
Learning Logic Programs by Discovering Higher-Order Abstractions

Céline Hocquette1 , Sebastijan Dumančić2 , Andrew Cropper1
1University of Oxford

2TU Delft
{celine.hocquette, andrew.cropper}@cs.ox.ac.uk; s.dumancic@tudelft.nl

Abstract
We introduce the higher-order refactoring problem,
where the goal is to compress a logic program by
discovering higher-order abstractions, such as map,
filter, and fold. We implement our approach in STE-
VIE, which formulates the refactoring problem as a
constraint optimisation problem. Our experiments
on multiple domains, including program synthesis
and visual reasoning, show that refactoring can im-
prove the learning performance of an inductive logic
programming system, specifically improving predic-
tive accuracies by 27% and reducing learning times
by 47%. We also show that STEVIE can discover
abstractions that transfer to multiple domains.

1 Introduction
Abstraction is seen as crucial for AI [Saitta and Zucker, 2013;
Russell, 2019; Bundy and Li, 2023]. Despite its argued im-
portance, abstraction is often overlooked in machine learning
[Marcus, 2020; Mitchell, 2021]. To address this limitation,
we introduce an approach that automatically discovers higher-
order abstractions to improve the learning performance of a
machine learning algorithm.

To motivate discovering higher-order abstractions, consider
learning a logic program from examples to make an input
string uppercase, such as [l,o,g,i,c] 7→ [L,O,G,I,C]. For this
problem, we could learn the program:

h1 =

{ f(A,B)← empty(A), empty(B)
f(A,B)← head(A,C), uppercase(C,E),

head(B,E), tail(A,D), f(D,F), tail(B,F)

}
This program recursively uppercases each element. Although
correct, this program is verbose. Alternatively, we could learn:

{ f(A,B)← map(A,B,uppercase) }

This program uses the higher-order abstraction map to avoid
needing to learn how to recursively iterate over a list. As
this scenario shows, using abstractions can allow us to learn
smaller programs, which are often easier to learn than larger
ones [Cropper et al., 2020].

The goal of ILP is to induce a hypothesis (a logic program)
that generalises the examples with respect to the background

knowledge (BK), a logic program which encodes informa-
tion related to the examples. Recent work in inductive logic
programming (ILP) has shown that using user-provided higher-
order abstractions, such as map, filter, and fold, can drastically
improve the learning performance of an ILP system [Crop-
per et al., 2020; Purgal et al., 2022]. For instance, if given
map as input, these approaches can learn the aforementioned
higher-order string transformation program.

The major limitation of these recent approaches is that they
need a human to provide the necessary abstractions as input,
i.e. these approaches cannot discover abstractions.

To overcome this limitation, we introduce an approach
that automatically discovers useful higher-order abstractions,
which can then be used by an ILP system. The idea is to refac-
tor a logic program by discovering higher-order abstractions
that compress it.

Our refactoring approach works in two stages: abstract and
compress. In the abstract stage, given a first-order program,
we discover higher-order abstractions. In the compress stage,
we search for a subset of the abstractions that compresses the
first-order program.

To illustrate our idea, consider the program:

h2 =

{ g(A,B)← empty(A), empty(B)
g(A,B)← head(A,C), increment(C,E),

head(B,E), tail(A,D), g(D,F), tail(B,F)

}

This program takes a list of natural numbers and adds one to
each element, e.g. [3,4,5] 7→ [4,5,6].

Suppose we want to refactor the program P = h1 ∪ h2. In
the abstract stage, we discover abstractions of P , such as1:

h3 =

{ ho(A,B,X)← empty(A), empty(B)
ho(A,B,X)← head(A,C), X(C,E), head(B,E),

tail(A,D), ho(D,F,X), tail(B,F)

}

The invented relation ho defines a higher-order abstraction
which corresponds to map. The symbol X is a higher-order
variable that quantifies over predicate symbols.

In the compress stage, we search for a subset of abstrac-
tions that compresses the input program. We formulate this
problem as a constraint optimisation problem (COP) [Rossi et
al., 2006]. We output a refactored program with abstractions,

1There are more abstractions but we exclude them for brevity.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3421



such as P ′ = h3 ∪ h4, where h4 is:

h4 =

{
f(A,B)← ho(A,B,uppercase)
g(A,B)← ho(A,B,increment)

}
In this program, the relations f and g are defined with the
abstraction ho. As this example shows, abstractions can com-
press a program, i.e. P ′ has fewer literals (14) than P (20).

The above scenario shows how discovering higher-order
abstractions in one domain can help an ILP system perform
better in that domain by allowing it to learn smaller programs.
In this paper, we show that abstractions discovered in one
domain, such as program synthesis, can be reused by an ILP
system in a different domain, such as chess. Although there is
much work on transfer learning [Torrey and Shavlik, 2009] and
cross-domain transfer learning [Kumaraswamy et al., 2015],
as far as we know, we are the first to show the automatic
discovery of abstractions that generalise across domains.

1.1 Novelty and Contributions
The three main novelties of this paper are (i) the idea of discov-
ering higher-order abstractions to refactor a logic program, (ii)
encoding this refactoring problem as a COP, and (iii) showing
cross-domain transfer of discovered abstractions. The impact
is that we can drastically improve the learning performance
of an ILP system, compared to not discovering abstractions.
Moreover, as the idea connects many areas of AI, including
machine learning, program synthesis, and constraint optimisa-
tion, we hope the idea interests a broad audience.

Overall, our contributions are:

• We introduce the higher-order refactoring problem,
where the goal is to refactor a logic program by discover-
ing higher-order abstractions.

• We introduce STEVIE which discovers higher-order ab-
stractions and finds an optimal solution to the higher-
order refactoring problem by formulating it as a COP.

• We evaluate our approach on multiple domains, including
program synthesis, visual reasoning, and robot strategy
learning. Our empirical results show that refactoring
can improve the learning performance of an ILP system,
specifically improving predictive accuracies by 27% and
reducing learning times by 47%. We also show that
discovered abstractions can be reused across domains.

