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Céline Hocquette1, Andreas Niskanen2, Rolf Morel1, Matti Järvisalo2, Andrew Cropper1

1University of Oxford
2University of Helsinki

{celine.hocquette, rolf.morel, andrew.cropper}@cs.ox.ac.uk
{andreas.niskanen, matti.jarvisalo}@helsinki.fi

Abstract
A major challenge in inductive logic programming
is learning big rules. To address this challenge, we
introduce an approach where we join small rules to
learn big rules. We implement our approach in a
constraint-driven system and use constraint solvers
to efficiently join rules. Our experiments on many
domains, including game playing and drug design,
show that our approach can (i) learn rules with more
than 100 literals, and (ii) drastically outperform ex-
isting approaches in terms of predictive accuracies.

1 Introduction
Zendo is an inductive reasoning game. One player, the teacher,
creates a secret rule that describes structures. The other play-
ers, the students, try to discover the secret rule by building
structures. The teacher marks whether structures follow or
break the rule. The first student to correctly guess the rule wins.
For instance, for the positive examples shown in Figure 1, a
possible rule is “there is a blue piece”.

Figure 1: Two positive Zendo examples.

To use machine learning to play Zendo, we need to learn
explainable rules from a small number of examples. Although
crucial for many real-world problems, many machine-learning
approaches struggle with this type of learning [Cropper et
al., 2022]. Inductive logic programming (ILP) [Muggleton,
1991] is a form of machine learning that can learn explainable
rules from a small number of examples. For instance, for the
examples in Figure 1, an ILP system could learn the rule:

h1 = { zendo(S)← piece(S,B), blue(B) }

This rule says that the relation zendo holds for the structure S
when there is a blue piece B.

Suppose we also have the three negative examples shown
in Figure 2. Our previous rule incorrectly entails the first and
second negative examples, as they have a blue piece. To entail

Figure 2: Three negative Zendo examples.

all the positive and no negative examples, we need a bigger
rule, such as:

h2 =

{ zendo(S)← piece(S,B), blue(B),
piece(S,R), red(R),
piece(S,G), green(G)

}

This rule says that the relation zendo holds for a structure
when there is a blue piece, a red piece, and a green piece.

Most ILP approaches can learn small rules, such as h1.
However, many struggle to learn bigger rules, such as h2

1.
This limitation noticeably holds for approaches which pre-
compute all possible rules and search for a subset of them
[Corapi et al., 2011; Law et al., 2014; Kaminski et al., 2019;
Si et al., 2019; Raghothaman et al., 2020; Evans et al., 2021;
Bembenek et al., 2023]. As they precompute all rules, these
approaches struggle to learn rules with more than a few literals.

To address this limitation, we introduce an approach that
learns big rules by joining small rules. The idea is to first
find small rules where each rule entails some positive and
some negative examples. We then search for conjunctions of
these small rules such that each conjunction entails at least
one positive example but no negative examples.

To illustrate our idea, consider our Zendo scenario. We find
rules that entail at least one positive example, such as:

r1 = { zendo1(S)← piece(S,B), blue(B) }
r2 = { zendo2(S)← piece(S,R), red(R) }
r3 = { zendo3(S)← piece(S,G), green(G) }
r4 = { zendo4(S)← piece(S,Y), yellow(Y) }

Each of these rules entails at least one negative example.
Therefore, we search for a subset of these rules where the
intersection of the logical consequences of the subset entails
at least one positive example and no negative examples. The

1A rule of size 7 is not especially big but for readability we do
not use a bigger rule in this example. In our experiments, we show
we can learn similar rules with over 100 literals.
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set of rules {r1, r2, r3} satisfies these criteria. We therefore
form a hypothesis from the conjunction of these rules:

h3 = { zendo(S)← zendo1(S), zendo2(S), zendo3(S) }

The hypothesis h3 entails all the positive but none of the
negative examples and has the same logical consequences
(restricted to zendo/1 atoms) as h2.

