
Extremal Separation Problems for Temporal Instance Queries

Jean Christoph Jung1 , Vladislav Ryzhikov2 , Frank Wolter3 and Michael Zakharyaschev2

1Department of Computer Science, TU Dortmund University, Germany
2School of Computing and Mathematical Sciences, Birkbeck, University of London, UK

3Department of Computer Science, University of Liverpool, UK
jean.jung@tu-dortmund.de, {v.ryzhikov,m.zakharyaschev}@bbk.ac.uk, wolter@liverpool.ac.uk

Abstract

The separation problem for a class Q of database
queries is to find a query in Q that distinguishes
between a given set of ‘positive’ and ‘negative’
data examples. Separation provides explanations
of examples and underpins the query-by-example
paradigm to support database users in constructing
and refining queries. As the space of all separating
queries can be large, it is helpful to succinctly rep-
resent this space by means of its most specific (log-
ically strongest) and general (weakest) members.
We investigate this extremal separation problem for
classes of instance queries formulated in linear tem-
poral logic LTL with the operators conjunction,
‘next’, and ‘eventually’. Our results range from
tight complexity bounds for verifying and counting
extremal separators to algorithms computing them.

1 Introduction
The separation (aka fitting or consistency) problem for a class
Q of queries is to find some q ∈ Q that separates a given
set E = (E+, E−) of positive and negative data examples
in the sense that D |= q for all D ∈ E+, and D ̸|= q for
all D ∈ E−. Separation underpins the query-by-example ap-
proach, which aims to support database users in constructing
queries and schema mappings with the help of data exam-
ples [Alexe et al., 2011; Martins, 2019], inductive logic pro-
gramming [Cropper et al., 2022], and, more recently, auto-
mated feature extraction, where separating queries are pro-
posed as features in classifier engineering [Kimelfeld and
Ré, 2018; Barceló et al., 2021]. Separating queries (and,
more generally, formulas) also underpin recent logic-based
approaches aiming to explain positive and negative data ex-
amples given by applications [Sarker et al., 2017; Camacho
and McIlraith, 2019; Raha et al., 2022].

The space of all separating queries, denoted s(E,Q), forms
a convex subset of Q under the containment (or logical en-
tailment) relation q |= q′ between queries q, q′, and is
an instance of the more general version spaces [Mitchell,
1982]. If finite, s(E,Q) can be represented by its extremal
elements: the most specific (logically strongest) and most
general (logically weakest) separators in Q. In fact, many

known algorithms check the existence of separators by look-
ing for a most specific one [ten Cate and Dalmau, 2015;
Barceló and Romero, 2017; Gutiérrez-Basulto et al., 2018;
Funk et al., 2019]. This is not surprising as query classes are
often closed under ∧, and so the conjunction of all separators
gives the unique most specific one. Dually, the unique most
general separator is given by the disjunction of all separators
if the query class is closed under ∨, which is a less common
assumption. For the case of first-order queries constructed us-
ing ∧ and existential quantifiers (conjunctive queries or CQs),
a systematic study of extremal separation has recently been
conducted in the award winning [ten Cate et al., 2023].

Here, we study extremal separation for temporal instance
queries. Data instances take the form (δ0, . . . , δn) describ-
ing temporal evolutions, where the δi are the sets of atomic
propositions that are true at time i. Queries are formu-
lated in the fragment of linear temporal logic LTL with
the operators ∧, ⃝ (next), and ✸ (eventually). These ⃝✸-
queries and its subclass of ✸-queries without ⃝, are obtained
by restricting CQs to propositional temporal data and form
the core of most temporal query languages proposed in the
database and knowledge representation literature [Chomicki
and Toman, 2018; Baader et al., 2015; Borgwardt et al., 2015;
Artale et al., 2021]. We are particularly interested in sub-
classes of the classes of ⃝✸-and ✸-queries that are not closed
under ∧ and take the form of path queries:

q = ρ0 ∧ o1(ρ1 ∧ o2(ρ2 ∧ · · · ∧ onρn)) (1)

with oi ∈ {⃝,✸} and conjunctions ρi of atoms. The tempo-
ral patterns expressed by path queries correspond to common
subsequences, subwords, and combinations thereof, which
have been investigated in the string pattern matching litera-
ture for more than 50 years. Their applications range from
computational linguistics to bioinformatics and revision con-
trol systems [Bergroth et al., 2000; Chowdhury et al., 2010;
Abboud et al., 2015; Blum et al., 2021]. In fact, our results
can also be interpreted and applied in that research tradition
and our techniques combine both logic and automata-based
methods with pattern matching. We note that not admitting
∨ in our query languages is crucial for finding this type of
patterns and adding it would often trivialise separation.
Example 1. Suppose the first two sequences of events shown
below are ‘positive’, the third one is ‘negative’, and our task is
to explain this phenomenon using path queries. The space of

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3448

0

A

1

B

2

C

3 0 1

A

2

B

3

C

4 0

A

1

B

2 3

C

4

possible explanations includes q1 = ✸(A ∧ ⃝(B ∧ ⃝C)),
q2 = ✸(A ∧ ⃝⃝C) and q3 = ✸(B ∧ ⃝C), all of which
are true at 0 in the positive examples and false in the negative
one. In fact, q1 is the unique most specific explanation, while
q2 and q3 are the non-equivalent most general ones. On the
other hand, there exists no explanation in terms of ✸ only.

The (bounded-size) separator existence problem for var-
ious classes Q of LTL -queries has recently been studied
in [Fijalkow and Lagarde, 2021; Raha et al., 2022; Fortin
et al., 2023]. Our aim here is to investigate systematically
the separator spaces s(E,Q) by determining the complexity
of verifying and counting most specific and general separa-
tors and giving algorithms computing them. On our way, we
determine the complexity of entailment (aka containment in
database theory) between queries and computing weakening
and strengthening frontiers, which are the key to understand-
ing s(E,Q). Intuitively, a weakening/strengthening frontier
of q ∈ Q is a set of queries properly weaker/stronger than
q that form a boundary between q and all of its weaken-
ings/strengthenings in Q.

In detail, we first prove that query containment is in P for
the class of ✸-queries and all of our classes of path queries.
Based on this result, we show that strengthening and weak-
ening frontiers can be computed in polytime for path queries.
This is also the case for ✸-queries and weakening frontiers
but not for strengthening ones. It follows that checking
whether a path query is a most specific/general separator and
whether a ✸-query is a most general one are both in P. In con-
trast, we establish CONP-completeness of checking whether
a ✸-query is a most specific separator and whether a path
query is the unique most specific/general one. Using fron-
tiers, we show for path queries that the existence of unique
most specific/general separators is in the complexity class
US (for which unique SAT is complete) and that counting
the number of most general/specific separators is in ♯P. We
show that these upper bounds are tight, sometimes using the
rich literature on algorithms for sequences (e.g., longest com-
mon subsequences). Our lower bounds mostly require only a
bounded number of atomic propositions and an unbounded
number of either negative or positive examples.