2 Related Work
Higher-order logic. Many authors advocate using higher-
order logic to represent knowledge [McCarthy, 1995; Muggle-
ton et al., 2012]. Although some approaches use higher-order
logic to specify the structure of learnable programs [Raedt
and Bruynooghe, 1992; Muggleton et al., 2015; Kaminski
et al., 2019], most only learn first-order programs [Blockeel
and Raedt, 1998; Srinivasan, 2001; De Raedt et al., 2015;
Evans and Grefenstette, 2018; Dai and Muggleton, 2021;
Evans et al., 2021; Cropper and Morel, 2021]. Some ap-
proaches use higher-order abstractions [Cropper et al., 2020;
Purgal et al., 2022] but need user-defined abstractions as input.
By contrast, we automatically discover abstractions.

Predicate invention. Feng and Muggleton [1992] con-
sider higher-order extensions of Plotkin’s (1971) least gen-
eral generalisation, where a predicate variable replaces a
predicate symbol. By contrast, we introduce new predicate
symbols, i.e. we perform predicate invention (PI), a repeat-
edly stated difficult challenge [Muggleton and Buntine, 1988;
Kok and Domingos, 2007; Muggleton et al., 2012; Russell,
2019; Kramer, 2020; Jain et al., 2021; Cropper et al., 2022;
Silver et al., 2023]. While most work on predicate invention
invents first-order predicate symbols, we invent higher-order
symbols.

Representation change. Simon [1981] views abstraction
as changing the representation of a problem to make it eas-
ier to solve. Propositionalisation [Lavrac and Dzeroski, 1994;
Paes et al., 2006] transforms a first-order problem into a propo-
sitional one to use efficient propositional learning algorithms.
A disadvantage of propositionalisation is the loss of a com-
pact representation language (first-order logic). By contrast,
we change a first-order problem to a higher-order one. The-
ory revision [Adé et al., 1994; Richards and Mooney, 1995;
Paes et al., 2017] revises a program so that it entails missing
answers or does not entail incorrect answers. Theory refine-
ment improves the quality of a theory, such as its execution or
readability [Sommer, 1995; Wrobel, 1996]. By contrast, we
refactor a theory to improve learning performance.

Compression. Chaitin [2006] emphasises compression
in abstraction. Theory compression [Raedt et al., 2008] se-
lects a subset of a program minimising the impact on perfor-
mance with respect to the examples. By contrast, we only con-
sider the program, not the examples. ALPS [Dumančić et al.,
2019] compresses facts, while we compress logic programs.
KNORF [Dumančić et al., 2021] refactors logic programs by
framing the problem as a COP. Whereas KNORF performs
first-order refactoring, we perform higher-order refactoring.
Several approaches [Ellis et al., 2018; Bowers et al., 2023;
Cao et al., 2023] refactor functional programs by searching for
local changes (new λ-expressions) that increase a cost function.
We differ because we (i) consider logic programs, (ii) guar-
antee optimal compression, and (iii) can transfer knowledge
across domains. Moreover, these approaches only evaluate the
compression rate, while we show that compressing a program
can improve the learning performance of an ILP system.

3 Problem Setting
We assume familiarity with logic programming [Lloyd, 2012]
but have included a summary in the appendix. We restate
key terminology. A first-order variable can be bound to a
constant symbol or another first-order variable. A higher-
order variable can be bound to a predicate symbol or another
higher-order variable. A clause is a set of literals. A clause
is higher-order if it has at least one higher-order variable. A
definite clause is a clause with exactly one positive literal.
We use the term rule synonymously with definite clause. A
definite program is a set of definite clauses with the least
Herbrand model semantics. We refer to a definite program
as a logic program. A logic program is higher-order if it
has at least one higher-order clause. The size(P) of the logic
program P is the number of literals in P . A definition is

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3422



a set of rules with the same head predicate symbol (posi-
tive predicate symbol). The set of definitions of the logic
program P with the head predicate symbols T is δ(P ) =
∪p∈T {r ∈ P | the head predicate symbol of the rule r is p}.

3.1 Abstraction and Instantiation
The idea of an abstraction is to replace predicate symbols
with predicate variables in the body of a rule and to add these
variables to the head of the rule. We define an abstraction:

Definition 1 (Abstraction). Let P be a logic program, d ∈
δ(P ) be a definition with the head predicate symbol h of arity
k, {p1, . . . , pn} be a subset of the predicate symbols in the
bodies of rules in d, x1, . . . , xn be higher-order variables, and
h′ be an invented predicate symbol not in P . Let a be the
definition obtained from d by replacing (1) every instance of
pi with xi, and (2) every literal h(v1, . . . , vk) with the literal
h′(v1, . . . , vk, x1, . . . , xn). Then a is an abstraction of P .
The set of all abstractions of P is A(P ).
We denote invented predicate symbols with the prefix ho.

Example 1 (Abstraction). Consider the rule:

f(A)← head(A,B), one(B), tail(A,C), head(C,D), one(D)

Some abstractions of this rule are:

ho1(A,X)← X(A,B), one(B), tail(A,C), X(C,D), one(D)
ho2(A,X)← head(A,B), X(B), tail(A,C), head(C,D), X(D)
ho3(A,X,Y)← X(A,B), Y(B), tail(A,C), X(C,D), Y(D)

Consider the recursive definition:
g(A,B)← head(A,B)
g(A,B)← tail(A,C), g(C,B)

Some abstractions of this definition are:

ho4(A,B,X)← X(A,B)
ho4(A,B,X)← tail(A,C), ho4(C,B,X)

ho5(A,B,X)← head(A,B)
ho5(A,B,X)← X(A,C), ho5(C,B,X)

ho6(A,B,X,Y)← X(A,B)
ho6(A,B,X,Y)← Y(A,C), ho6(C,B,X,Y)

An instantiation replaces predicate variables in an abstraction
with predicate symbols:

Definition 2 (Instantiation). Let P be a logic
program, h(v1, . . . , vk) be a head literal in P ,
h′(v1, . . . , vk, x1, . . . , xn) be a head literal in A(P ),
x1, . . . , xn be higher-order variables, and p1, . . . , pn be
predicate symbols in the bodies of rules in P . Then the rule
h(v1, ..., vk) ← h′(v1, ..., vk, p1, . . . , pn) is an instantiation.
The set of all instantiations of abstractions of P is I(A(P )).
Example 2 (Instantiation). Some instantiations of the ab-
stractions in Example 1 are:

f(A)← ho2(A,one)
f(A)← ho3(A,head,one)
g(A,B)← ho6(A,B,head,tail)

