 (9.3)
1 2 80 (0.4) 66 (8.4)

5 80 (6.2) 79 (0.1)

1 70 (0.6) 62 (6.8)
2 2 54 (17.1) 40 (24.2)

5 50 (13.2) 66 (14.4)

1 80 (2.3) 80 (0.1)
5 2 54 (4.0) 72 (5.3)

5 11 (24.9) 43 (37.1)

#solved (mean run time (s))

slack ms ABABAF ASPFORABA

0 2 147 (3.8) 104 (41.5)
5 109 (7.3) 77 (51.3)

1 2 112 (15.4) 112 (18.1)
5 51 (20.0) 89 (31.3)

2 2 122 (21.0) 118 (8.2)
5 59 (6.6) 102 (31.2)

Table 1: Number of solved instances and mean run time over solved
instances under complete semantics in benchmark sets 1 (left) and 2
(right). There are 80 and 160 instances per row in sets 1 and 2.

10
2

10
3

Number of arguments

10
1

10
0

10
1

10
2

C
PU

 ti
m

e
(s

)

Approach
ABABAF
ASPforABA

Figure 1: The effect of the number of arguments an ABAF gives
rise to on the run time of our approaches w.r.t. complete semantics.

7 Conclusion

Efficient algorithmic solutions for assumption-based argu-
mentation are widely studied; however, despite the wide vari-
ety of different solvers for assumption-based reasoning, most
existing approaches only focus on the flat ABA fragment. In
this work we investigated theoretical foundations and algo-
rithms for non-flat ABA reasoning, which has higher com-
plexity than in flat ABA.

Our redundancy notions gave rise to two fragments of
ABA, i.e., atomic and additive ABA, in which reasoning ex-
hibits the same complexity as for flat ABA. We proposed
two algorithmic approaches, one instantiating a BAF and
one without argument construction. The former faces an
exponential number of arguments in general, but we pro-
posed and applied redundancy notions, and employed state-
of-the-art solving techniques. For the latter, we adapted
state-of-the-art algorithms for structured argumentation. We
showed empirically that, in contrast to previous instantiation-
based approaches for structured argumentation, our novel
instantiation-based approach is able to outperform the direct
approach, in particular for problems on the second level of
the polynomial hierarchy.

For future work, we want to extend our implementation to
further common semantics and reasoning tasks such as skep-
tical acceptance ; this is an additional challenge, since e.g.
skeptical reasoning under preferred semantics lies on the third
level of the polynomial hierarchy. Another promising line of
future work is to develop methods for computing explana-
tions for ABA in spirit of the work by Dung et al. (2006),
utilizing our instantiation-based implementation.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3463

Acknowledgements
This research was funded by the Austrian Science Fund
(FWF) P35632 and University of Helsinki Doctoral Pro-
gramme in Computer Science DoCS; by the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No. 101020934, ADIX) and by J.P. Morgan and by the Royal
Academy of Engineering under the Research Chairs and Se-
nior Research Fellowships scheme; by the Federal Ministry
of Education and Research of Germany and by Sächsische
Staatsministerium für Wissenschaft, Kultur und Tourismus in
the programme Center of Excellence for AI-research “Center
for Scalable Data Analytics and Artificial Intelligence Dres-
den/Leipzig”, project identification number: ScaDS.AI. The
authors wish to thank the Finnish Computing Competence In-
frastructure (FCCI) for supporting this project with computa-
tional and data storage resources.

References
[Amgoud et al., 2008] Leila Amgoud, Claudette Cayrol,

Marie-Christine Lagasquie-Schiex, and P. Livet. On bipo-
larity in argumentation frameworks. Int. J. Intell. Syst.,
23(10):1062–1093, 2008.

[Atkinson et al., 2017] Katie Atkinson, Pietro Baroni, Mas-
similiano Giacomin, Anthony Hunter, Henry Prakken,
Chris Reed, Guillermo Ricardo Simari, Matthias Thimm,
and Serena Villata. Towards artificial argumentation. AI
Mag., 38(3):25–36, 2017.