The main benefit of our approach is that we can learn rules
with over 100 literals, which existing approaches cannot. Our
approach works because we decompose a learning task into
smaller tasks that can be solved separately. For instance, in-
stead of directly searching for a rule of size 7 to learn h2, we
search for rules of size 3 (r1 to r3) and try to join them to learn
h3. As the search complexity of ILP is usually exponential in
the size of the program to be learned, this reduction can sub-
stantially improve learning performance. Moreover, because
we can join small rules to learn big rules of a certain syntac-
tic form, we can eliminate splittable rules from the search
space. We formally define a splittable rule in Section 4, but,
informally, the body of a splittable rule can be decomposed
into independent subsets, such as the body of h2 in our Zendo
scenario.

To explore our idea, we build on learning from failures
(LFF) [Cropper and Morel, 2021], a constraint-driven ILP
approach. We extend the LFF system COMBO [Cropper and
Hocquette, 2023] with a join stage to learn programs with big
rules. We develop a Boolean satisfiability (SAT) [Biere et al.,
2021] approach to find conjunctions in the join stage. We call
our implementation JOINER.

Novelty and Contributions. Our main contribution is the
idea of joining small rules to learn big rules which, as our
experiments on many diverse domains show, can improve
predictive accuracies. Overall, our main contributions are:

1. We introduce an approach which joins small rules to learn
big rules.

2. We implement our approach in JOINER, which learns
optimal (textually minimal) and recursive programs. We
prove the correctness of JOINER (Theorem 1).

3. We experimentally show on several domains, including
game playing, drug design, and image reasoning, that our
approach can (i) learn rules with more than 100 literals,
and (ii) drastically outperform existing approaches in
terms of predictive accuracy.

2 Related Work
Program synthesis. Several approaches build a program
one token at a time using an LSTM [Devlin et al., 2017;
Bunel et al., 2018]. CROSSBEAM [Shi et al., 2022] uses a
neural model to generate programs as the compositions of
seen subprograms. CROSSBEAM is not guaranteed to learn
a solution if one exists and can only use unary and binary
relations. By contrast, JOINER can use relations of any arity.

Rule mining. AMIE+ [Galárraga et al., 2015] is a promi-
nent rule mining approach. In contrast to JOINER, AMIE+
can only use unary and binary relations and struggles to learn
rules with more than 4 literals.

ILP. Top-down ILP systems [Quinlan, 1990; Blockeel and
De Raedt, 1998] specialise rules with refinement operators
[Shapiro, 1983]. Some systems join literals for look-ahead
search to improve performance [Silverstein and Pazzani, 1991;
Castillo and Wrobel, 2002]. Because they learn a single rule
at a time and add at most a couple of literals at each step,
these systems struggle to learn recursive and optimal programs.
Recent approaches overcome these issues by formulating the
search as a rule selection problem [Corapi et al., 2011; Evans
and Grefenstette, 2018; Kaminski et al., 2019; Si et al., 2019;
Raghothaman et al., 2020; Evans et al., 2021; Bembenek et al.,
2023]. These approaches precompute all possible rules (up to a
maximum rule size) and thus struggle to learn rules with more
than a few literals. While these approaches could precompute
non-splittable rules only and use our join algorithm to find
big rules, they would still struggle to scale to big rules. By
contrast, we avoid enumeration and use constraints to soundly
prune rules.

Many rules. COMBO [Cropper and Hocquette, 2023]
searches for a disjunction of small programs that entails all
the positive examples. COMBO learns optimal and recursive
programs and large programs with many rules. However, it
struggles to learn rules with more than 6 literals. Our approach
builds on COMBO and can learn rules with over 100 literals.

Big rules. Inverse entailment approaches [Muggleton, 1995;
Srinivasan, 2001] can learn big rules by returning bottom
clauses. However, these approaches struggle to learn optimal
and recursive programs and tend to overfit. Ferilli [2016]
specialises rules in a theory revision task. This approach can
learn negated conjunctions but only Datalog preconditions
and not recursive programs. BRUTE [Cropper and Dumančić,
2020] can learn recursive programs with hundreds of literals.
However, in contrast to our approach, BRUTE needs a user-
provided domain-specific loss function, does not learn optimal
programs, and can only use binary relations.

Splitting rules. Costa et al. [2003] split rules into conjunc-
tions of independent goals that can be executed separately to
avoid unnecessary backtracking and thus to improve execution
times. By contrast, we split rules to reduce search complexity.
Costa et al. allow joined rules to share variables, whereas we
prevent joined rules from sharing body-only variables.