3.2 Higher-Order Refactoring Problem
We define the least Herbrand model M(P,B) of the programs
P andB asM(P∪B). In the following, we assume a program
B denoting BK and concisely note M(P,B) as M(P ). When
we refactor a program, we want to preserve its semantics.
However, we only need to preserve the semantics with respect
to head predicate symbols. Therefore, we reason about the
least Herbrand model restricted to a set of predicate symbols:
Definition 3 (Restricted least Herbrand model). Let P be
a logic program, M(P ) be the least Herbrand model of P ,
and T be the head predicate symbols of P . Then the least
Herbrand model of P restricted to T is MT (P ) = {a ∈
M(P ) | the predicate symbol of a is in T}.
We define the higher-order refactoring problem:
Definition 4 (Higher-order refactoring problem). Let P
be a logic program and T be the head predicate symbols of
P . Then the higher-order refactoring problem is to find Q ⊆
P ∪ A(P ) ∪ I(A(P )) such that MT (Q) == MT (P ). We
call Q a solution to the refactoring problem.
Example 3 (Refactoring). A refactoring of the program P in
Section 1 is P ′.
Our goal is to perform optimal refactoring:
Definition 5 (Optimal refactoring). Let P be a logic pro-
gram, T be the head predicate symbols of P , and cost be a
function which maps logic programs to integers. Then Q is
an optimal solution when (i) Q is a solution to the refactoring
problem, and (ii) there is no Q′ ⊆ P ∪ A(P ) ∪ I(A(P ))
such that Q′ is a solution to the refactoring problem and
cost(Q′) < cost(Q).
In the next section, we introduce STEVIE, which finds an
optimal solution to the refactoring problem.

4 STEVIE
Algorithm 1 shows our STEVIE algorithm, which works in two
stages: abstract and compress. In the abstract stage, given
a first-order logic program, STEVIE builds abstractions and
instantiations. In the compress stage, STEVIE searches for a
subset of the abstractions and instantiations which compresses
the input program. STEVIE formulates this search problem as
a COP. We describe these two stages in turn. The appendix
includes an example of refactoring.

4.1 Abstract
In the abstract stage (line 2), STEVIE builds abstractions and
instantiations. To build abstractions for the logic program
P , for each definition d ∈ δ(P ) and subset ψ of at most k
predicate symbols in the bodies of rules in d, STEVIE calls the
function create abs inst(d, ψ) (line 10). The value k is a user
parameter. This function follows Definition 1 and replaces
every pi ∈ ψ in d with a new higher-order variable xi, adds
each xi to the arguments of the literals with the predicate
symbol h, where h is the head predicate symbol of d, and
replaces every occurrence of h with an invented predicate
symbol h′. For instance, if d is the rule in Example 1 and
ψ={head, one}, the function replaces head with X and one
with Y to build the abstraction ho3 in Example 1. STEVIE

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3423



Algorithm 1 STEVIE

1 def stevie(P, k):
2 abstractions, instantiations = abstract(P, k)
3 return compress(P, abstractions, instantiations)
4
5 def abstract(P, k):
6 abstractions, instantiations = {}, {}
7 for d in δ(P ):
8 for size in 1 to k:
9 for ψ in subsets(nonrecbodypreds(d), size):

10 abs, inst = create_abs_inst(d, ψ)
11 if equivalent(abs, abstractions):
12 inst = redefine(inst, abs, abstractions)
13 else:
14 abstractions += abs
15 instantiations += {inst}
16 return abstractions, instantiations

never abstracts recursive predicate symbols (line 9) as this
would change the semantics. This function also returns an
instantiation (Definition 2) by replacing predicate variables
in an abstraction with ψ. STEVIE prunes abstractions that are
identical up to renaming of their head predicate symbol (line
11). In such cases, STEVIE redefines the instantiation in terms
of the existing equivalent abstraction (line 12). For instance,
consider the rules:

f1(A)← head(A,B), one(B)
f2(A)← head(A,B), two(B)

The abstractions of the f1 and f2 rules with ψ = {one} and
ψ = {two} respectively are equivalent up to renaming of
the head predicate symbols, i.e. both of these rules have the
abstraction ho(A, X)← head(A,B), X(B).

4.2 Compress
In the compress stage, STEVIE searches for a subset of abstrac-
tions and instantiations that compresses the input program
(line 3). STEVIE formulates this search problem as a COP.
Given (i) a set of decision variables, (ii) a set of constraints,
and (iii) an objective function, a COP solver finds an assign-
ment to the decision variables that satisfies all the specified
constraints and minimises the objective function.

We describe our COP encoding. We assume an input logic
program P .

Decision Variables
STEVIE uses three types of decision variables. First, for each
definition d ∈ δ(P ) and abstraction a ∈ A(P ), we use a
Boolean variable ida to indicate whether an instantiation of a
defining d is selected. We later use these variables to ensure
that a definition is defined with at most one instantiation. Sec-
ond, for each definition d ∈ δ(P ), we use a Boolean variable
nd to indicate that no instantiation has been selected for d.
These variables allow STEVIE to not introduce abstractions
and instantiations if they overall increase the complexity of
the refactored program. Third, for each abstraction a ∈ A(P ),
we use a Boolean variable sa to indicate that at least one in-
stantiation of a is selected. STEVIE uses these variables to
determine the size of the refactored program.

Constraints
STEVIE imposes two types of constraints. First, for each
definition d ∈ δ(P ), STEVIE uses a constraint to ensure that
at most one instantiation is selected for d: ∑

a∈A(P )

ida

+ nd = 1

This constraint is necessary to identify definitions which are
not refactored.

Second, for each abstraction a ∈ A(P ), STEVIE uses a
constraint to ensure that the variable sa is true if and only if
an instantiation of a is used to refactor at least one definition2:

sa ↔
∨

d∈δ(P )

ida

Objective
Our objective function is the summation of three components:
(1) the size of non-abstracted definitions, (2) the size of se-
lected abstractions and instantiations, and (3) a penalty on the
number of higher-order variables. We describe these in turn.