[Audemard and Simon, 2009] Gilles Audemard and Laurent
Simon. Predicting learnt clauses quality in modern SAT
solvers. In Proc. IJCAI, pages 399–404, 2009.

[Bao et al., 2017] Ziyi Bao, Kristijonas Čyras, and
Francesca Toni. ABAplus: Attack reversal in ab-
stract and structured argumentation with preferences.
In Proc. PRIMA, volume 10621 of Lecture Notes in
Computer Science, pages 420–437. Springer, 2017.

[Baroni et al., 2018] Pietro Baroni, Dov Gabbay, Massimil-
iano Giacomin, and Leendert van der Torre, editors. Hand-
book of Formal Argumentation. College Publications,
2018.

[Besnard and Doutre, 2004] Philippe Besnard and Sylvie
Doutre. Checking the acceptability of a set of arguments.
In Proc. NMR, pages 59–64, 2004.

[Besnard et al., 2014] Philippe Besnard, Alejandro Javier
Garcı́a, Anthony Hunter, Sanjay Modgil, Henry Prakken,
Guillermo Ricardo Simari, and Francesca Toni. Intro-
duction to structured argumentation. Argument Comput.,
5(1):1–4, 2014.

[Biere et al., 2021] Armin Biere, Marijn Heule, Hans van
Maaren, and Toby Walsh, editors. Handbook of Satisfiabil-
ity - Second Edition, volume 336 of Frontiers in Artificial
Intelligence and Applications. IOS Press, 2021.

[Bistarelli et al., 2021] Stefano Bistarelli, Lars Kotthoff,
Francesco Santini, and Carlo Taticchi. Summary report
for the third international competition on computational
models of argumentation. AI Mag., 42(3):70–73, 2021.

[Bondarenko et al., 1997] Andrei Bondarenko, Phan Minh
Dung, Robert A. Kowalski, and Francesca Toni. An ab-
stract, argumentation-theoretic approach to default reason-
ing. Artif. Intell., 93:63–101, 1997.

[Cadoli et al., 2002] Marco Cadoli, Francesco M. Donini,
Paolo Liberatore, and Marco Schaerf. Preprocessing of
intractable problems. Inf. Comput., 176(2):89–120, 2002.

[Caminada and Amgoud, 2007] Martin Caminada and Leila
Amgoud. On the evaluation of argumentation formalisms.
Artif. Intell., 171(5-6):286–310, 2007.

[Clarke et al., 2003] Edmund M. Clarke, Orna Grum-
berg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for sym-
bolic model checking. J.ACM, 50(5):752–794, 2003.

[Clarke et al., 2004] Edmund M. Clarke, Anubhav Gupta,
and Ofer Strichman. SAT-based counterexample-guided
abstraction refinement. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst., 23(7):1113–1123, 2004.

[Craven and Toni, 2016] Robert Craven and Francesca Toni.
Argument graphs and assumption-based argumentation.
Artif. Intell., 233:1–59, 2016.

[Cyras et al., 2017] Kristijonas Cyras, Claudia Schulz, and
Francesca Toni. Capturing bipolar argumentation in non-
flat assumption-based argumentation. In Proc. PRIMA,
volume 10621 of Lecture Notes in Computer Science,
pages 386–402. Springer, 2017.

[Čyras et al., 2018] Kristijonas Čyras, Xiuyi Fan, Claudia
Schulz, and Francesca Toni. Assumption-based argumen-
tation: Disputes, explanations, preferences. In Handbook
of Formal Argumentation, chapter 7, pages 365–408. Col-
lege Publications, 2018.

[Čyras et al., 2021a] Kristijonas Čyras, Quentin Heinrich,
and Francesca Toni. Computational complexity of flat and
generic assumption-based argumentation, with and with-
out probabilities. Artif. Intell., 293:103449, 2021.