These complexity results are complemented with algo-
rithms for computing extremal separators in the majority of
our query classes. The algorithms use a graph encoding of
the input example set, associating (extremal) separators with
certain paths in the graph. Complexity-wise, they are optimal,
running in polytime if the number of examples is bounded and
exponential time otherwise.

Omitted proofs can be found in [Jung et al., 2024].

1.1 Related Work
Being inspired by the investigation of extremal separation for
first-order conjunctive queries (CQs) [ten Cate et al., 2023],
our results turn out to be very different. For instance, while
separability by CQs is NEXPTIME-complete and separating
queries are exponential in the size of the examples (the ex-
tremal ones even larger), the extremal separation problems

for LTL -queries are often complete for SAT-related complex-
ity classes, with separating queries being of polynomial size.
For work on separation in the query-by-example paradigm
we refer the reader to [Zhang et al., 2013; Weiss and Co-
hen, 2017; Kalashnikov et al., 2018; Deutch and Gilad, 2019;
Staworko and Wieczorek, 2012; Barceló and Romero, 2017;
Cohen and Weiss, 2016; Arenas et al., 2016] in the database
context and to [Gutiérrez-Basulto et al., 2018; Ortiz, 2019;
Cima et al., 2021; Jung et al., 2022] in the context of KR.

Our contribution is also closely related to work on syn-
thesising LTL -formulas that explain the positive and nega-
tive data examples coming from an application [Lemieux et
al., 2015; Neider and Gavran, 2018; Camacho and McIlraith,
2019; Raha et al., 2022; Fortin et al., 2022; Fortin et al.,
2023]. While concerned with separability of temporal data
instances and, in particular, separability by LTL -formulas of
small size, the separator spaces s(E,Q) themselves have not
yet been investigated in this context.

2 Data and Queries in LTL
Fix some countably-infinite set of unary predicate symbols,
called atoms. A signature, σ, is any finite set of atoms. A
(temporal) data instance is any finite set D ̸= ∅ of facts A(ℓ)
with an atom A and a timestamp ℓ ∈ N, saying that A hap-
pened at ℓ. The size |D| of D is the number of symbols in it,
with the timestamps given in unary. Let maxD be the max-
imal timestamp in D. Where convenient, we also write D as
the word δ0 . . . δmaxD with δi = {A | A(i) ∈ D}. Without
loss of generality, we can assume that δi ̸= ∅, using place-
holders ⊤(i) if needed. The signature sig(D) of D is the set
of atoms occurring in it.

We query data instances by means of LTL -formulas, called
queries, that are built from atoms (treated as propositional
variables) and the logical constant ⊤ (truth) using ∧ and the
temporal operators ⃝ (next time) and ✸ (sometime in the fu-
ture). We consider the following classes of queries:

Q[⃝✸]: all ⃝✸-queries;
Q[✸]: all ✸-queries (not containing ⃝);
Qp[⃝✸]: path ⃝✸-queries of the form (1), where the con-

junctions of atoms ρi are often treated as sets and the
empty conjunction as ⊤;

Qp[✸]: all path ✸-queries (not containing ⃝);
Qin: interval-queries of the form (1) with ρ0 = ⊤, ρ1 ̸= ⊤,

o1 = ✸, and oi = ⃝, for i > 1.

Queries in Qin single out an interval of a fixed length starting
at some time-point ≥ 1; q1–q3 from Example 1 are in Qin.
Qσ is the restriction of a class Q to a signature σ. The tem-
poral depth tdp(q) of q is the maximum number of nested
temporal operators in q. The signature sig(q) of q is the set
of atoms in q; the size |q| of q is the number of symbols in it.

The truth-relation D, n |= q—saying that q is true in D at
moment n ∈ N—is defined as usual in temporal logic under
the strict semantics: D, n |= ⊤ for all n ∈ N; D, n |= A iff
A(n) ∈ D; D, n |= ⃝q′ iff D, n + 1 |= q′; and D, n |= ✸q′

iff D,m |= q′, for some m > n. A data instance D is called
a positive example for a query q if D, 0 |= q; otherwise, D is
a negative example for q. Checking whether D is a positive

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3449

(negative) example for our queries q can obviously be done
in polytime in |D| and |q|.

We write q |= q′ if D, 0 |= q implies D, 0 |= q′ for all
instances D, and q ≡ q′ if q |= q′ and q′ |= q, in which case
q and q′ are equivalent. For example, for any query q, we
have ✸⃝q ≡ ⃝✸q ≡ ✸✸q. It follows that every path query
in Qp[⃝✸] is equivalent to a query of the form (1), in which
ρn ̸= ⊤ and whenever ρi = ⊤, 0 < i < n, then oi = oi+1;
in this case we say that q is in normal form. Unless indicated
otherwise, we assume all path queries to be in normal form.
Sequences. There is a close link between evaluating
path queries and algorithms for finding patterns in strings
[Crochemore et al., 2007]. A sequence is a data instance
D = δ0 . . . δn with δ0 = ∅ and |δi| = 1, for i > 0; a se-
quence query is a path query of the form (1) with |ρ0| = 0
and |ρi| = 1, for i > 0. Querying sequences using sequence
queries corresponds to the following matching problems:

– for any sequence query q ∈ Qp[✸] of the form (1), we
have D, 0 |= q iff ρ1 . . . ρm is a subsequence of D;

– for any sequence query q ∈ Qin of the form (1), we have
D, 0 |= q iff ρ1 . . . ρm is a subword of D.

3 Query Containment
The query containment problem for a class Q of queries is to
decide whether q |= q′, for any given q, q′ ∈ Q. In con-
trast to conjunctive queries, where query containment is NP-
complete [Chandra and Merlin, 1977], query containment is
tractable for the majority of query classes defined above:
Theorem 2. The query containment problems for Qp[⃝✸],
Q[✸] (and their subclasses) are all in P.

To prove Theorem 2, suppose first that we are given two
queries q, q′ ∈ Qp[⃝✸], where q takes of the form (1) and
q′ = ρ′0 ∧ o′

1(ρ
′
1 ∧ · · · ∧ o′

mρ
′
m). Denote by [m] the closed

interval [0,m] ⊆ N. A function h : [m] → [n] is monotone
if h(i) < h(j) whenever i < j. Then tractability of contain-
ment for path queries follows from the criterion below, which
is proved in the appendix by induction on tdp(q′):
Lemma 3. Let q, q′ ∈ Qp[⃝✸]. Then q |= q′ iff there is
a monotone function h : [m] → [n] such that h(0) = 0 and,
for all i ∈ [m], we have ρ′i ⊆ ρh(i) and if o′

i+1 = ⃝, then
oh(i+1) = ⃝ and h(i+ 1) = h(i) + 1.

We refer to any function h defined in Lemma 3 as a con-
tainment witness for the pair q, q′ ∈ Qp[⃝✸].