3 Problem Setting
We now describe our problem setting. We assume familiarity
with logic programming [Lloyd, 2012] but have stated relevant
notation and definitions in the appendix.

We use the learning from failures (LFF) [Cropper and Morel,
2021] setting. We restate some key definitions [Cropper and
Hocquette, 2023]. A hypothesis is a set of definite clauses with
the least Herbrand model semantics. We use the term program
interchangeably with the term hypothesis. A hypothesis space
H is a set of hypotheses. LFF assumes a language L that
defines hypotheses. A LFF learner uses hypothesis constraints
to restrict the hypothesis space. A hypothesis constraint is a
constraint (a headless rule) expressed in L. A hypothesis h is
consistent with a set of constraints C if, when written in L, h
does not violate any constraint in C. We callHC the subset of
H consistent with C. We define a LFF input and a solution:
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Definition 1 (LFF input). A LFF input is a tuple
(E,B,H, C) where E = (E+, E−) is a pair of sets of ground
atoms denoting positive (E+) and negative (E−) examples, B
is a definite program denoting background knowledge,H is a
hypothesis space, and C is a set of hypothesis constraints.

Definition 2 (Solution). For a LFF input (E,B,H, C), where
E = (E+, E−), a hypothesis h ∈ HC is a solution when h
entails every example in E+ (∀e ∈ E+, B ∪ h |= e) and no
example in E− (∀e ∈ E−, B ∪ h ̸|= e).
Let cost : H 7→ N be an arbitrary cost function that measures
the cost of a hypothesis. We define an optimal solution:
Definition 3 (Optimal solution). For a LFF input
(E,B,H, C), a hypothesis h ∈ HC is optimal when (i) h
is a solution, and (ii) ∀h′ ∈ HC , where h′ is a solution,
cost(h) ≤ cost(h′).
Our cost function is the number of literals in a hypothesis. A
hypothesis which is not a solution is a failure. For a hypothesis
h, the number of true positives (tp), false negatives (fn), and
false positives (fp) is the number of positive examples entailed,
positive not entailed, and negative entailed by h respectively.

4 Algorithm
To describe JOINER, we first describe COMBO [Cropper and
Hocquette, 2023], which we build on.
COMBO. COMBO takes as input background knowledge,
positive and negative training examples, and a maximum hy-
pothesis size. COMBO builds a constraint satisfaction problem
(CSP) program C, where each model of C corresponds to a hy-
pothesis (a definite program). In the generate stage, COMBO
searches for a model of C for increasing hypothesis sizes. If no
model is found, COMBO increments the hypothesis size and
resumes the search. If there is a model, COMBO converts it to
a hypothesis h. In the test stage, COMBO uses Prolog to test h
on the training examples. If h is a solution, COMBO returns
it. Otherwise, if h entails at least one positive example and no
negative ones, COMBO saves h as a promising program. In the
combine stage, COMBO searches for a disjunction (a union)
of promising programs that entails all the positive examples
and is minimal in size. If there is a disjunction, COMBO saves
it as the best disjunction so far and updates the maximum hy-
pothesis size. In the constrain stage, COMBO uses h to build
constraints and adds them to C to prune models and thus prune
the hypothesis space. For instance, if h does not entail any
positive example, COMBO adds a constraint to eliminate its
specialisations as they are guaranteed to not entail any positive
example. COMBO repeats this loop until it finds an optimal
(textually minimal) solution or exhausts the models of C.

4.1 Joiner
Algorithm 1 shows our JOINER algorithm. JOINER builds on
COMBO and uses a generate, test, join, combine, and constrain
loop to find an optimal solution (Definition 3). JOINER differs
from COMBO by (i) eliminating splittable programs in the
generate stage (line 5), (ii) using a join stage to build big rules
from small rules and saving them as promising programs (line
16), and (iii) using different constraints (line 20). We describe
these differences in turn.

