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Abstract

Assumption-based argumentation (ABA) is an ar-
gumentative formalism that allows for reasoning
on the basis of defeasible assumptions and strict
rules. Standard semantics for this formalism some-
times give rise to problematic behaviour in the pres-
ence of rules with assumptions in their heads. In
this paper, we introduce a six-valued labelling se-
mantics that overcomes these shortcomings while
preserving all the usual properties of the standard
Dung-style three-valued semantics for ABA frame-
works, including existence of the complete seman-
tics, uniqueness of the grounded semantics, and
preservation of the computational complexity of all
the main reasoning processes.

1 Introduction and Motivation
Argumentation theory is a well-established AI-based dis-
cipline for reasoning with arguments and counterargu-
ments [Dung, 1995; Baroni et al., 2018; Gabbay et al.,
2021]. Assumption-based argumentation frameworks (ABFs,
for short) [Bondarenko et al., 1997] are argumentative for-
malisms in which reasoning is based on knowledge-bases
consisting of strict premises, inference rules, and (defeasible)
assumption. These frameworks have been extensively studied
and applied in the last twenty years (see [Dung et al., 2009;
Toni, 2014; Čyras et al., 2018] for some relevant tutorials).

A primary goal of argumentation theory is to identify sets
of arguments or assumptions that can be reasonably upheld
together, since they are not conflicting and defend themselves
from any argumentative attacks. This can be done using se-
mantics in terms of three-valued labeling functions [Schulz
and Toni, 2017; Baroni et al., 2021], assigning to each as-
sumption the value in (intuitively, accepted), out (intuitively,
rejected) or undec (intuitively, undecided). In ABFs, it is
also possible to express relations between assumptions us-
ing rules. Such ABFs are called non-flat, as opposed to flat
ABFs where rules with assumptions in their conclusion are
not allowed. It is reasonable to require, in addition to prop-
erties such as defense and conflict-freeness, that reasonable
labellings are closed under the strict rules: any assumption
that can be derived from an accepted set of formulas should

also be accepted. In that case, however, not every ABF might
admit a reasonable argumentation labelling:
Example 1. Consider the assumptions p, q and r. Suppose
that p implies r, while q refutes r (see Figure 1).

p r q

Figure 1: A graphical representation of the ABF in Example 1. Dot-
ted arrows represent inference and full arrows represent attacks

Then, on one hand, the elements of S = {p, q} can be
collectively accepted (since S is not contradictory) and also
stand on their own (as no assertion challenges the elements
in S). On the other hands, S is not deductively closed, as it
implies an assertion (r) which is not its element (and cannot
be added to S without violating its inconsistency). Moreover,
while S itself is consistent, its set of conclusions is not con-
sistent. In more technical parlance (see Definition 3), we say
that this ABF does not admit a complete extension.

The non-existence of complete extensions in Example 1
isn’t the only problem of non-flat ABFs. Indeed, several de-
sired properties that hold for other argumentative formalisms
are violated by non-flat ABFs. In the terminology of Defini-
tion 3, this includes the uniqueness of the grounded extension
and the completeness of preferred extensions [Čyras et al.,
2018]. Moreover, reasoning tasks with non-flat ABFs are of-
ten of higher computational complexity [Čyras et al., 2021].

The situation in Example 1 suggests that 3-valued seman-
tics to non-flat ABFs is not sufficiently fine-grained. In par-
ticular, we argue that both p and q should be accepted in the
last case, while r should be assigned a value indicating that
it is contradictory, and so a controversial conclusion. This re-
quires a refinement of 3-valued labeling semantics that prop-
erly distinguishes between different cases of uncertainty (e.g.,
incompleteness versus inconsistency). Remaining on the in-
tuitive level, we aim for a proper semantics, meeting the fol-
lowing desirable properties:
D1 Generalization of the semantics of flat ABFs.
D2 Extension of standard semantics for non-flat ABFs (when

they exist).
D3 Keeping common properties of standard argumentation

semantics: uniqueness of the grounded extension, com-
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pleteness of the preferred extension and preservation of
the complexity of flat ABFs.