Suppose now q ∈ Q[✸]. As shown in [Fortin et al., 2022],
we can convert q in polytime to an equivalent query in the
normal form ρ ∧ q1 ∧ · · · ∧ qn, where ρ is a conjunction of
atoms and each qi is in Qp[✸] and starts with ✸. Tractability
of containment for Q[✸]-queries follows from:
Lemma 4. If q = ρ ∧ q1 ∧ · · · ∧ qn ∈ Q[✸] is in normal
form, q′ ∈ Qp[✸] and q |= q′, then there is qi, 1 ≤ i ≤ n,
with ρ ∧ qi |= q′.

Proof. In the detailed proof given in the appendix, we show
that, assuming ρ ∧ qi ̸|= q′ for all i, we can convert the qi
into a data instance D with D, 0 |= q and D, 0 ̸|= q′. ⊣

For queries q ∈ Q[⃝✸], Lemma 4 does not hold:

Example 5. Let q = q1 ∧ q2 ∧ q3 ∧ q4, where

q1 = ✸(a ∧ ⃝((a ∧ b) ∧ ⃝a)),

q2 = ✸(b ∧ ⃝((a ∧ b) ∧ ⃝b)),

q3 = ✸(a ∧ ⃝((a ∧ b) ∧ ⃝b)),

q4 = ✸(a ∧✸(b ∧✸(a ∧✸(b ∧✸(a ∧✸b))))),

and q′ = ✸(b∧✸((a∧ b)∧✸a)). Then q |= q′ but qi ̸|= q′,
for any i, 1 ≤ i ≤ 4.

At the moment, the question whether containment of
Q[⃝✸]-queries is tractable remains open.

4 Example Sets and Separating Queries
An example set E is a pair (E+, E−) of finite sets E+ ̸= ∅
and E− of data instances. We say that a query q separates
E if all D ∈ E+ are positive examples and all D ∈ E−

are negative examples for q. Denote by s(E,Q) the set of
queries in a class Q separating E and call E Q-separable if
s(E,Q) ̸= ∅. Our general aim is to understand the structure
of s(E,Q) for various important query classes Q.

We consider queries in Q modulo equivalence, not distin-
guishing between q ≡ q′. In this case, the relation |= is a
partial order on Q. For any q ∈ s(E,Q), we clearly have

– tdp(q) ≤ min{maxD | D ∈ E+},
– sig(q) ⊆

⋂
{sig(D) | D ∈ E+},

so s(E,Q) is finite. We refer to the |=-minimal elements
of s(E,Q) ̸= ∅ as most specific Q-separators of E and
to the |=-maximal elements as most general Q-separators
of E (modulo ≡); they comprise the sets mss(E,Q) and
mgs(E,Q), respectively. If these sets are singletons, we call
their only element the unique most specific and, respectively,
unique most general Q-separator of E. Note that the former
always exists if s(E,Q) ̸= ∅ and Q is closed under ∧.
Example 6. (i) Suppose D+ = {A(0), B(0), A(1), B(1)},
D− = {A(0)} andE = ({D+}, {D−}). The separator space
s(E,Qp[✸]) is shown below as a Hasse diagram with arrows
indicating the partial order |= (and ⊤, A /∈ s(E,Qp[✸])), so

A ∧B ∧✸(A ∧B)

A ∧B ∧✸A A ∧B ∧✸B A ∧✸(A ∧B) B ∧✸(A ∧B)

A ∧B A ∧✸A A ∧✸B B ∧✸A B ∧✸B ✸(A ∧B)

A B ✸A ✸B
⊤

the most general Qp[✸]-separators of E comprise the set
mgs(E,Qp[✸]) = {B,✸A,✸B} and the unique most spe-
cific one is A ∧B ∧✸(A ∧B).
(ii) For the example set E = ({D+

1 ,D
+
2 }, {D

−
1 }) with

D+
1 = {A(1), B(2)},D+

2 = {B(1), A(2)},D−
1 = {C(0)},

s(E,Qp[✸]) = {✸A,✸B} = mss/mgs(E,Qp[✸]) but there
is no unique most specific/general separator. In contrast,
s(E,Q[✸]) = {✸A,✸B,✸A ∧ ✸B} has the unique most
specific separator ✸A∧✸B but no unique most general one.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3450

(iii) One can show that mss/mgs(E,Q) always contains a
longest/shortest separator ofE in Q (of largest/smallest tem-
poral depth). To illustrate, let E = ({D+

1 }, {D
−
1 ,D

−
2 ,D

−
3 }),

D+
1 = {B(0), C(0), A(1)},

D−
1 = {B(0)}, D−

2 = {C(0)}, D−
3 = {A(1)}.

Then mgs(E,Qp[✸]) = {B ∧ C,B ∧✸A,C ∧✸A}, where
B ∧ C of depth 0 is the shortest separator of E in Qp[✸].

Our main concern is the following three algorithmic prob-
lems for query classes Q ⊆ Q[⃝✸] with input E and q ∈ Q:

most specific/general separator verification: decide
whether q is an element of mss(E,Q) /mgs(E,Q);

counting most specific/general separators: count the ele-
ments of mss(E,Q) /mgs(E,Q);

computing a most specific/general separator: construct
some query in mss(E,Q) /mgs(E,Q).

We are particularly interested in deciding whether there is
a unique most specific/general separator and computing it.
To achieve our aims, we obviously should be able to decide
whether q ∈ s(E,Q) (separator verification) and whether
s(E,Q) ̸= ∅ (separator existence). As mentioned in Sec-
tion 2, separator verification is in P. We are also interested in
the case when the number of positive or negative examples in
E is bounded. The table below summarises the complexities
of separator existence for our query classes, where b+ / b−

separator existence b+, b− b+ b− or unbounded
Qp[✸]/Qp[⃝✸] in P NP-c NP-c
Q[✸]/Q[⃝✸]/Qin in P in P NP-c

means that |E+| / |E−| is bounded, and one can assume a
bounded signature. Except for Qin, these results are shown in
[Fortin et al., 2023]. The proofs use techniques developed for
the longest common subsequence problem (given k > 0 and
a set E+ of sequences, is there a sequence query in Qp[✸] of
depth ≥ k that is a subsequence of all D ∈ E+; see Section 2)
and separator existence for sequence queries in Qp[✸] [Maier,
1978; Fraser, 1996]. The NP-upper bound for Qin is trivial;
the lower one follows from the proof of Theorem 21, and
tractability for b+ is ensured by the observation that there are
polynomially-many relevant intervals in the E+-examples.

This NP-lower bound shows that great care is needed when
transferring techniques from the literature on algorithms for
sequences to our framework as separability of example sets
of sequences using sequence queries in Qin is easily seen to
be in P even for unbounded example sets and signatures.

A key to the extremal separator problems above is the fol-
lowing notions of strengthening and weakening frontiers.