Algorithm 1 JOINER

1 def Joiner(bk, E+, E−, maxsize):
2 cons, to_join, to_combine = {}, {}, {}
3 bestsol, k = None, 1
4 while k ≤ maxsize:
5 h = generate_non_splittable(cons, k)
6 if h == UNSAT:
7 k += 1
8 continue
9 tp, fn, fp = test(E+, E−, bk, h)

10 if fn == 0 and fp == 0:
11 return h
12 elif tp > 0 and fp == 0:
13 to_combine += {h}
14 elif tp > 0 and fp > 0:
15 to_join += {h}

16 to_combine += join(to_join, bestsol, E+, E−, k)

17 disj = combine(to_combine, maxsize, bk, E−)
18 if disj != None:
19 bestsol, maxsize = disj, size(bestsol)-1
20 cons += constrain(h, tp, fp)
21 return bestsol

4.2 Generate
In our generate stage, we eliminate splittable programs be-
cause we can build them in the join stage. We define a split-
table rule:

Definition 4 (Splittable rule). A rule is splittable if its body
literals can be partitioned into two non-empty sets with disjoint
body-only variables (a variable in the body of a rule but not
the head). A rule is non-splittable if it is not splittable.

Example 1. (Splittable rule) Consider the rule:

{ zendo(S)← piece(S,R), red(R), piece(S,B), blue(B) }

This rule is splittable because its body literals can be par-
titioned into two sets {piece(S,R), red(R)} and {piece(S,B),
blue(B)}, with body-only variables {R} and {B} respectively.

Example 2. (Non-splittable rule) Consider the rule:{
zendo(S)← piece(S,R), red(R), piece(S,B),

blue(B), contact(R,B)

}
This rule is non-splittable because each body literal contains
the body-only variable R or B and one literal contains both.

We define a splittable program:

Definition 5 (Splittable program). A program is splittable if
and only if it has exactly one rule and this rule is splittable. A
program is non-splittable when it is not splittable.

We use a constraint to prevent the CSP solver from considering
models with splittable programs. The appendix includes our
encoding of this constraint. At a high level, we first identify
connected body-only variables. Two body-only variables A
and B are connected if they are in the same body literal, or
if there exists another body-only variable C such that A and
C are connected, and B and C are connected. Our constraint
prunes programs with a single rule which has (i) two body-only
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variables that are not connected, or (ii) multiple body literals
and at least one body literal without body-only variables. As
our experiments show, eliminating splittable programs can
substantially improve learning performance.

4.3 Join
Algorithm 2 shows our join algorithm, which takes as input a
set of programs and their coverage (P), where each program
entails some positive and some negative examples, the best
solution found thus far (bestsol), the positive examples (E+),
the negative examples (E−), and a maximum conjunction
size (k). It returns subsets of P , where the intersection of the
logical consequences of the programs in each subset entails at
least one positive example and no negative example. We call
such subsets conjunctions. We define a conjunction:

Definition 6 (Conjunction). A conjunction is a set of pro-
grams with the same head literal. We call M(p) the least
Herbrand model of the logic program p. The logical conse-
quences of a conjunction c is the intersection of the logical
consequences of the programs in it: M(c) = ∩p∈cM(p). The
cost of a conjunction c is the sum of the cost of the programs
in it: cost(c) =

∑
p∈c cost(p).

Our join algorithm has two stages. We first search for con-
junctions that together entail all the positive examples, which
allows us to quickly find a solution (Definition 2). If we have
a solution, we enumerate all remaining conjunctions to guar-
antee optimality (Definition 3). In other words, at each call
of the join stage (line 16 in Algorithm 1), we either run the
incomplete or the complete join stage (line 3 or 5 in Algorithm
2). We describe these two stages.

Incomplete Join Stage
If we do not have a solution, we use a greedy set-covering
algorithm to try to entail all the positive examples. In line 8,
we mark each positive example as uncovered. In line 10, we
build our encoding. In line 11, we use a MaxSAT solver to find
a conjunction conj that entails the maximum number of un-
covered positive examples. In line 14, we remove the positive
examples entailed by conj. In line 15, we add conj to the set of
conjunctions. We repeat this loop until either all positive ex-
amples are covered (line 9) or there are no more conjunctions
(line 12). This approach allows us to first find conjunctions
with large coverage and to quickly build a solution. However,
this solution may not be optimal.

Complete Join Stage
If we have a solution, we search through remaining conjunc-
tions to ensure optimality. However, we do not need to con-
sider all remaining conjunctions as some cannot be in an
optimal solution. If a conjunction entails a subset of the posi-
tive examples entailed by a strictly smaller conjunction then it
cannot be in an optimal solution:

Proposition 1. Let c1 and c2 be two conjunctions which do not
entail any negative examples, c1 |= E+

1 , c2 |= E+
2 , E+

2 ⊆ E+
1 ,

and size(c1) < size(c2). Then c2 cannot be in an optimal
solution.