The size of non-abstracted definitions is:

(1)
∑

d ∈δ(P )

size(d)× nd

An instantiation is a rule with one body literal so has size 2.
The size of selected abstractions and instantiations is:

(2)
∑

a∈A(P )

size(a)× sa︸ ︷︷ ︸
selected abstractions

+
∑

d∈δ(P ),a∈A(P )

2× ida︸ ︷︷ ︸
selected instantiations

STEVIE penalises the number of higher-order variables in a
refactoring. Without it, STEVIE often selects abstractions that
remove all the predicate symbols in a definition. For instance,
STEVIE might introduce abstractions such as:

ho(A,B,X,Y,Z)← X(A,C), Y(C,D), Z(D,B)
Therefore, STEVIE uses the following penalty, where
ho vars(a) is the number of higher-order variables in the ab-
straction a:

(3)
∑

a ∈A(P )

ho vars(a)× sa

As we show in our experiments, this penalty allows us to find
abstractions that lead to better learning performance.

4.3 Correctness
We prove the correctness of STEVIE:
Theorem 1. STEVIE solves the optimal refactoring problem
with respect to our objective function.
The proof is in the appendix. To show this result, we show
that (i) STEVIE generates all abstractions and instantiations
(Definitions 1 and 2), (ii) any solution to the encoding is a
solution to the higher-order refactoring problem (Definition
4), and (iii) the solver finds an optimal solution (Definition 5)
with respect to our objective function.

2The OR-tools solver that we use treats Boolean variables as
integer variables with domain {0, 1}. Therefore, both arithmetic and
Boolean operators apply to them.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3424



5 Experiments
To test our claim that higher-order refactoring can improve the
performance of an ILP system, our experiments aim to answer
the question:

Q1 Can higher-order refactoring improve predictive accura-
cies and reduce learning times?

To answer Q1, we compare the performance of an ILP system
with and without the ability to use abstractions discovered by
STEVIE. We use the ILP system HOPPER [Purgal et al., 2022]
because it can learn recursive programs, perform predicate
invention, and use higher-order abstractions as BK3.

To understand the impact of penalising the number of higher-
order variables (component (3) in Section 4.2), our experi-
ments aim to answer the question:

Q2 What is the impact of penalising the number of higher-
order variables on learning performance?

To answer Q2, we compare STEVIE with and without the
penalty on the number of higher-order variables.

To understand the scalability of our approach, our experi-
ments aim to answer the question:

Q3 How long does STEVIE take given larger programs?

To answer Q3, we measure the refactoring time of STEVIE on
progressively larger programs.

To test our claim that abstractions discovered in one domain
can be reused in different domains, our experiments aim to
answer the question:

Q4 Can higher-order refactoring improve performance across
domains?

To answer Q4, we compare the performance of HOPPER with
and without abstractions discovered in a different domain.

Settings. HOPPER uses types to restrict the hypothesis space
(the set of all programs). We use a bottom-up procedure to
infer types for the abstractions discovered by STEVIE from
the types of the first-order BK. STEVIE does not use types.
We set HOPPER to use at most three abstractions in a program.
We allow HOPPER to use three threads. We use SWI-Prolog
to execute the programs learned by STEVIE and HOPPER.
We allow STEVIE to discover abstractions with at most three
higher-order variables. STEVIE uses the CP-SAT solver [Per-
ron and Furnon, 2019]. STEVIE uses a single CPU. We use a
c6a AWS instance with 32vCPU and 64GB of memory.

Method. We measure the predictive accuracy (the propor-
tion of correct predictions on test data) and learning time of
HOPPER. We use a maximum learning time of 15 minutes
per task and return the best solution found by HOPPER in this
time limit. We use a timeout of 1 hour for STEVIE and return
the best refactoring found in this time limit. We repeat all the
experiments 5 times and calculate the mean and standard error.
The error bars in the figures and tables denote standard error.
We rename the abstractions in the figures for clarity.

3We also considered METAGOLHO [Cropper et al., 2020] but it
needs user-provided metarules which are difficult to obtain [Cropper
et al., 2022].

5.1 Q1: Learning Performance
Domain. We use a dataset of 176 program synthesis tasks
and reserve 25% as held-out tasks. The tasks are designed to
use a variety of higher-order constructs and require learning
recursive programs. For instance, the dataset includes the tasks
counteven, filterodd (Figure 2a), and maxlist (Figure 3b). The
appendix contains more details, such as example solutions.

Method. Our method has three steps. In step 1, we use
HOPPER to independently learn solutions for n tasks. In step
2, we use STEVIE to refactor the programs learned in step
1. In step 3, we add the abstractions discovered in step 2 by
STEVIE to the BK of HOPPER. We then use HOPPER on the
held-out tasks. We vary the number n of tasks in step 1 and
measure the performance of HOPPER in step 3. The baseline
(no refactoring) is when we do not use STEVIE in step 2, i.e.
the baseline is HOPPER without the abstractions discovered by
STEVIE. As a second baseline, we use seven standard higher-
order abstractions (maplist, foldl, scanl, convlist, partition,
include, and exclude) from the SWI-Prolog library apply4.
The appendix includes a description of these abstractions.

Results
Figure 1a shows that our approach (STEVIE) can increase pre-
dictive accuracies by 27% compared to the baselines. Figure
1b shows that our approach can reduce learning times by 47%
compared to the baselines. A chi-square test and a Mann-
Whitney U rank test confirm (p < 0.01) the significance of
the difference in accuracy and learning times respectively.

To illustrate higher-order refactoring, consider the tasks fil-
terodd and filterpos. Figures 2a and 2b show the programs
learned by HOPPER for these tasks. STEVIE compresses these
programs by discovering the abstraction shown in Figure 2c.
This abstraction keeps elements in a list where the higher-order
predicate Y holds and removes elements where the higher-
order predicate X holds, i.e. this abstraction filters a list. STE-
VIE thus compresses the program from 30 literals (Figures 2a
and 2b) to 19 literals (Figures 2c and 2d).