5 Strengthening and Weakening Frontiers
Let Q be a class of queries and q ∈ Q. A set F ⊆ Q is called
a strengthening frontier for q in Q if

– for any q′ ∈ F , we have q′ |= q and q′ ̸≡ q;
– for any q′′ ∈ Q, if q′′ |= q and q′′ ̸≡ q, then there is
q′ ∈ F such that q′′ |= q′.

A set F ⊆ Q is called a weakening frontier for q in Q if

– for any q′ ∈ F , we have q |= q′ and q′ ̸≡ q;
– for any q′′ ∈ Q, if q |= q′′ and q′′ ̸≡ q, then there is
q′ ∈ F with q′ |= q′′.

Trivial strengthening/weakening frontiers for q comprise all
queries that are properly stronger/weaker than q in Q; our
concern, however, is finding small frontiers. We show now
that, for Qσ

p [✸] and Qσ
p [⃝✸], one can compute a strengthen-

ing/weakening frontier for any given q in polytime.
Theorem 7. Let q ∈ Qσ

p [⃝✸] be in normal form (1). A
strengthening frontier for q in Qσ

p [⃝✸] can be computed in
polytime by applying once to q one of the following opera-
tions, for i ∈ [n] and qi = ρi ∧ oi+1(ρi+1 ∧ · · · ∧ onρn):

1. extend some ρi in q by some A ∈ σ \ ρi;
2. replace some ✸qi in q by ✸(⊤ ∧✸qi);
3. replace some oi = ✸ in q by ⃝ provided that the result-

ing query is in normal form;
4. add on+1ρn+1 at the end of q, where on+1 = ✸ and
ρn+1 = A, for some A ∈ σ.

If q ∈ Qσ
p [✸], a strengthening frontier for q in Qσ

p [✸] can be
computed in polytime using operations 1, 2, and 4.

Proof. Let F be the set of queries obtained by a single appli-
cation of one of these operations to q. By Lemma 3, q′ |= q
and q ̸≡ q′ for all q′ ∈ F . Let q′ |= q and q ̸≡ q′, for some
q′ ∈ Qσ

p [⃝✸] of the form q′ = ρ′0 ∧ o′
1(ρ

′
1 ∧ · · · ∧ o′

m(ρ′m)).
Take a containment witness h : [n] → [m] for q′, q. If h is
surjective, then n = m and h(i) = i for all i ∈ [n], and so
ρi ⊆ ρ′i. As q ̸≡ q′, either o′

i = ⃝ and oi = ✸, for some
i ∈ [n], or ρi ⊊ ρ′i, for some i ∈ [n]. In the former case,
operation 3 gives q′′ ∈ F with q′ |= q′′; in the latter one,
operation 1 gives such a q′′.

Suppose h is not surjective. If there is i < n such that
h(i + 1) − h(i) ≥ 2, then q′ |= q′′ for a q′′ ∈ F given by
operation 2. Otherwise m is not in the range of h, and we get
such a q′′ ∈ F by operation 4. ⊣

Example 8. For σ = {A,B} and q = ✸(A ∧ ⃝B), opera-
tions 1–4 give the following strengthening frontier for q:

✸(A ∧B ∧ ⃝B),✸(A ∧ ⃝(A ∧B)),✸(⊤ ∧✸(A ∧ ⃝B)),

⃝(A ∧ ⃝B),✸(A ∧ ⃝(B ∧✸A)),✸(A ∧ ⃝(B ∧✸B)).

A weakening frontier can be constructed by reversing op-
erations 1–3 from Theorem 7 and using a similar argument:
Theorem 9. Let q ∈ Qσ

p [⃝✸] be in normal form (1). A weak-
ening frontier for q in Qσ

p [⃝✸] can be computed in polytime
by applying once to q one of the following operations, for
i ∈ [n] and qi = ρi ∧ oi+1(ρi+1 ∧ · · · ∧ onρn):

1. drop some atom from ρi;
2. replace some ✸(⊤ ∧✸qi) in q by ✸qi;
3. replace some oi = ⃝ by ✸.

If q ∈ Qσ
p [✸], a weakening frontier for q in Qσ

p [✸] can be
computed in polytime using operations 1 and 2.
Example 10. For σ = {A,B} and q = ✸(A ∧ ⃝B), opera-
tions 1-3 give the following weakening frontier for q:

✸(⊤ ∧✸B), ✸A, ✸(A ∧✸B).

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3451

Note that the computed weakening frontier can be made
smaller by omitting ✸A, which is weaker than ✸(A ∧✸B).

We next consider frontiers for queries in Qσ[✸]. We say
that q = ρ ∧ q1 ∧ · · · ∧ qn ∈ Qσ[✸] in normal form is
redundancy-free if it does not contain qi, qj with i ̸= j and
qi |= qj . Clearly, for any q ∈ Qσ[✸], we can compute an
equivalent redundancy-free q′ ∈ Qσ[✸] in polytime.
Theorem 11. Let q = ρ ∧ q1 ∧ · · · ∧ qn ∈ Qσ[✸] be
redundancy-free. A weakening frontier for q in Qσ[✸] can
be computed in polytime by a single application of one of the
following operations to q:

1. drop some atom from ρ;
2. replace some qi by

∧
Fi, where Fi is the weakening

frontier for qi in Qσ
p [✸] provided by Theorem 9.

Proof. Let F be the set of queries defined above. Clearly,
q |= q′; as q is redundancy-free and in view of Lemma 4,
q ̸≡ q′ for all q′ ∈ F . Suppose q |= q′ and q ̸≡ q′, for some
q′ = ρ′ ∧ q′

1 ∧ · · · ∧ q′
m in Qσ[✸]. By Lemma 4, ρ′ ⊆ ρ

and, for each j, 1 ≤ j ≤ m, there exists f(j), 1 ≤ f(j) ≤ n,
with qf(j) |= q′

j . If ρ′ ⊊ ρ, then operation 1 gives a q′′ ∈ F
with q′′ |= q′. Otherwise, as q ̸≡ q′, there is qi such that
q′
j ̸|= qi for all q′

j , 1 ≤ j ≤ m. Let q′′ be the query obtained
from q by replacing qi with

∧
Fi by operation 2. To establish

q′′ |= q′, it suffices to show that f(j) = i implies
∧
Fi |= qj .

So suppose f(j) = i. Then q′
j ̸|= qi, and so, by the definition

of Fi, there is q′′
i ∈ Fi with q′′

i |= qj . ⊣

However, strengthening frontiers for queries in Qσ[✸] are
not necessarily of polynomial size as shown by the following:
Example 12. We represent queries in Qσ[✸] of the form (1)
as ρ0 . . . ρn. For σ = {A1, A2, B1, B2}, let q1 = ∅(qσ)nq,
q2 = ∅σ2n+1, and q = {A1, A2}{B1, B2}. Using [Fortin et
al., 2022, Example 18], one can show that any strengthening
frontier for the query q1 ∧ q2 in Qσ[✸] is of size O(2n).