The appendix contains a proof for this result. Following this
result, our join stage enumerates conjunctions by increasing

Algorithm 2 Join stage

1 def join(P, bestsol, E+, E−, k):
2 if bestsol == None:

3 return incomplete_join(P, E+, E−)
4 else:
5 return complete_join(P, E+, E−, k)
6
7 def incomplete_join(P, E+, E−):

8 uncovered, conjunctions = E+, {}
9 while uncovered:

10 encoding = buildencoding(P, E+,E−,conjunctions)
11 conj = conj_max_coverage(uncovered, encoding)
12 if not conj:
13 break
14 uncovered -= pos_entailed(conj)
15 conjunctions += {conj}
16 return conjunctions
17
18 def complete_join(P, E+, E−, k):
19 conjunctions = {}
20 while True:

21 encoding = buildencoding(P, E+,E−,conjunctions)
22 encoding += sizeconstraint(k)
23 τ = find_assignment(encoding)
24 if not τ:
25 break
26 while True:
27 assignment = cover_more_pos(encoding, τ)
28 if not assignment:
29 break
30 τ = assignment
31 conjunctions += {conjunction(τ)}
32 return conjunctions

size. For increasing values of k, we search for all subset-
maximal coverage conjunctions of size k, i.e. conjunctions
which entail subsets of the positive examples not included
between each other.

Example 3 (Join stage). Consider the positive examples
E+ = {f([a, b, c, d]), f([c, b, d, e])}, the negative examples
E− = {f([c, b]), f([d, b]), f([a, c, d, e])}, and the programs:

p1 = { f(S)← head(S,a) }
p2 = { f(S)← last(S,e) }
p3 = { f(S)← tail(S,T), head(T,b) }

p4 =

{
f(S)← head(S,c)
f(S)← tail(S,T), f(T)

}
p5 =

{
f(S)← head(S,d)
f(S)← tail(S,T), f(T)

}
Each of these programs entails at least one positive and one
negative example. The incomplete join stage first outputs the
conjunction c1 = {p3, p4, p5} as it entails all the positive ex-
amples and no negative example. The complete join stage then
outputs the conjunctions c2 = {p1, p3} and c3 = {p2, p3}.
The other conjunctions are not output because they (i) do
not entail any positive example, or (ii) entail some negative
example, or (iii) are subsumed by c2 or c3.
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Finding Conjunctions Using SAT
To find conjunctions, we use a SAT [Biere et al., 2021] ap-
proach. We build a propositional encoding (lines 10 and 21)
for the join stage as follows. Let P be the set of input pro-
grams. For each program h ∈ P , the variable ph indicates
that h is in a conjunction. For each positive example e ∈ E+,
the variable ce indicates that the conjunction entails e. The
constraint F+

e = ce →
∧

h∈P|B∪h̸|=e ¬ph ensures that if the
conjunction entails e, then every program in the conjunction
entails e. For each negative example e ∈ E−, the constraint
F−
e =

∨
h∈P|B∪h̸|=e ph ensures that at least one of the pro-

grams in the conjunction does not entail e.

Subset-maximal coverage conjunctions. For the complete
join stage, to find all conjunctions of size k with subset-
maximal coverage, we use a SAT solver to enumerate maximal
satisfiable subsets [Liffiton and Sakallah, 2008] corresponding
to the subset-maximal coverage conjunctions. In line 22, we
build the constraint S =

∑
h size(h) · ph ≤ k to bound the

size of the conjunctions and we encode S as a propositional
formula FS [Manthey et al., 2014]. In line 23, we call a SAT
solver on the formula F =

∧
e∈E+ F+

e ∧
∧

e∈E− F−
e ∧ FS .

If F has a satisfying assignment τ , we form a conjunction c
by including a program h iff τ(h) = 1. In line 27, we update
F to F ∧

∧
e∈E+|B∪c|=e ce ∧

∨
e∈E+|B∪c ̸|=e ce to ensure that

subsequent conjunctions cover more positive examples. We
repeat these steps (lines 26 to 30) until F is unsatisfiable (line
24), in which case c has subset-maximal coverage. In line 31,
we add the found conjunction to the set of conjunctions. To
enumerate all conjunctions, we iteratively call this procedure
on the formula F ∧

∧
c∈C

∨
e∈E+|B∪c ̸|=e ce, where C is the

set of conjunctions found so far (line 21).