We notice that there are already a number extensions of
3-valued labeling semantics for argumentative frameworks,
such as the 4-valued lablings in [Jakobovits and Vermeir,
1999; Arieli, 2016; Bistarelli and Taticchi, 2021] (see also
the survey in [Arieli, 2022]), however they provide semantics
to abstract argumentation frameworks (AAFs) rather than to
ABFs, thus disregard the logical relations among arguments,
and so cannot satisfy D1–D3.

Outline of the Paper: In Section 2 we recall the necessary
material on ABFs. In Section 3 we define the underline alge-
braic structures, and in Section 4 we consider the refined se-
mantics, using operators on these structures. In Section 5 we
prove that our formalism meets the desiderata listed above,
and in Section 6 we refer to some related work and conclude.

2 Preliminaries on ABFs
We first describe what assumption-based argumentation
frameworks (ABFs) are. The definitions and notations in this
section are based on [Bondarenko et al., 1997], where ABFs
are described as formal models that allow to use plausible as-
sumptions to extend a given theory, unless and until there are
good reasons for not using some of the assumptions.

Our starting point is a deductive system (L,R), consisting
of a language L (namely, a countable set of formulas) and a
setR or inference rules of the form

ψ1, . . . , ψn

ψ
(or: ψ1, . . . , ψn → ψ)

where ψ1, . . . , ψn ∈ L are the rule’s conditions (or the rule’s
body), and ψ ∈ L is the rule’s conclusion (or the rule’s head).

An R-deduction from a theory T ⊆ L is a sequence of
formulas ϕ1, . . . , ϕm (m ≥ 1), such that for all 1≤ i≤m ei-
ther ϕi ∈ T or there is a rule inRwhose conclusion is ϕi and
whose conditions are in {ϕ1, . . . , ϕi−1}. We denote T `R ψ,
if there is anR-deduction from T whose last element is ψ.

Definition 1. An assumption-based framework (ABF) is a tu-
ple ABF = 〈(L,R),Γ,∆,∼〉, where:

• (L,R) is a deductive system,

• Γ ⊆ L is a set of the strict assumptions,

• ∆ ⊆ L is a nonempty set of the defeasible assumptions,

• ∼ : ∆→ L is a contrariness operator.

The set Γ is assumed to be R-consistent, namely: there is
no ψ ∈ ∆ such that Γ `R ψ and Γ `R ∼ψ. In what follows,
we also assume that ∆ is a countable set. Generalization of
the results to uncountable sets is easy.

Example 2. The setting from Example 1 may be represented
by an ABF in which Γ = ∅, ∆ = {p, q, r}, R = {pr ,

q
¬r},

and ∼ψ = ¬ψ for every ψ ∈ ∆.1

Conflicts (attacks) between sets of defeasible assumptions
are defined as follows:

1In all the examples that follow, we implicitly assume that the
contrariness operator ∼ is expressed by the negation connective ¬.

Definition 2. Let ABF = 〈(L,R),Γ,∆,∼〉 be an ABF, ψ ∈
∆, and Θ,Θ′ ⊆ ∆. We say that Θ attacks ψ if Γ,Θ `R ∼ψ,
and Θ attacks Θ′ if Γ,Θ `R ∼ψ for some ψ ∈ Θ′. Now,

• Θ is closed, iff Θ = {ψ ∈ ∆ | Γ,Θ `R ψ}.
• Θ+ = {Λ ⊆ ∆ | Θ attacks Λ}.
• Θ− = {Λ ⊆ ∆ | Λ is closed and attacks Θ}.

Note 1. In most structured accounts of argumentation-based
formalisms, attacks are defined between arguments, which
are deductions in a given deductive or defeasible system (e.g.,
ASPIC+ [Modgil and Prakken, 2014], defeasible logic pro-
gramming [Garcı́a and Simari, 2004]) or sequents of the form
Γ,Θ `L ψ where L is an underlying core logic ([Besnard
and Hunter, 2001; Arieli and Straßer, 2015]).2 In contrast,
assumption-based argumentation can be seen as operating at
a higher level of abstraction, since attacks are defined di-
rectly on sets of assumptions instead of on R-deductions. In
this context, arguments in ABF = 〈(L,R),Γ,∆,∼〉 may
be viewed as pairs 〈∆′, ψ〉 where Γ,∆′ `R ψ for some
∆′ ⊆ ∆.3 ABFs can thus be viewed as operating on equiva-
lence classes consisting of arguments with the same premises.