Note also that weakening frontiers for q ∈ Qσ
in can be com-

puted in polytime using operation 1 in Theorem 9 (if i = 1
and |ρi| = 1, we drop ⊤ and take ✸(ρ2∧⃝(ρ3∧· · ·∧⃝ρn)).
On the other hand, strengthening frontiers can be infinite:
Example 13. All ✸(A ∧ ⃝nA), n > 0, are in any strength-
ening frontier for q = ✸A in Qσ

in, where σ = {A}.
As shown by Theorem 17, the lack of polytime com-

putable strengthening frontiers in Q[✸] affects the complex-
ity of verifying most specific separators. In contrast, the
lack of polytime computable strengthening frontiers in Qin
turns out to be harmless. For n ≥ tdp(q), call F ⊆ Q
an n-bounded weakening/strengthening frontier for q in Q
if F is a weakening/strengthening frontier for q in the class
{q′ ∈ Q | tdp(q′) ≤ n} (we assume n to be given in unary).
Theorem 14. Weakening frontiers and n-bounded strength-
ening frontiers in Qσ

in can be computed in polytime.
Finally, we observe that Theorems 7 and 9 give an alter-

native way of computing unique characterisations of queries
in Qσ

p [⃝✸] by data examples in polynomial time compared
to [Fortin et al., 2022], which opens another route to study-
ing unique characterisations and exact learning of temporal
queries.

6 Complexity
Now we show complexity bounds for the decision and count-
ing problems from Section 4, starting with verification and
observing that polytime computable n-bounded frontiers im-
ply tractable verification of most specific/general separators:

Lemma 15. If an n-bounded strengthening/weakening fron-
tier for q ∈ Q is polytime computable in |q| and n, then most
specific/general separator verification for Q is in P.

Proof. Let n = min{maxD | D ∈ E+}. We compute an
n-bounded strengthening frontier F for q in Q and use that
q ∈ mss(E,Q) iff q ∈ s(E,Q) and q′ /∈ s(E,Q) for all
q′ ∈ F . The case of mgs(E,Q) is similar. ⊣

Corollary 16. Most specific/general separator verification is
in P for Qp[✸], Qp[⃝✸], and Qin. Most general separator
verification is in P for Q[✸].

Proof. It follows from Lemma 15 and Theorems 7, 9, 14 that
most specific/general separator verification is in P for Qp[✸],
Qp[⃝✸], and Qin. By Theorem 11, most general separation
verification is also in P for Q[✸]. ⊣

Most specific separator verification is harder for Q[✸]:

Theorem 17. For Q[✸], the most specific separator verifica-
tion problem coincides with the unique most specific separa-
tor verification problem and is CONP-complete.

Proof. As we know, E has a unique most specific separa-
tor in Q[✸] iff s(E,Q[✸]) ̸= ∅. Hence most specific sep-
arator verification coincides with unique most specific sep-
arator verification. Given q and E, we can check in NP
that either q /∈ s(E,Q[✸]) (which is in P) or that there is
q′ ∈ s(E,Q[✸]) with q′ |= q and q′ ̸≡ q (which is in NP).
This gives the CONP upper bound. The more involved proof
of the lower one (in the appendix) is based on ideas similar to
those in the proof of Theorem 21 below. ⊣

In the cases when most specific/general separators are not
necessarily unique, we obtain the following:

Theorem 18. Unique most specific/general separator verifi-
cation in Qp[⃝✸], Qp[✸], Qin as well as unique most general
separator verification in Q[✸] are CONP-complete.

Proof. The upper bounds follow from Corollary 16. The
lower ones are by reduction of the problem to decide whether,
for a Boolean formula φ and a satisfying assignment a, there
is a satisfying assignment for φ different from a. We use ideas
similar to those in the proof of Theorem 21. ⊣

We now turn to the existence and counting problems. Re-
call that UNIQUE SAT is the problem to decide whether there
is exactly one satisfying assignment for a propositional for-
mula [Blass and Gurevich, 1982]. It is in ∆p

2, CONP-hard,
and complete for the class US of problems solvable by a
non-deterministic polynomial-time Turing machine M that
accepts iff M has exactly one accepting path. A counting
problem is in the class ♯P if there is such M whose number
of accepting paths coincides with the number of solutions to
the problem [Arora and Barak, 2009].

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3452

Theorem 19. For Qp[⃝✸], Qp[✸], Qin, counting most speci-
fic/general separators is ♯P -complete; the existence of a
unique most specific/general separator is US-complete. The
same holds for most general separators in Q[✸].

Theorem 19 follows from the very general and fine-grained
complexity results provided by Theorems 20 and 21 below.
Theorem 20. Let Q ⊆ Qp[⃝✸] be a class with polytime
decidable membership and polytime computable n-bounded
strengthening/weakening frontiers for queries in Q. Then

– counting most specific/general Q-separators is in ♯P ;
– the existence of a unique most specific/general Q-sepa-

rator is in US.
This also holds for most general separators in classes of con-
junctions of ⃝✸-path queries closed under dropping con-
juncts and having polytime computable weakening frontiers.

Proof. Given E, construct a TM M that guesses a q ∈ Q
with tdp(q) ≤ n = min{maxD | D ∈ E+} and accepts if
q separates E and no q′ in the n-bounded frontier for q in Q
separates E. As we know, the required checks are in P. In the
second claim, M guesses a query q = ρ ∧ ✸q1 ∧ · · · ∧ ✸ql
with qi ∈ Qp[⃝✸] and l ≤ |E−|. ⊣

For the lower bounds, we take into account the bounded-
ness of sig(E) and the cardinalities |E+| and |E−| of pos-
itive and negative examples in E. The next result provides
matching lower bounds for Theorem 19 even if the signature
is bounded and only one of |E+| and |E−| is unbounded, ex-
cept for Qin and Q[✸], where |E+| has to be unbounded.
Theorem 21. Let Q ⊆ Qp[⃝✸] be any class of queries con-
taining all ✸ρ with a conjunction of atoms ρ. Then

– counting most specific/general Q-separators is ♯P-hard;
– the existence of unique most specific/general separator

is US-hard
even for E = (E+, E−) and σ = sig(E) with (a) |E−| ≤ 1
or (b) |E−| ≤ 1, |σ| = 2 and Q = Qin or Q ⊇ Qp[✸], or (c)
|E+| ≤ 4, |σ| = 3, Q ⊇ Qp[✸]. This result also holds for
most general separators in Q[✸] and |E−| = 1, |σ| = 2.