As a second illustration, consider the tasks multlist (Figure
3a) and maxlist (Figure 3b). STEVIE compresses these pro-
grams by discovering the abstraction fold (Figure 3c). This
abstraction recursively combines the elements of a list using
the higher-order predicate X and the default value given by
the higher-order predicate Y . STEVIE thus compresses the
program from 16 literals (Figures 3a and 3b) to 12 (Figures
3c and 3d). Moreover, HOPPER reuses the abstraction fold to
learn programs for more complex tasks. For instance, without
abstraction, HOPPER learns a program for sumlistplus3 with
10 literals (Figure 3e), whereas with the abstraction fold it
learns a solution with only 6 literals (Figure 3f).

STEVIE can discover many abstractions, such as map, count,
iterate, until, member, and all. The appendix includes all the
abstractions discovered by STEVIE. HOPPER can combine
these abstractions to learn succinct programs for complex
tasks. For instance, for the task sumunicodes, HOPPER learns
a compact solution (1 rule and 3 literals) which uses the ab-
stractions map and fold. Without abstractions, HOPPER would
need to learn a program with at least 5 rules and 21 literals.

4https://www.swi-prolog.org/pldoc/man?section=apply

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3425

https://www.swi-prolog.org/pldoc/man?section=apply


STEVIE STEVIEno penalty no refactoring Prolog library

0 25 50 75 100 125
60

70

80

90

100

Number of tasks

A
cc

ur
ac

y
(%

)

(a) Predictive accuracy versus the
number of tasks.

0 25 50 75 100 125
200

300

400

500

600

700

Number of tasks

Ti
m

e
(s

ec
on

ds
)

(b) Learning time versus the num-
ber of tasks.

0 25 50 75 100 125

4

6

8

10

Number of tasks

N
um

be
ro

fl
ite

ra
ls

(c) Average solution length ver-
sus the number of tasks.

100 200 300 400

10−1

100

101

102

103

Number of literals

Ti
m

e
(s

ec
on

ds
)

(d) Optimal refactoring time ver-
sus the program size.

Figure 1: Results for the program synthesis domain.

filterodd(A,B) ← empty(A),empty(B)
filterodd(A,B) ← head(A,C),tail(A,D),odd(C),

filterodd(D,B)
filterodd(A,B) ← head(A,C),tail(A,D),even(C),

filterodd(D,E),head(B,C),tail(B,E)

(a) filterodd program which removes the odd elements of a list.

filterpos(A,B) ← empty(A),empty(B)
filterpos(A,B) ← head(A,C),tail(A,D),pos(C),

filterpos(D,B)
filterpos(A,B) ← head(A,C),tail(A,D),neg(C),

filterpos(D,E),head(B,C),tail(B,E)

(b) filterpos program which removes positive elements of a list.

ho_filter(A,B,X,Y) ← empty(A),empty(B)
ho_filter(A,B,X,Y) ← head(A,C),tail(A,D),X(C),

ho_filter(D,B,X,Y)
ho_filter(A,B,X,Y) ← head(A,C),tail(A,D),Y(C),head(B,C),

ho_filter(D,E,X,Y),tail(B,E)

(c) Higher-order ho filter abstraction discovered by STEVIE which
returns elements of a list where Y holds and X does not.

filterodd(A,B) ← ho_filter(A,B,odd,even)
filterpos(A,B) ← ho_filter(A,B,pos,neg)

(d) Instantiations.

Figure 2: Example of STEVIE discovering the higher-order abstrac-
tion ho filter to compress programs.

Figure 1c shows that refactoring typically reduces the size
of programs learned by HOPPER from 8 to 4 literals. As recent
work shows [Cropper et al., 2020; Purgal et al., 2022], learning
smaller programs can improve learning performance since the
system searches a smaller hypothesis space.

Overall, these results suggest that higher-order refactoring
can substantially improve learning performance (Q1).

5.2 Q2: Higher-Order Variables Penalty
Figures 1a and 1b show that penalising the number of higher-
order variables can increase predictive accuracies by 8% and
decrease learning times by 37%. A chi-square test and a Mann-
Whitney U rank test confirm (p < 0.01) the significance of the
difference in accuracy and learning times respectively. This
result suggests that component (3) of our objective function
can improve performance. Without this penalty, STEVIE finds

multlist(A,B) ← empty(A),one(B).
multlist(A,B) ← head(A,C),tail(A,D),

multlist(D,E),mult(C,E,B)

(a) multlist program which returns the product of a list elements.

maxlist(A,B) ← empty(A),zero(B).
maxlist(A,B) ← head(A,C),tail(A,D),

maxlist(D,E),max(C,E,B)

(b) maxlist program which returns the maximum element of a list.

ho_fold(A,B,X,Y) ← empty(A),X(B)
ho_fold(A,B,X,Y) ← head(A,C),tail(A,D),

ho_fold(D,E,X,Y),Y(C,E,B)

(c) Higher-order ho fold abstraction discovered by STEVIE which
recursively combines all elements of a list using the higher-order
predicate X and the default value returned by Y .

multlist(A,B) ← ho_fold(A,B,one,mult)
maxlist(A,B) ← ho_fold(A,B,zero,max)

(d) Instantiations.

sumlistplus3(A,B) ← empty(A),one(C),succ(C,D),succ(D,B)
sumlistplus3(A,B) ← head(A,C),tail(A,D),

sumlistplus3(D,E),sum(C,E,B)

(e) sumlistplus3 program.

sumlistplus3(A,B) ← ho_fold(A,B,inv,sum)
inv(A) ← one(B),succ(B,C),succ(C,A)

(f) sumlistplus3 program using the abstraction ho fold. The predi-
cate inv is invented by HOPPER.

Figure 3: Example of STEVIE discovering the higher-order abstrac-
tion ho fold to compress programs.

abstractions with many higher-order variables. These abstrac-
tions are less helpful as HOPPER must search through the space
of all possible instantiations which is larger with many higher-
order variables. This result indicates that all abstractions are
not equally helpful and that finding good ones is important.
Overall, these results suggest penalising the number of higher-
order variables can improve learning performance (Q2).