Maximal coverage conjunctions. For the incomplete join
stage, we use maximum satisfiability (MaxSAT) [Bacchus
et al., 2021] solving to find conjunctions which entail the
maximum number of uncovered positive examples (line 11).
The MaxSAT encoding includes the hard clauses

∧
e∈E+ F+

e ∧∧
e∈E− F−

e to ensure correct coverage, as well as soft clauses
(ce) for each uncovered positive example e to maximise the
number of uncovered examples.

4.4 Constrain
In the constrain stage (line 20 in Algorithm 1), JOINER uses
two optimally sound constraints to prune the hypothesis space.
If a hypothesis does not entail any positive example, JOINER
prunes all its specialisations, as they cannot be in a conjunction
in an optimal solution:
Proposition 2. Let h1 be a hypothesis that does not entail any
positive example and h2 be a specialisation of h1. Then h2

cannot be in a conjunction in an optimal solution.
If a hypothesis does not entail any negative example, JOINER
prunes all its specialisations, as they cannot be in a conjunction
in an optimal solution:
Proposition 3. Let h1 be a hypothesis that does not entail any
negative example and h2 be a specialisation of h1. Then h2

cannot be in a conjunction in an optimal solution.
The appendix includes proofs for these propositions.

4.5 Correctness
We prove the correctness of JOINER:
Theorem 1. JOINER returns an optimal solution, if one exists.
The proof is in the appendix. To show this result, we show
that (i) JOINER can generate and test every non-splittable
program, (ii) each rule of an optimal solution is equivalent to
the conjunction of non-splittable rules, and (iii) our constraints
(Propositions 1, 2, and 3) never prune optimal solutions.

5 Experiments
To test our claim that our join stage can improve learning
performance, our experiments aim to answer the question:
Q1 Can the join stage improve learning performance?

To answer Q1, we compare learning with and without the join
stage.

To test our claim that eliminating splittable programs in
the generate stage can improve learning performance, our
experiments aim to answer the question:
Q2 Can eliminating splittable programs in the generate stage

improve learning performance?
To answer Q2, we compare learning with and without the
constraint eliminating splittable programs.

To test our claim that JOINER can learn programs with big
splittable rules, our experiments aim to answer the question:
Q3 How well does JOINER scale with the size of splittable

rules?
To answer Q3, we vary the size of rules and evaluate the
performance of JOINER.

Finally, to test our claim that JOINER can outperform other
approaches, our experiments aim to answer the question:
Q4 How well does JOINER compare against other ap-

proaches?
To answer Q4, we compare JOINER against COMBO [Crop-
per and Hocquette, 2023] and ALEPH [Srinivasan, 2001] on
multiple tasks and domains2.

Domains
We consider several domains. The appendix provides addi-
tional information about our domains and tasks.
IGGP. In inductive general game playing (IGGP) [Cropper et
al., 2020], we learn rules from game traces from the general
game playing competition [Genesereth and Björnsson, 2013].
Zendo. Zendo is an inductive game where the goal is to
identify a secret rule that structures must follow [Bramley et
al., 2018; Cropper and Hocquette, 2023].
IMDB. The international movie database (IMDB) [Mihalkova
et al., 2007] is a relational domain containing relations be-
tween movies, directors, and actors.
Pharmacophores. The task is to identify structures responsi-
ble for the medicinal activity of molecules [Finn et al., 1998].
Strings. We learn recursive patterns to classify strings.
1D-ARC. This dataset [Xu et al., 2023] contains visual rea-
soning tasks inspired by the abstraction and reasoning corpus
[Chollet, 2019].

2We also tried rule selection approaches (Section 2) but precom-
puting every possible rule is infeasible on our datasets.
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Experimental Setup
We use 60s and 600s timeouts. We repeat each experiment
5 times. We measure predictive accuracies (the proportion
of correct predictions on testing data) of the best hypothesis
found within the timeout. For clarity, our figures only show
tasks where the approaches differ. The appendix contains
the detailed results for each task. We use an 8-core 3.2 GHz
Apple M1 and a single CPU to run the experiments. We use
the MaxSAT solver UWrMaxSat [Piotrów, 2020] and the SAT
solver CaDiCaL 1.5.3 [Biere et al., 2023] (via PySAT [Ignatiev
et al., 2018]) in the join stage of JOINER.