Proof. We sketch the proof of the first claim by a parsi-
monious reduction from SAT for an unbounded number of
negative examples (which can be easily merged into one).
Take a CNF φ = ψ1 ∧ · · · ∧ ψk with clauses ψi over vari-
ables x1, . . . , xn. We construct E = (E+, E−) such that
there is a bijection between the satisfying assignments for
φ and the separators for E in Q[⃝✸] (even queries of the
form ✸ρ). The claim follows from the fact that the separat-
ing queries are mutually |=-incomparable. Define the posi-
tive examples E+ = {D0,D′

0,D1, . . . ,Dn} with 2n atoms
A1, Ā1, . . . , An, Ān by taking

D0 = {Ai(1), Āi(1) | 1 ≤ i ≤ n},
D′

0 = {Ai(2), Āi(2) | 1 ≤ i ≤ n},
Di = {Ai(1), Āi(2), Aj(1), Āj(1), Aj(2), Āj(2) | i ̸= j},

for 1 ≤ i ≤ n. Let E− = {D1
1, . . . ,D1

k,D2
1, . . . ,D2

n}, where
D1

i , 1 ≤ i ≤ k, comprises Āj(1) if xj does not occur nega-
tively in ψi, and Aj(1) if xj does not occur positively in ψi,

and D2
i = {Aj(1), Āj(1) | j ̸= i}. For an assignment a for

x1, . . . , xn, let ρa contain Ai if a(xi) = 1 and Āi, otherwise.
Now our claim follows from the following: (i) if a satisfies
φ, then ✸ρa separates E; (ii) if q ∈ Qp[⃝✸] separates E,
then q ≡ ✸ρa, for some a satisfying φ.

To bound σ and/or E+, we give parsimonious reductions
from SAT and employ techniques for the longest common
subsequence problem and separator existence for sequence
queries in Qp[✸] [Blin et al., 2012; Fraser, 1996]. ⊣

Again, re-using techniques from the literature on algo-
rithms for sequences needs some care. Similar to separability,
for example sets of sequences, counting most general/specific
sequence Qin-separators is easily seen to be in P even for un-
bounded signatures and example sets, but Theorem 21 shows
that this is not so for Qin on non-sequence data instances.

Surprisingly, the complexities of counting most general
separators and deciding the existence of a unique one diverge
if we bound the number of examples, cf. Theorems 23 and 27.
Theorem 22. Let Q = Q[✸] or Q ⊆ Qp[⃝✸] be any class
containing all ✸ρ with a conjunction of atoms ρ. Then count-
ing most general Q-separators is ♯P-hard even for example
sets E = (E+, E−) with |E+| = 2 and |E−| = 1.

Proof. The proof is by reduction from counting satisfying as-
signments for monotone formulas: E− is as in the proof of
Theorem 21 and the positive examples are D0, D′

0. ⊣

Theorem 22 does not hold for counting most specific sep-
arators in Qin, which is easily seen to be in P if |E+| is
bounded. It remains open whether some version of this theo-
rem holds for most specific separators in Qp[⃝✸] or Qp[✸].

7 Algorithms
The frontiers defined in Section 5 give a polytime algorithm
for computing a most specific/general separator starting from
any given separator. Suppose Q ∈ {Qp[✸],Qp[⃝✸],Qin},
we are given q ∈ s(E,Q) and need a most specific separa-
tor. By Theorems 7, 9, the length of the longest |=-chain in
s(E,Qp[⃝✸]) is polynomial in |E|.1 We take, if possible,
some q′ ∈ s(E,Q) in the strengthening frontier for q, then
q′′ ∈ s(E,Q) in the strengthening frontier for q′, etc. This
process terminates after polynomially-many steps, returning
a most specific Q-separator (and so the unique one, if any).

Thus, we can focus on algorithms deciding the existence of
a (unique most specific/general) separator and constructing it.
In the next theorem, we compute not just a random input sepa-
rator, but a longest/shortest one. As strengthening/weakening
frontiers contain queries that are not shorter/longer than the
input, the procedure above will compute a longest most spe-
cific/shortest most general separator.
Theorem 23. Let E = (E+, E−), σ = sig(E), t+/t− be
the maximum timestamp in E+/E−, c+ = |E+|, c− = |E−|,
and Q ∈ {Qp[✸],Qp[⃝✸]}. The following can be done in
time O(t

c+
+ t

c−
−):

(a) deciding whether s(E,Q) ̸= ∅;

1In contrast, the proof of Theorem 21 shows the size of the max-
imal antichain in s(E,Qp[✸]) is in general exponential in |E|.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3453

(b) computing a longest/shortest separator in s(E,Q);
(c) deciding the existence of a unique most specific Q-

separator and a unique most general Qp[✸]-separator,
and constructing such a separator.

For bounded c+ and c−, problem (a) is in NL.

Proof. We only sketch the construction for Q = Qp[✸].
(a) First, we define a directed labelled rooted graph P

whose paths from the root represent Qp[✸]-queries with pos-
itive examples E+ = {D1, . . . ,Dc+}. Its nodes are vectors
(n1, . . . , nc+) with 0 ≤ ni ≤ maxDi, which are labelled by
the sets {A ∈ σ | A(ni) ∈ Di for all i}, and the edges are
(n1, . . . , nc+) → (n′1, . . . , n

′
c+) with ni < n′

i for all i. The
root of P is 0̄ = (0, . . . , 0). To illustrate, let E = (E+, E−),
where E+ = {D+

1 ,D
+
2 }, E− = {D−

1 ,D
−
2 ,D

−
3 },

D+
1 = {A(0), C(1), D(1), B(2)},

D+
2 = {A(0), C(1), B(2), D(2)},

D−
1 = {A(0), C(1)}, D−

2 = {A(0), D(1)}, D−
3 = {B(0)}.

Graph P is shown on the left-hand side of the picture below:

(0, 0)

{A}
(1, 1)

{C}

(2, 1) ∅

(1, 2) {D}

(2, 2)

{B}

P

(0, 0,∞)

{A}

(1, 1,∞)

∅

(1,∞,∞) {C}

(∞, 1,∞) {D}

(∞,∞,∞)

{A,B,C,D}

N

Each path starting at 0̄ gives rise to a Qσ
p [✸]-query with posi-

tive examples in E+: e.g., (0, 0) → (1, 1) → (2, 2) gives rise
to the query A ∧✸(C ∧✸B).

Next, define another graph N for E− = {D1, . . . ,Dc−}.
Its nodes are (n1, . . . , nc−), where ni ∈ [0,maxDi] ∪ {∞},
including ∞̄ = (∞, . . . ,∞), which is labelled by σ. The
label of (n1, . . . , nc−) is {A | A(ni) ∈ Di, for all ni ̸= ∞}.
The edges are defined in the same way as for P, with ni <∞,
for any ni. The root of N is (n1, . . . , nl), where ni = 0 if
{A(0) | A(0) ∈ D, for all D ∈ E+} ⊆ Di and ni = ∞
otherwise (see the picture above). Let q be a Qσ

p [✸]-query of
the form (1) with ρ0 contained in the root’s label. Then all
Di ∈ E− are negative examples for q iff every path starting
at the root and having labels ρ′0, . . . , ρ

′
n with ρ′i ⊇ ρi, for all

i ≤ n, comes through node ∞̄. In our example, every such
path for q = A∧✸B and q = A∧✸(C ∧✸B) involves ∞̄.
However, this is not the case for q = A ∧✸C.