5.3 Q3: Scalability
Figure 1d shows the running time of STEVIE increases expo-
nentially with the program size (number of literals). As the

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3426



size increases, STEVIE builds more abstractions, leading to
more decision variables in the compress stage. Note that the
running time is the time STEVIE needs to find an optimal refac-
toring and prove optimality. As Dumančić, Guns, and Cropper
[2021] show, for refactoring problems, a solver can quickly
find an almost optimal solution but takes a while to find an
optimal one. Overall, these results suggest that the scalability
(in terms of proving optimality) of STEVIE is limited (Q3).

5.4 Q4: Transfer Learning
Experiment 1 explores whether discovering abstractions can
improve learning performance on a single domain. We now
explore whether abstractions discovered in one domain can
improve performance in different domains.

Domains. We use 35 existing tasks which all benefit from
higher-order abstractions [Lin et al., 2014; Cropper et al.,
2020; Cretu and Cropper, 2022; Purgal et al., 2022]. These
tasks are from 7 domains: chess, ascii art, string transforma-
tions, robot strategies, list manipulation, tree manipulation,
and arithmetic. These domains have diverse BK with little
overlap. The appendix contains a description of the domains.

Method. Our experimental approach is similar to Experi-
ment 1 but the domains differ in steps 1 and 3. In step 1,
HOPPER solves tasks from the program synthesis domain.
In step 2, STEVIE discovers abstractions from the programs
learned in step 1. In step 3, HOPPER solves tasks in a transfer
domain. We infer the type of abstractions discovered by STE-
VIE from the types of the BK in the synthesis domain and use
a hard-coded type mapping to transfer them to other domains.
We remove abstractions that use a relation undefined in the
target domain to ensure they can be executed. The baseline is
not applying STEVIE in step 2 (no refactoring).

Task Baseline STEVIE

do5times 50 ± 0 100 ± 0
line1 50 ± 0 100 ± 0
line2 50 ± 0 100 ± 0

string1 50 ± 0 100 ± 0
string2 50 ± 0 100 ± 0
string3 50 ± 0 100 ± 0
string4 50 ± 0 100 ± 0

chessmapuntil 50 ± 0 98 ± 1
chessmapfilter 50 ± 0 100 ± 0
chessmapfilteruntil 50 ± 0 98 ± 1

droplastk 50 ± 0 100 ± 0
encryption 50 ± 0 100 ± 0
length 80 ± 12 100 ± 0
rotateN 50 ± 0 100 ± 0

waiter 50 ± 0 100 ± 0

Table 1: Predictive accuracies. We only include tasks where the two
approaches differ. The full table is in the appendix.

Results. Table 1 shows the predictive accuracies. The learn-
ing times are in the appendix. These results show that trans-
ferring abstractions never degrades accuracies, and improves
accuracies in 5/7 transfer domains. A paired t-test confirms

line2(A,B) ← ho_until(A,B,inv 0,at_right)
inv_0(A,B) ← draw1(A,C),right(C,D),down(D,B)

Figure 4: line2 program which draws a diagonal line in an image.
The predicate inv 0 is invented by HOPPER.

(p < 0.01) the significance of the difference in accuracy for all
tasks in Table 1 except length. For instance, STEVIE discovers
the abstractions filter and map in the program synthesis domain
and HOPPER uses these abstractions for the task string1 to
learn a program which filters lowercase letters and lowercases
the remaining ones. HOPPER also reuses these abstractions to
learn a solution for the task chessmapfilter. Similarly, HOP-
PER reuses the abstraction until to draw a diagonal line in the
ascii art domain (Figure 4). HOPPER struggles on some tasks
because STEVIE does not discover a helpful abstraction. For
instance, the task isPalindrome needs the abstraction condList,
which returns true if the input list is empty and otherwise calls
a predicate on the list. STEVIE does not discover this abstrac-
tion because it does not compress the input program. HOPPER
also struggles on some tasks because of type inconsistencies.
For instance, the task droplast involves learning a program
which, given a list of lists, drops the last element from each
list. While STEVIE discovers the abstraction map, this abstrac-
tion applies to arguments of type list instead of lists of lists.
Overall, these results suggest that higher-order refactoring can
improve learning performance in different domains (Q4).

6 Conclusions and Limitations
We introduced an approach that refactors a logic program
by discovering higher-order abstractions. We implemented
our approach in STEVIE, which formulates this refactoring
problem as a COP. Our experiments on multiple domains
show that higher-order refactoring can drastically improve the
performance of an ILP system, namely improving predictive
accuracies and reducing learning times. Our results also show
that abstractions discovered in one domain can transfer to dif-
ferent domains. For instance, we can discover the abstractions
map, filter, and fold in the program synthesis domain and use
them in the chess domain.

6.1 Limitations
Objective function. Experiment 2 shows that compression
alone is not the best metric for identifying abstractions which
improve learning performance the most. Future work should
investigate alternative objective functions.

Refactoring time. Experiment 3 shows that STEVIE can
optimally refactor programs with around 460 literals in 16
minutes but struggles on larger programs. Future work should
improve scalability, such as improving our COP encoding and
using parallel COP solving.

Appendices, Code, and Data
A longer version of this paper with the appendices is avail-
able at https://arxiv.org/pdf/2308.08334.pdf. The experi-
mental code and data are available at https://github.com/
celinehocquette/ijcai24-stevie.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3427

https://arxiv.org/pdf/2308.08334.pdf
https://github.com/celinehocquette/ijcai24-stevie
https://github.com/celinehocquette/ijcai24-stevie


Acknowledgements
The first and third authors are supported by the EPSRC fellow-
ship (EP/V040340/1). The authors thank David Cerna, Filipe
Gouveia, and Minghao Liu for valuable feedback. For open
access, the authors have applied a CC BY public copyright li-
cence to any author-accepted manuscript version arising from
this submission.

References
[Adé et al., 1994] Hilde Adé, Bart Malfait, and Luc De Raedt.

RUTH: an ILP theory revision system. In Zbigniew W. Ras
and Maria Zemankova, editors, Methodologies for Intelli-
gent Systems, 8th International Symposium, ISMIS, Char-
lotte, North Carolina, USA, volume 869 of Lecture Notes
in Computer Science, pages 336–345. Springer, 1994.

[Blockeel and Raedt, 1998] Hendrik Blockeel and Luc De
Raedt. Top-down induction of first-order logical decision
trees. Artif. Intell., 101(1-2):285–297, 1998.