Consequences of a given assumption-based framework are
determined with the use of argumentation semantics, which
determines sets of assumptions that are acceptable given dif-
ferent criteria of acceptability. Argumentation semantics have
been phrased for abstract frameworks in [Dung, 1995] and
were adjusted to assumption-based frameworks in e.g. [Bon-
darenko et al., 1997].

Definition 3. Let ABF = 〈(L,R),Γ,∆,∼〉 be an ABF, and
let Θ ⊆ ∆. We say that Θ

• is conflict-free, iff Θ does not attack itself.

• defends a set Λ ⊆ ∆, if Λ− ⊆ Θ+.

• is admissible, iff Θ is closed, conflict-free, and defends Θ.

• is preferred, iff Θ is ⊆-maximally admissible.

• is complete, iff Θ is admissible and contains all the as-
sumptions that it defends.

• is well-founded, iff Θ is the intersection of all the com-
plete sets of ABF.

• is grounded, iff Θ is ⊆-minimally complete.

We write Prf(ABF), WF(ABF), Grd(ABF) for, respectively,
the set of preferred, well-founded, and grounded sets of as-
sumptions in ABF.

Example 3. Let ABF = (({p, q, r}, { q
¬r}), ∅, {p, q, r},¬).

Then WF(ABF) = Prf(ABF) = Grd(ABF) = {{p, q}}.
When the rule p

r is added to the framework (i.e., ABF′ =
(({p, q, r}, { q

¬r ,
p
r }), ∅, {p, q, r},¬)), the set {p, q} ceases to

be well-founded, preferred or grounded, since it is not closed
anymore. In fact, ABF′ has no complete extension.

2The former are sometimes referred to as rule-based and the lat-
ter as logic-based systems of argumentation.

3There are some formulations of ABFs that define attacks on the
level of individual arguments. Since attacks are only possible on as-
sumptions, these formulations are equivalent (cf. also [Toni, 2014]).
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3 Labelings and Their Algebraic Structure
As noted previously, our purpose is to provide a faithful de-
scription of the semantics of ABFs in terms of labeling func-
tions that assign to each assumption a state that describes its
semantical status. Such functions are often three-valued (see
[Baroni et al., 2021]): the value in means that the argument is
accepted, out denotes that it is rejected, and undec is attached
to assumptions that cannot be assigned the other strict values.

An alternative representation of these labels [Strass, 2013]
is by pairs (a, u) of values a, u ∈ {0, 1}, where a signifies
whether the argument is accepted (therefore should be de-
fended) and u indicates that the argument is unrejected (there-
fore not attacked). In this writing, (1, 1) is associated with
in, (0, 0) is associated with out, and (0, 1) corresponds to
undec. The fourth value, (1, 0), denoted conf in what fol-
lows, represents conflicts or inconsistency. It is sometimes
used in 4-valued labelings where conflict-freeness is relaxed
[Arieli, 2016].

The four labels may be arranged in an algebraic structure
known as a bilattice [Fitting, 2020]. A bilattice L1 � L2 is
obtained by a mixture of two lattices L1 = 〈L1,≤1〉 and L2 =
〈L2,≤2〉. Its elements are pairs (x, y), where x ∈ L1 and
y ∈ L2, that are arranged in two simultaneous lattice orders:

• the truth order ≤t where (x1, y1) ≤t (x2, y2) if x1 ≤1 x2

and y1 ≤2 y2.
• the information order ≤i in which (x1, y1) ≤i (x2, y2) if
x1 ≤1 x2 and y1 ≥2 y2.

In our case, both L1 and L2 are the two-valued lattice TWO,
in which 0 < 1. The bilattice FOUR = TWO� TWO that is
obtained, is depicted in Figure 2.