Q1. We compare learning with and without the join stage.
To isolate the impact of the join stage, we allow splittable
programs in the generate stage.

Q2. We compare the predictive accuracies of JOINER with
and without the constraint that eliminates splittable programs.

Q3. To evaluate scalability, for increasing values of k, we
generate a task where an optimal solution has size k. We learn
a hypothesis with a single splittable rule. We use a zendo task
similar to the one shown in Section 1 and a string task.

Q4. We provide JOINER and COMBO with identical input.
The only differences are (i) the join stage, and (ii) the elimi-
nation of splittable programs in the generate stage. However,
because it can build conjunctions in the join stage, JOINER
searches a larger hypothesis space than COMBO. ALEPH uses
a different bias than JOINER to define the hypothesis space.
In particular, ALEPH expects a maximum rule size as input.
Therefore, the comparison is less fair and should be viewed as
indicative only.

Experimental Results
Q1. Can the Join Stage Improve Performance?
Figure 3 shows that the join stage can drastically improve
predictive accuracies. A McNeymar’s test confirms (p < 0.01)
that the join stage improves accuracies on 24/42 tasks with a
60s timeout and on 22/42 tasks with a 600s timeout. There is
no significant difference for the other tasks.

The join stage can learn big rules which otherwise cannot
be learned. For instance, for the task pharma1, the join stage
finds a rule of size 17 which has 100% accuracy. By contrast,
without the join stage, no solution is found, resulting in default
accuracy (50%). Similarly, an optimal solution for the task
iggp-rainbow has a single rule of size 19. This rule is splittable
and is the conjunction of 6 small rules. The join stage identifies
this rule in less than 1s as it entails all the positive examples.
By contrast, without the join stage, the system exceeds the
timeout without finding a solution as it needs to search through
the set of all rules up to size 19 to find a solution.

The overhead of the join stage is small. For instance, for
the task scale in the 1D-ARC domain, the join stage takes less
than 1% of the total learning time, yet this stage allows us to
find a perfectly accurate solution with a rule of size 13.

Overall, the results suggest that the answer to Q1 is that the
join stage can substantially improve predictive accuracy.

Q2. Can Eliminating Splittable Programs Improve
Performance?
Figure 4 shows that eliminating splittable programs in the gen-
erate stage can improve learning performance. A McNeymar’s
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Figure 3: Predictive accuracy (%) with and without join stage with
60s (left) and 600s (right) timeouts.

test confirms (p < 0.01) that eliminating splittable programs
improves performance on 8/42 tasks with a 60s timeout and
on 11/42 tasks with a 600s timeout. It degrades performance
(p < 0.01) on 1/42 tasks with a 60s timeout. There is no
significant difference for the other tasks.

Eliminating splittable programs from the generate stage
can greatly reduce the number of programs JOINER considers.
For instance, for iggp-rainbow, the hypothesis space contains
1,986,422 rules of size at most 6, but only 212,564 are non-
splittable. Likewise, for string2, when eliminating splittable
programs, JOINER finds a perfectly accurate solution in 133s
(2min13s). By contrast, with splittable programs, JOINER
considers more programs and fails to find a solution within
the 600s timeout, resulting in default accuracy (50%).

Overall, these results suggest that the answer to Q2 is that
eliminating splittable programs from the generate stage can
improve predictive accuracies.
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Figure 4: Predictive accuracies (%) with and without generating
splittable programs with 60s (left) and 600s (right) timeouts.

Q3. How Well Does JOINER Scale?
Figure 5 shows that JOINER can learn an almost perfectly
accurate hypothesis with up to 100 literals for both the zendo
and string tasks. By contrast, COMBO and ALEPH struggle
to learn hypotheses with more than 10 literals. JOINER learns
a zendo hypothesis of size k after searching for programs of
size 4. By contrast, COMBO must search for programs up to
size k to find a solution. Similarly, an optimal solution for the
string task is the conjunction of programs with 6 literals each.
By contrast, COMBO must search for programs up to size k to
find a solution. ALEPH struggles to learn recursive programs
and thus struggles on the string task.