[Bowers et al., 2023] Matthew Bowers, Theo X. Olausson,
Lionel Wong, Gabriel Grand, Joshua B. Tenenbaum, Kevin
Ellis, and Armando Solar-Lezama. Top-down synthesis for
library learning. Proc. ACM Program. Lang., 7(POPL), jan
2023.

[Bundy and Li, 2023] Alan Bundy and Xue Li. Representa-
tional change is integral to reasoning. Philos Trans A Math
Phys Eng Sci. ., 2023.

[Cao et al., 2023] David Cao, Rose Kunkel, Chandrakana
Nandi, Max Willsey, Zachary Tatlock, and Nadia Polikar-
pova. Babble: learning better abstractions with e-graphs
and anti-unification. Proceedings of the ACM on Program-
ming Languages, 7(POPL):396–424, 2023.

[Chaitin, 2006] Gregory Chaitin. The limits of reason. Scien-
tific American, 294(3):74–81, 2006.

[Cretu and Cropper, 2022] Bogdan Cretu and Andrew Crop-
per. Constraint-driven multi-task learning. arXiv preprint
arXiv:2208.11656, 2022.

[Cropper and Morel, 2021] Andrew Cropper and Rolf Morel.
Learning programs by learning from failures. Mach. Learn.,
110(4):801–856, 2021.

[Cropper et al., 2020] Andrew Cropper, Rolf Morel, and
Stephen H. Muggleton. Learning higher-order logic pro-
grams. Mach. Learn., 109(7):1289–1322, 2020.

[Cropper et al., 2022] Andrew Cropper, Sebastijan Duman-
cic, Richard Evans, and Stephen H. Muggleton. Inductive
logic programming at 30. Mach. Learn., 111(1):147–172,
2022.

[Dai and Muggleton, 2021] Wang-Zhou Dai and Stephen H.
Muggleton. Abductive knowledge induction from raw data.
In Proceedings of the Thirtieth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2021, Virtual Event /
Montreal, Canada, pages 1845–1851, 2021.

[De Raedt et al., 2015] Luc De Raedt, Anton Dries, Ingo
Thon, Guy Van den Broeck, and Mathias Verbeke. Inducing
probabilistic relational rules from probabilistic examples.

In Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI, Buenos Aires,
Argentina, pages 1835–1843, 2015.

[Dumančić et al., 2019] Sebastijan Dumančić, Tias Guns,
Wannes Meert, and Hendrik Blockeel. Learning relational
representations with auto-encoding logic programs. In 28th
International Joint Conference on Artificial Intelligence,
IJCAI, pages 6081–6087, 2019.

[Dumančić et al., 2021] Sebastijan Dumančić, Tias Guns,
and Andrew Cropper. Knowledge refactoring for inductive
program synthesis. In Thirty-Fifth AAAI Conference on
Artificial Intelligence, AAAI, pages 7271–7278, 2021.

[Ellis et al., 2018] Kevin Ellis, Lucas Morales, Mathias
Sablé-Meyer, Armando Solar-Lezama, and Josh Tenen-
baum. Learning libraries of subroutines for neurally-guided
bayesian program induction. In Advances in Neural Infor-
mation Processing Systems 31: Annual Conference on Neu-
ral Information Processing Systems, NeurIPS, Montréal,
Canada, pages 7816–7826, 2018.

[Evans and Grefenstette, 2018] Richard Evans and Edward
Grefenstette. Learning explanatory rules from noisy data.
J. Artif. Intell. Res., 61:1–64, 2018.

[Evans et al., 2021] Richard Evans, José Hernández-Orallo,
Johannes Welbl, Pushmeet Kohli, and Marek Sergot.
Making sense of sensory input. Artificial Intelligence,
293:103438, 2021.

[Feng and Muggleton, 1992] Cao Feng and Stephen H. Mug-
gleton. Towards inductive generalization in higher order
logic. In Proceedings of the Ninth International Workshop
on Machine Learning (ML 1992), Aberdeen, Scotland, UK,
pages 154–162. Morgan Kaufmann, 1992.

[Jain et al., 2021] Arcchit Jain, Clément Gautrais, Angelika
Kimmig, and Luc De Raedt. Learning CNF theories using
MDL and predicate invention. In Proceedings of the Thirti-
eth International Joint Conference on Artificial Intelligence,
IJCAI 2021, pages 2599–2605, 2021.

[Kaminski et al., 2019] Tobias Kaminski, Thomas Eiter, and
Katsumi Inoue. Meta-interpretive learning using hex-
programs. In Sarit Kraus, editor, Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelli-
gence, IJCAI, Macao, China, pages 6186–6190, 2019.

[Kok and Domingos, 2007] Stanley Kok and Pedro M.
Domingos. Statistical predicate invention. In Zoubin
Ghahramani, editor, Machine Learning, Proceedings of the
Twenty-Fourth International Conference (ICML), Corvallis,
Oregon, USA, volume 227 of ACM International Confer-
ence Proceeding Series, pages 433–440. ACM, 2007.

[Kramer, 2020] Stefan Kramer. A brief history of learning
symbolic higher-level representations from data (and a cu-
rious look forward). In Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence,
IJCAI 2020, pages 4868–4876, 2020.

[Kumaraswamy et al., 2015] Raksha Kumaraswamy, Phillip
Odom, Kristian Kersting, David Leake, and Sriraam Natara-
jan. Transfer learning via relational type matching. In IEEE

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3428



International Conference on Data Mining, ICDM, Atlantic
City, NJ, USA, pages 811–816. IEEE Computer Society,
2015.

[Lavrac and Dzeroski, 1994] Nada Lavrac and Saso Dzeroski.
Inductive logic programming - techniques and applications.
Ellis Horwood series in artificial intelligence. Ellis Hor-
wood, 1994.

[Lin et al., 2014] Dianhuan Lin, Eyal Dechter, Kevin Ellis,
Joshua B. Tenenbaum, and Stephen H. Muggleton. Bias
reformulation for one-shot function induction. In ECAI
2014 - 21st European Conference on Artificial Intelligence,
18-22 August 2014, Prague, Czech Republic - Including
Prestigious Applications of Intelligent Systems (PAIS 2014),
volume 263 of Frontiers in Artificial Intelligence and Ap-
plications, pages 525–530. IOS Press, 2014.