Consider now a graph P ⊗ N with nodes (n,m), where
n is a node in P and m a node in N with l(n) ⊆ l(m),
for the labels l(n) and l(m) of n and m. We have an edge
(n,m) → (n′,m′) in P⊗N iff n → n′ in P, m → m′ in
N, and P ⊗N has no (n′,m′′) with m → m′′, m′′

i < m′
i

and m′′
i ̸= ∞, for some i, mi being the ith coordinate of

m. One can see that, for any (n,m) in P × N and n′ in
P, there exists at most one edge (n,m) → (n′,m′). The
root of P × N comprises the roots of P and N. In our ex-
ample, the edges from the root (0̄, (0, 0,∞)) of P ⊗ N lead
to ((1, 2), (∞, 1,∞)), ((2, 1), (1, 1,∞)), ((1, 1), (1,∞,∞))
and ((2, 2), ∞̄). Given a path

π = (0̄ = n0,m0), . . . , (nn,mn) (2)

let qπ be the Qp[✸]-query of the form (1) with ρi = l(ni)
(note that qπ is not necessarily in normal form). We call π a
separating path for E if l(nn) ̸= ∅ and mn = ∞.

Lemma 24. s(E,Q) ̸= ∅ iff P ⊗ N contains a separating
path π, with qπ separating E.

In our running example, P⊗N has two separating paths:
π1 = (0̄, (0, 0,∞)), ((2, 2), ∞̄) and π2 = (0̄, (0, 0,∞)),
((1, 1), (1,∞,∞)), ((2, 2), ∞̄), which give rise to the sep-
arators qπ1

= A ∧✸B and qπ2
= A ∧✸(C ∧✸B).

The existence of a separating path in P⊗N can be checked
in time O(t

c+
+ t

c−
−). If c+ and c− are bounded, given (n,m)

and (n′,m′), we can check in logspace whether (n,m) is the
root of P⊗N and (n,m) → (n′,m′), and so the existence
of a separating path can be decided in NL.

The proof of point (b) relies on the following observation:

Lemma 25. If q of the form (1) separates E, then there is a
separating path of the form (2) with ρi ⊆ l(ni), for all i ≤ n.

It follows that the length of a longest/shortest separator for
E coincides with the length of a longest/shortest separating
path in P⊗N, which can be found in polytime.

The proof of point (c) is based on the following criterion:

Lemma 26. A Qp[✸]-query q is a unique most specific
Qp[✸]-separator for E iff there is a separating path π such
that q = qπ and qπ |= qν , for every separating path ν.

In our example, qπ2
is a unique most specific separator.

We show that the criterion of Lemma 26 can be checked in
polytime in P ×N. For unique most general separators, the
seemingly obvious inversion of qπ |= qν does not give a
criterion, and a different type of graph is required. ⊣

Finally, we show how Theorem 23 can be used to check the
existence of and construct unique most general separators in
Q[✸] (the case of unique most specific ones is trivial).

Theorem 27. An example set E = (E+, E−) has a unique
most general separator in Q[✸] iff q =

∧
D∈S qD separates

E, where S is the set of D ∈ E− such that (E+, {D}) has a
unique most general separator, qD, in Qp[✸]. In this case, q
is a unique most general separator of E in Q[✸].

8 Conclusions
We have conducted a comprehensive complexity analysis of
extremal separators in the spaces s(E,Q) with Q ranging
from various classes of temporal path ⃝✸-queries to arbitrary
✸-queries. For arbitrary ⃝✸-queries, we only know more or
less straightforward upper bounds such as Πp

2 for (unique)
most general separator verification and Σp

3 for unique most
general separator existence. Establishing tight bounds re-
mains a challenging open problem, which requires a deeper
understanding of query containment for these queries.

We also plan to analyse the shortest and longest separa-
tors. For instance, Jung et al. (2024) show that verifying such
separators in s(E,Qp[⃝✸]) is CONP-complete—harder than
verifying most specific/general ones. An empirical evaluation
of our algorithms and more expressive query languages (say,
with non-strict ✸ and ‘until’) are left for future work.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3454

References
[Abboud et al., 2015] A. Abboud, A. Backurs, and V. V.

Williams. Tight hardness results for LCS and other se-
quence similarity measures. In Proc. of FOCS, pages 59–
78. IEEE Computer Society, 2015.

[Alexe et al., 2011] B. Alexe, B. ten Cate, Ph. Kolaitis, and
W. Ch. Tan. Characterizing schema mappings via data ex-
amples. ACM Trans. Database Syst., 36(4):23, 2011.

[Arenas et al., 2016] M. Arenas, G. I. Diaz, and E. Kostylev.
Reverse engineering SPARQL queries. In Proc. of WWW,
pages 239–249, 2016.

[Arora and Barak, 2009] S. Arora and B. Barak. Computa-
tional Complexity - A Modern Approach. Cambridge Uni-
versity Press, 2009.

[Artale et al., 2021] A. Artale, R. Kontchakov, A. Kov-
tunova, V. Ryzhikov, F. Wolter, and M. Zakharyaschev.
First-order rewritability of ontology-mediated queries in
linear temporal logic. Artif. Intell., 299:103536, 2021.

[Baader et al., 2015] F. Baader, S. Borgwardt, and M. Lipp-
mann. Temporal query entailment in the description logic
SHQ. J. Web Semant., 33:71–93, 2015.

[Barceló and Romero, 2017] P. Barceló and M. Romero. The
complexity of reverse engineering problems for conjunc-
tive queries. In Proc. of ICDT, pages 7:1–7:17, 2017.

[Barceló et al., 2021] P. Barceló, A. Baumgartner, V. Dal-
mau, and B. Kimelfeld. Regularizing conjunctive features
for classification. J. Comput. Syst. Sci., 119:97–124, 2021.

[Bergroth et al., 2000] L. Bergroth, H. Hakonen, and
T. Raita. A survey of longest common subsequence
algorithms. In Proc. of SPIRE, pages 39–48, 2000.

[Blass and Gurevich, 1982] A. Blass and Y. Gurevich. On
the unique satisfiability problem. Inf. Control., 55(1-
3):80–88, 1982.

[Blin et al., 2012] G. Blin, L. Bulteau, M. Jiang, P. Tejada,
and S. Vialette. Hardness of longest common subsequence
for sequences with bounded run-lengths. In Proc. of CPM,
volume 7354 of Lecture Notes in Computer Science, pages
138–148. Springer, 2012.

[Blum et al., 2021] Ch. Blum, M. Djukanovic, A. Santini,
H. Jiang, Chu-Min Li, F. Manyà, and G. Raidl. Solving
longest common subsequence problems via a transforma-
tion to the maximum clique problem. Comput. Oper. Res.,
125:105089, 2021.

[Borgwardt et al., 2015] S. Borgwardt, M. Lippmann, and
V. Thost. Temporalizing rewritable query languages over
knowledge bases. J. Web Semant., 33:50–70, 2015.