≤i

≤t

(0, 1)
undec

(0, 0)
out

(1, 1)
in

(1, 0)
conf

Figure 2: FOUR

As indicated in Example 1, in non-flat ABFs acceptance
and inference are different notions: accepting only p and q
(i.e., without r) still means inferring r. We therefore propose
to treat these notions separately, and accordingly refine the
range of the labeling: we trade the acceptance indication (a)
in (a, u) by two indications: one depicts whether the asser-
tion can be inferred (i), and the other one signifies if is can
be defended (d). As a result, instead of pairs (a, u), the la-
bels are now pairs ((i, d), u), or, somewhat simpler, triples
(i, d, u). These labels can still be arranged in a bilattice struc-
ture: Since the first component in the four-valued bilattice is

split to two alternative components, we actually end-up with
an 8-valued bilattice of the form EIGHT = FOUR≤t�TWO,
where FOUR≤t

is the ≤t-based lattice of FOUR consisting
of pairs (i, d) that represent degrees of acceptance: (1, 1) is
the maximal value (indicating that the relevant assumption is
both inferred and defended), (0, 0) is the minimal element
(neither inference nor defense) and the other two values are
incomparable. Thus, the trivalent labels (i, d, u) in EIGHT
are arranged by the two bilattice orderings described above,
where (i, d) is the first element of the pair, and u is the second
element – see also Figure 3.4 In more detail, denoting respec-
tively by ≤4

t and ≤2 the order relations on FOUR≤t and on
TWO, the two partial orders of EIGHT are the following:

• (i1, d1, u1) ≤8
t (i2, d2, u2) iff (i1, d1) ≤4

t (i2, d2) (that is,
i1 ≤2 i2 and d1 ≤2 d2) and u1 ≤2 u2.

• (i1, d1, u1) ≤8
i (i2, d2, u2) iff (i1, d1) ≤4

t (i2, d2) (that is,
i1 ≤2 i2 and d1 ≤2 d2) and u1 ≥2 u2.

≤i

≤t

(0, 0, 1)
undec

(0, 0, 0)
out

(1, 0, 0)
cont

(1, 1, 0)
conf

(1, 0, 1)
dis

(0, 1, 0) (1, 1, 1)
in

(0, 1, 1)

Figure 3: EIGHT

Note that in four labels in EIGHT the first and second com-
ponent are identical (i.e., inference and defense coincide), so
they preserve the original meaning of the corresponding ele-
ments in FOUR. We thus keep their names: in corresponds
to (1, 1, 1), out to (0, 0, 0), conf to (1, 1, 0), and undec to
(0, 0, 1). The triple (1, 0, 0) corresponds to a contradictory
situation (the assertion is inferred but at the same time re-
jected but not defended), thus it is denoted in what follows by
cont. The triple (1, 0, 1) represents a dissonant situation, in
which the assertion is inferred and not rejected, but for some
reason it is not defended. This triplet is therefore denoted dis.

In what follows, somewhat abusing the notations, we shall
identify algebraic structures like EIGHT with their elements.
The two following subsets (and the corresponding substruc-
tures) of EIGHT will have an important role in the sequel:

4The highlighted elements are those referred to in Proposition 3.
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• SIX = {in, out, undec, dis, cont, conf},
• FIVE = {in, out, undec, dis, cont}.

Intuitively, SIX consists of all values where defended assump-
tions are also implied, whereas FIVE additionally excludes
the conflicting value. Note that the substructure of EIGHT
with the elements in SIX is also a bilattice, while the subsc-
tucture with the elements in FIVE is a meet-semibilattice (as
the ≤i-join (1, 1, 0) of (1, 0, 0) and (1, 1, 1), is not in FIVE).
These algebraic structures are used to define labelling seman-
tics, by assigning to every assumption an element of EIGHT,
thus generalizing the idea of 3-valued labellings:
Definition 4. A labeling for ABF = 〈(L,R),Γ,∆,∼〉 is a
function l :∆→ EIGHT. A labeling whose range is FIVE (re-
spectively, SIX), is called 5-valued (respectively, 6-valued).