[Lloyd, 2012] John W Lloyd. Foundations of logic program-
ming. Springer Science & Business Media, 2012.

[Marcus, 2020] Gary Marcus. The next decade in AI:
four steps towards robust artificial intelligence. CoRR,
abs/2002.06177, 2020.

[McCarthy, 1995] John McCarthy. Making robots conscious
of their mental states. In Machine Intelligence 15, 1995.

[Mitchell, 2021] Melanie Mitchell. Abstraction and analogy-
making in artificial intelligence. CoRR, abs/2102.10717,
2021.

[Muggleton and Buntine, 1988] Stephen H. Muggleton and
Wray L. Buntine. Machine invention of first order pred-
icates by inverting resolution. In John E. Laird, editor,
Machine Learning, Proceedings of the Fifth International
Conference on Machine Learning, Ann Arbor, Michigan,
USA, pages 339–352. Morgan Kaufmann, 1988.

[Muggleton et al., 2012] Stephen H. Muggleton, Luc De
Raedt, David Poole, Ivan Bratko, Peter A. Flach, Katsumi
Inoue, and Ashwin Srinivasan. ILP turns 20 - biography
and future challenges. Mach. Learn., 86(1):3–23, 2012.

[Muggleton et al., 2015] Stephen H. Muggleton, Dianhuan
Lin, and Alireza Tamaddoni-Nezhad. Meta-interpretive
learning of higher-order dyadic datalog: predicate invention
revisited. Mach. Learn., 100(1):49–73, 2015.

[Paes et al., 2006] Aline Paes, Filip Zelezný, Gerson Za-
verucha, C. David Page Jr., and Ashwin Srinivasan. ILP
through propositionalization and stochastic k-term DNF
learning. In Inductive Logic Programming, 16th Interna-
tional Conference, ILP Santiago de Compostela, Spain,
Revised Selected Papers, volume 4455 of Lecture Notes in
Computer Science, pages 379–393. Springer, 2006.

[Paes et al., 2017] Aline Paes, Gerson Zaverucha, and
Vı́tor Santos Costa. On the use of stochastic local search
techniques to revise first-order logic theories from exam-
ples. Mach. Learn., 106(2):197–241, 2017.

[Perron and Furnon, 2019] Laurent Perron and Vincent
Furnon. Or-tools. Google.[Online]. Available:
https://developers. google. com/optimization, 2019.

[Plotkin, 1971] G.D. Plotkin. Automatic Methods of Inductive
Inference. PhD thesis, Edinburgh University, August 1971.

[Purgal et al., 2022] Stanislaw J. Purgal, David M. Cerna, and
Cezary Kaliszyk. Learning higher-order logic programs
from failures. In Luc De Raedt, editor, Proceedings of
the Thirty-First International Joint Conference on Artifi-
cial Intelligence, IJCAI, Vienna, Austria, pages 2726–2733,
2022.

[Raedt and Bruynooghe, 1992] Luc De Raedt and Maurice
Bruynooghe. Interactive concept-learning and constructive
induction by analogy. Mach. Learn., 8:107–150, 1992.

[Raedt et al., 2008] Luc De Raedt, Kristian Kersting, Ange-
lika Kimmig, Kate Revoredo, and Hannu Toivonen. Com-
pressing probabilistic prolog programs. Mach. Learn., 70(2-
3):151–168, 2008.

[Richards and Mooney, 1995] Bradley L. Richards and Ray-
mond J. Mooney. Automated refinement of first-order horn-
clause domain theories. Mach. Learn., 19(2):95–131, 1995.

[Rossi et al., 2006] Francesca Rossi, Peter van Beek, and
Toby Walsh. Handbook of Constraint Programming (Foun-
dations of Artificial Intelligence). Elsevier Science Inc.,
USA, 2006.

[Russell, 2019] Stuart Russell. Human compatible: Artificial
intelligence and the problem of control. Penguin, 2019.

[Saitta and Zucker, 2013] Lorenza Saitta and Jean-Daniel
Zucker. Abstraction in artificial intelligence and complex
systems. Springer, 2013.

[Silver et al., 2023] Tom Silver, Rohan Chitnis, Nishanth Ku-
mar, Willie McClinton, Tomás Lozano-Pérez, Leslie Pack
Kaelbling, and Joshua B. Tenenbaum. Predicate invention
for bilevel planning. In Thirty-Seventh AAAI Conference on
Artificial Intelligence, AAAI , Thirty-Fifth Conference on In-
novative Applications of Artificial Intelligence, IAAI, Thir-
teenth Symposium on Educational Advances in Artificial
Intelligence, EAAI, Washington, DC, USA, pages 12120–
12129. AAAI Press, 2023.

[Simon, 1981] Herbert A Simon. The sciences of the artificial.
MIT press, 1981.

[Sommer, 1995] Edgar Sommer. FENDER: an approach to
theory restructuring (extended abstract). In Machine Learn-
ing: ECML-95, 8th European Conference on Machine
Learning, Heraclion, Crete, Greece, volume 912 of Lec-
ture Notes in Computer Science, pages 356–359. Springer,
1995.

[Srinivasan, 2001] Ashwin Srinivasan. The ALEPH manual.
Machine Learning at the Computing Laboratory, Oxford
University, 2001.

[Torrey and Shavlik, 2009] Lisa Torrey and Jude Shavlik.
Transfer learning. Handbook of Research on Machine
Learning Applications and Trends: Algorithms, Methods,
and Techniques, 1:242, 2009.

[Wrobel, 1996] Stefan Wrobel. First-order theory refinement.
In Advances in Inductive Logic Programming, pages 14–33,
1996.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3429


	Introduction
	Novelty and Contributions

	Related Work
	Problem Setting
	Abstraction and Instantiation
	Higher-Order Refactoring Problem

	Stevie
	Abstract
	Compress
	Decision Variables
	Constraints
	Objective

	Correctness

	Experiments
	Q1: Learning Performance
	Results

	Q2: Higher-Order Variables Penalty
	Q3: Scalability
	Q4: Transfer Learning

	Conclusions and Limitations
	Limitations