[Čyras et al., 2021b] Kristijonas Čyras, Antonio Rago,
Emanuele Albini, Pietro Baroni, and Francesca Toni.
Argumentative XAI: a survey. In Proc. IJCAI, pages
4392–4399. ijcai.org, 2021.

[Diller et al., 2021] Martin Diller, Sarah Alice Gaggl, and
Piotr Gorczyca. Flexible dispute derivations with forward
and backward arguments for assumption-based argumen-
tation. In Proc. CLAR, volume 13040 of Lecture Notes in
Computer Science, pages 147–168. Springer, 2021.

[Dimopoulos et al., 2002] Yannis Dimopoulos, Bernhard
Nebel, and Francesca Toni. On the computational com-
plexity of assumption-based argumentation for default rea-
soning. Artif. Intell., 141(1/2):57–78, 2002.

[Dung et al., 2006] Phan Minh Dung, Robert A Kowalski,
and Francesca Toni. Dialectic proof procedures for
assumption-based, admissible argumentation. Artif. Intell.,
170(2):114–159, 2006.

[Dung, 1995] Phan Minh Dung. On the acceptability of ar-
guments and its fundamental role in nonmonotonic reason-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3464

ing, logic programming and n-person games. Artif. Intell.,
77(2):321–358, 1995.

[Eén and Sörensson, 2003] Niklas Eén and Niklas
Sörensson. An extensible sat-solver. In Enrico Giunchiglia
and Armando Tacchella, editors, Proc. SAT, volume 2919
of Lecture Notes in Computer Science, pages 502–518.
Springer, 2003.

[Gaggl et al., 2020] Sarah A. Gaggl, Thomas Linsbichler,
Marco Maratea, and Stefan Woltran. Design and results
of the second international competition on computational
models of argumentation. Artif. Intell., 279, 2020.

[Gebser et al., 2013] Martin Gebser, Benjamin Kaufmann,
Javier Romero, Ramón Otero, Torsten Schaub, and Philipp
Wanko. Domain-specific heuristics in answer set program-
ming. In Proc. AAAI, pages 350–356. AAAI Press, 2013.

[Gebser et al., 2016] Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, Max Ostrowski, Torsten Schaub, and
Philipp Wanko. Theory solving made easy with Clingo
5. In Technical Communications of ICLP, OASICS, pages
2:1–2:15. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2016.

[Gelfond and Lifschitz, 1988] Michael Gelfond and
Vladimir Lifschitz. The stable model semantics for
logic programming. In Proc. ICLP/SLP, pages 1070–
1080. MIT Press, 1988.

[Ignatiev et al., 2018] Alexey Ignatiev, Antonio Morgado,
and Joao Marques-Silva. PySAT: A Python toolkit for pro-
totyping with SAT oracles. In Proc. SAT, volume 10929
of Lecture Notes in Computer Science, pages 428–437.
Springer, 2018.

[Järvisalo et al., 2023] Matti Järvisalo, Tuomo Lehtonen,
and Andreas Niskanen. Design of ICCMA 2023, 5th in-
ternational competition on computational models of ar-
gumentation: A preliminary report (invited paper). In
Proc. First International Workshop on Argumentation and
Applications, volume 3472 of CEUR Workshop Proceed-
ings, pages 4–10. CEUR-WS.org, 2023.

[Karamlou et al., 2019] Amin Karamlou, Kristijonas Čyras,
and Francesca Toni. Complexity results and algorithms
for bipolar argumentation. In Proc. AAMAS, pages 1713–
1721. IFAAMAS, 2019.

[Lagniez et al., 2020] Jean-Marie Lagniez, Emmanuel
Lonca, Jean-Guy Mailly, and Julien Rossit. Introducing
the fourth international competition on computational
models of argumentation. In Proc. SAFA, volume
2672 of CEUR Workshop Proceedings, pages 80–85.
CEUR-WS.org, 2020.

[Lehtonen et al., 2017] Tuomo Lehtonen, Johannes P. Wall-
ner, and Matti Järvisalo. From structured to abstract argu-
mentation: Assumption-based acceptance via AF reason-
ing. In Proc. ECSQARU, volume 10369 of Lecture Notes
in Computer Science, pages 57–68. Springer, 2017.