Overall, these results suggest that the answer to Q3 is that
JOINER can scale well with the size of rules.
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Figure 5: Predictive accuracies (%) when varying the optimal solution
size for zendo (left) and string (right) with a 600s timeout.

Q4. How Does JOINER Compare to Other Approaches?
Table 1 shows the predictive accuracies aggregated over each
domain. It shows JOINER achieves higher accuracies than
both COMBO and ALEPH on almost all domains.

Task ALEPH COMBO JOINER

iggp 78 ± 3 86 ± 2 96 ± 1
zendo 100 ± 0 86 ± 3 94 ± 2
pharma 50 ± 0 53 ± 2 98 ± 1
imdb 67 ± 6 100 ± 0 100 ± 0
string 50 ± 0 50 ± 0 100 ± 0
onedarc 51 ± 1 57 ± 2 89 ± 1

Table 1: Aggregated predictive accuracies (%) with a 600s timeout.

Figure 6 shows that JOINER outperforms COMBO. A Mc-
Neymar’s test confirms (p < 0.01) that JOINER outperforms
COMBO on 27/42 tasks with a 60s timeout and on 26/42 tasks
with a 600s timeout. JOINER and COMBO have similar per-
formance on other tasks. JOINER can find hypotheses with
big rules. For example, the flip task in the 1D-ARC domain
involves reversing the order of colored pixels in an image.
JOINER finds a solution with two splittable rules of size 9 and
16. By contrast, COMBO only searches programs of size at
most 4 before it timeouts and it does not learn any program.
JOINER can also perform better when learning non-splittable
programs. For instance, JOINER learns a perfectly accurate
solution for iggp-rps and proves that this solution is optimal
in 20s. By contrast, COMBO requires 440s (7min20s) to find
the same solution and prove optimality.
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Figure 6: Predictive accuracies (%) of JOINER versus COMBO with
60s (left) and 600s (right) timeouts.

Figure 7 shows that JOINER outperforms ALEPH. A Mc-
Neymar’s test confirms (p < 0.01) that JOINER outperforms

ALEPH on 28/42 tasks with both 60s and 600s timeouts.
ALEPH outperforms (p < 0.01) JOINER on 4/42 tasks with a
60s timeout and on 2/42 tasks with a 600s timeout. JOINER
and ALEPH have similar performance on other tasks. ALEPH
struggles to learn recursive programs and therefore does not
perform well on the string tasks. JOINER also consistently
surpasses ALEPH on tasks which do not require recursion.
For instance, JOINER achieves 98% average accuracy on the
pharma tasks while ALEPH has default accuracy (50%). How-
ever, for zendo3, ALEPH can achieve better accuracies (100%
vs 79%) than JOINER. An optimal solution is not splittable
and JOINER exceeds the timeout.

Overall, the results suggest that the answer to Q4 is that
JOINER can outperform other approaches in terms of predic-
tive accuracy.
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Figure 7: Predictive accuracies (%) of JOINER versus ALEPH with
60s (left) and 600s (right) timeouts.

6 Conclusions and Limitations
Learning programs with big rules is a major challenge. To ad-
dress this challenge, we introduced an approach which learns
big rules by joining small rules. We implemented our approach
in JOINER, which can learn optimal and recursive programs.
Our experiments on various domains show that JOINER can (i)
learn splittable rules with more than 100 literals, and (ii) out-
perform existing approaches in terms of predictive accuracies.

Limitations
Splittability. Our join stage builds splittable rules. The body
of a splittable rule is split into subsets which do not share body-
only variables. Future work should generalise our approach to
split rules into subsets which may share body-only variables.

Noise. In the join stage, we search for conjunctions which
entail some positive examples and no negative examples. Our
approach does not support noisy examples. Hocquette et al.
[2024] relax the LFF definition based on the minimal descrip-
tion length principle. Future work should combine our ap-
proach with their approach to learn big rules from noisy data.

7 Appendices, Code, and Data
A longer version of this paper with the appendices is avail-
able at https://arxiv.org/pdf/2401.16215.pdf. The experi-
mental code and data are available at https://github.com/
celinehocquette/ijcai24-joiner.
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