[Camacho and McIlraith, 2019] A. Camacho and Sh. McIl-
raith. Learning interpretable models expressed in linear
temporal logic. In Proc. of ICAPS, pages 621–630. AAAI
Press, 2019.

[Chandra and Merlin, 1977] A. Chandra and P. Merlin. Op-
timal implementation of conjunctive queries in relational
data bases. In Proc. of STOC, pages 77–90. ACM, 1977.

[Chomicki and Toman, 2018] J. Chomicki and D. Toman.
Temporal logic in database query languages. In Ling Liu
and M. Tamer Özsu, editors, Encyclopedia of Database
Systems, Second Edition. Springer, 2018.

[Chowdhury et al., 2010] R. A. Chowdhury, Hai-Son Le,
and V. Ramachandran. Cache-oblivious dynamic program-
ming for bioinformatics. IEEE/ACM Trans. on Computa-
tional Biology and Bioinformatics, 7(3):495–510, 2010.

[Cima et al., 2021] G. Cima, F. Croce, and M. Lenzerini.
Query definability and its approximations in ontology-
based data management. In Proc. of CIKM, pages 271–
280. ACM, 2021.

[Cohen and Weiss, 2016] S. Cohen and Y. Y. Weiss. The
complexity of learning tree patterns from example graphs.
ACM Trans. Database Syst., 41(2):14:1–14:44, 2016.

[Crochemore et al., 2007] M. Crochemore, Ch. Hancart, and
T. Lecroq. Algorithms on strings. Cambridge University
Press, 2007.

[Cropper et al., 2022] A. Cropper, S. Dumancic, R. Evans,
and S. H. Muggleton. Inductive logic programming at 30.
Mach. Learn., 111(1):147–172, 2022.

[Deutch and Gilad, 2019] D. Deutch and A. Gilad. Reverse-
engineering conjunctive queries from provenance exam-
ples. In Proc. of EDBT, pages 277–288, 2019.

[Fijalkow and Lagarde, 2021] N. Fijalkow and G. Lagarde.
The complexity of learning linear temporal formulas from
examples. In Proc. of ICGI, pages 237–250. PMLR, 2021.

[Fortin et al., 2022] M. Fortin, B. Konev, V. Ryzhikov, Y. Sa-
vateev, F. Wolter, and M. Zakharyaschev. Unique charac-
terisability and learnability of temporal instance queries.
In Proc. of KR, 2022.

[Fortin et al., 2023] M. Fortin, B. Konev, V. Ryzhikov, Y. Sa-
vateev, F. Wolter, and M. Zakharyaschev. Reverse engi-
neering of temporal queries mediated by LTL ontologies.
In Proc. of IJCAI, pages 3230–3238. ijcai.org, 2023.

[Fraser, 1996] C. Fraser. Consistent subsequences and super-
sequences. Theor. Comput. Sci., 165(2):233–246, 1996.

[Funk et al., 2019] M. Funk, J.-Ch. Jung, C. Lutz, H. Pulcini,
and F. Wolter. Learning description logic concepts: When
can positive and negative examples be separated? In Proc.
of IJCAI, pages 1682–1688, 2019.

[Gutiérrez-Basulto et al., 2018] V. Gutiérrez-Basulto, J. Ch.
Jung, and L. Sabellek. Reverse engineering queries in
ontology-enriched systems: The case of expressive Horn
description logic ontologies. In Proc. of IJCAI-ECAI,
2018.

[Jung et al., 2022] J. Ch. Jung, C. Lutz, H. Pulcini, and F.
Wolter. Logical separability of labeled data examples un-
der ontologies. Artif. Intell., 313:103785, 2022.

[Jung et al., 2024] J. Ch. Jung, V. Ryzhikov, F. Wolter, and
M. Zakharyaschev. Extremal separation problems for tem-
poral instance queries. CoRR abs/2405.03511, 2024.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3455

[Kalashnikov et al., 2018] D. Kalashnikov, L. Lakshmanan,
and D. Srivastava. Fastqre: Fast query reverse engineering.
In Proc. of SIGMOD, pages 337–350, 2018.

[Kimelfeld and Ré, 2018] B. Kimelfeld and Ch. Ré. A rela-
tional framework for classifier engineering. ACM Trans.
Database Syst., 43(3):11:1–11:36, 2018.

[Lemieux et al., 2015] C. Lemieux, D. Park, and I. Beschast-
nikh. General LTL specification mining (T). In Proc. of
ASE, pages 81–92. IEEE, 2015.

[Maier, 1978] D. Maier. The complexity of some problems
on subsequences and supersequences. J. ACM, 25(2):322–
336, 1978.

[Martins, 2019] D. Martins. Reverse engineering database
queries from examples: State-of-the-art, challenges, and
research opportunities. Inf. Syst., 83:89–100, 2019.

[Mitchell, 1982] T. Mitchell. Generalization as search. Artif.
Intell., 18(2):203–226, 1982.

[Neider and Gavran, 2018] D. Neider and I. Gavran. Learn-
ing linear temporal properties. In Proc. of FMCAD, pages
1–10. IEEE, 2018.

[Ortiz, 2019] M. Ortiz. Ontology-mediated queries from ex-
amples: a glimpse at the DL-Lite case. In Proc. of GCAI,
pages 1–14, 2019.

[Raha et al., 2022] R. Raha, R. Roy, N. Fijalkow, and D. Nei-
der. Scalable anytime algorithms for learning fragments of
linear temporal logic. In Proc. of TACAS, volume 13243
of Lecture Notes in Computer Science, pages 263–280.
Springer, 2022.

[Sarker et al., 2017] Md. K. Sarker, Ning Xie, D. Doran, M.
Raymer, and P. Hitzler. Explaining trained neural networks
with semantic web technologies: First steps. In Proc. of
NeSy, 2017.

[Staworko and Wieczorek, 2012] S. Staworko and P. Wiec-
zorek. Learning twig and path queries. In Proc. of ICDT,
pages 140–154, 2012.

[ten Cate and Dalmau, 2015] B. ten Cate and V. Dalmau.
The product homomorphism problem and applications. In
Proc. of ICDT, pages 161–176, 2015.

[ten Cate et al., 2023] B. ten Cate, V. Dalmau, M. Funk, and
C. Lutz. Extremal fitting problems for conjunctive queries.
In Proc. of PODS, pages 89–98. ACM, 2023.

[Weiss and Cohen, 2017] Y. Y. Weiss and S. Cohen. Re-
verse engineering SPJ-queries from examples. In Proc.
of PODS, pages 151–166, 2017.

[Zhang et al., 2013] M. Zhang, H. Elmeleegy, C. M. Pro-
copiuc, and D. Srivastava. Reverse engineering complex
join queries. In Proc. of SIGMOD, pages 809–820, 2013.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3456

	Introduction
	Related Work

	Data and Queries in LTL
	Query Containment
	Example Sets and Separating Queries
	Strengthening and Weakening Frontiers
	Complexity
	Algorithms
	Conclusions