[Lehtonen et al., 2020] Tuomo Lehtonen, Johannes P. Wall-
ner, and Matti Järvisalo. An answer set programming ap-
proach to argumentative reasoning in the ASPIC+ frame-
work. In Proc. KR, pages 636–646. IJCAI, 2020.

[Lehtonen et al., 2021a] Tuomo Lehtonen, Johannes P. Wall-
ner, and Matti Järvisalo. Declarative algorithms and com-
plexity results for assumption-based argumentation. J. Ar-
tif. Intell. Res., 71:265–318, 2021.

[Lehtonen et al., 2021b] Tuomo Lehtonen, Johannes P.
Wallner, and Matti Järvisalo. Harnessing incremental
answer set solving for reasoning in assumption-based
argumentation. Theory Pract. Log. Program., 21(6):717–
734, 2021.

[Lehtonen et al., 2022a] Tuomo Lehtonen, Johannes P. Wall-
ner, and Matti Järvisalo. Algorithms for reasoning in a
default logic instantiation of assumption-based argumen-
tation. In Proc. COMMA, volume 353 of Frontiers in Ar-
tificial Intelligence and Applications, pages 236–247. IOS
Press, 2022.

[Lehtonen et al., 2022b] Tuomo Lehtonen, Johannes P.
Wallner, and Matti Järvisalo. Computing stable conclu-
sions under the weakest-link principle in the ASPIC+
argumentation formalism. In Proc. KR, pages 215–225.
IJCAI, 2022.

[Lehtonen et al., 2023] Tuomo Lehtonen, Anna Rapberger,
Markus Ulbricht, and Johannes P. Wallner. Argumentation
frameworks induced by assumption-based argumentation:
Relating size and complexity. In Proc. KR, pages 440–450.
IJCAI, 2023.

[Lehtonen et al., 2024] Tuomo Lehtonen, Anna Rapberger,
Francesca Toni, Markus Ulbricht, and Johannes P. Wall-
ner. Instantiations and computational aspects of non-flat
assumption-based argumentation. CoRR, abs/2404.11431,
2024.

[Modgil and Prakken, 2013] Sanjay Modgil and Henry
Prakken. A general account of argumentation with
preferences. Artif. Intell., 195:361–397, 2013.

[Niemelä, 1999] Ilkka Niemelä. Logic programs with stable
model semantics as a constraint programming paradigm.
Ann. Math. Artif. Intell., 25(3-4):241–273, 1999.

[Rapberger and Ulbricht, 2023] Anna Rapberger and
Markus Ulbricht. On dynamics in structured argumen-
tation formalisms. J. Artif. Intell. Res., 77:563–643,
2023.

[Thimm and Villata, 2017] Matthias Thimm and Serena Vil-
lata. The first international competition on computational
models of argumentation: Results and analysis. Artif. In-
tell., 252:267–294, 2017.

[Thimm, 2017] Matthias Thimm. The tweety library collec-
tion for logical aspects of artificial intelligence and knowl-
edge representation. Künstliche Intell., 31(1):93–97, 2017.

[Toni, 2014] Francesca Toni. A tutorial on assumption-based
argumentation. Argument Comput., 5(1):89–117, 2014.

[Ulbricht et al., 2024] Markus Ulbricht, Nico Potyka, Anna
Rapberger, and Francesca Toni. Non-flat ABA is an in-
stance of bipolar argumentation. In Proc. AAAI, pages
10723–10731. AAAI Press, 2024.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3465

	Introduction
	Background
	BAF Generation in Theory
	A Lower Bound For Non-Flat Instantiations
	Towards Feasible BAF Instantiations
	Fragments

	Algorithms for Non-flat ABA via BAFs
	BAF Generation
	SAT Encodings for BAFs

	ASP Algorithms for Non-flat ABA
	Empirical Evaluation
	Conclusion