In what follows it will be sometimes convenient to move
back and forth between labelings and corresponding triples
of subsets of assumption in ∆, called states:
Definition 5. Let ABF = 〈(L,R),Γ,∆,∼〉 be an ABF.

• Given a labeling l, the state sl = (∆i,∆d,∆u), of the
inferred, defended and unrejected assumptions in ∆, that
is associated with l, is defined by:
∆i = {ψ ∈ ∆ | l(ψ) = (1, x, y) for x, y ∈ {0, 1}}
∆d = {ψ ∈ ∆ | l(ψ) = (x, 1, y) for x, y ∈ {0, 1}}
∆u = {ψ ∈ ∆ | l(ψ) = (x, y, 1) for x, y ∈ {0, 1}}

A state that is associated with a 5-valued labeling is called
consistent.

• Given a state s = (∆i,∆d,∆u), where ∆z ⊆ ∆ for ev-
ery z ∈ {i, d, u}, the associated labeling ls is defined
for every ψ ∈ ∆ by ls(ψ) = (li, ld, lu) where, for every
z ∈ {i, d, u}, lz = 1 if ψ ∈ ∆z and lz = 0 otherwise.

Example 4. In the running example (Γ = ∅, ∆ = {p, q, r},
R = {pr ,

q
¬r}), the state s = ({p, q, r}, {p, q}, {p, q}) rep-

resents the intended labelling, where all the assumptions are
inferred, but only p and q are unattacked and defended. The
associated labeling here is ls(p) = ls(q) = (1, 1, 1) = in and
ls(r) = (1, 0, 0) = cont, which reflects the expected inter-
pretation of this case (as discussed in Example 1).

The last example demonstrates that our extended semantics
reflects a more fine-grained perspective on the acceptance sta-
tus of assumptions, allowing a gradual notion of acceptance:
assumptions can be both inferred and defended (ls(p) in Ex-
ample 4), or inferred yet not defended (ls(r) in that example).
Next, we show that for this finer granularity (and for desider-
ata D1–D3) the six-valued bilattice structure SIX suffices.

4 ABF Semantics Based on SIX
We now follow the conventional approach in argumentation
theory [Dung, 1995] and introduce a fixpoint operator for
defining the semantics of ABFs. According to the intended
semantics, the operator transforms between states, consisting
of the inferred, defended and non-rejected assertions in ∆.
Definition 6. The operator G :2∆×2∆×2∆ → 2∆×2∆×2∆

is defined by G(Θi,Θd,Θu) = (∆i,∆d,∆u), where:
• ∆i = {ψ ∈ ∆ | Γ,Θi,Θd `R ψ},

• ∆d = {ψ ∈ ∆ | ψ− ⊆ (Θi ∪Θd)+},
• ∆u = {ψ ∈ ∆ | ψ 6∈ (Θi ∪Θd)+}.
Thus, given a state s = (Θi,Θd,Θu), the operator G con-

structs a new state (∆i,∆d,∆u) as follows:
• ∆i is the assumptions that can be deduced from the strict

premises, the inferred and the defended assumptions in s,
• ∆d is the set of assumptions that are defended (i.e., whose

attackers are attacked) by the inferred and defended as-
sumptions in s,

• ∆u consists of the unrejected assumptions, namely all the
assumptions that are not attacked by either the inferred or
the defended assumptions in s.

Example 5. Consider again the running example and the
state s = ({p, q, r}, {p, q}, {p, q}), representing the intended
interpretation of the ABF (Example 4). Note that s is a fix-
point of G, that is: G(s) = s. Indeed,

• ∆i = {p, q, r} since p, q, r are derivable from {p, q, r},
• ∆d = {p, q} since p and q are not attacked thus defended,

but r cannot be defended from the attack from {q},
• ∆u = {p, q} since both p and q are not attacked by
{p, q, r}, while r is attacked by q ∈ {q, p, r}.

We now extend the order relation ≤8
i on EIGHT to label-

ings (l1,l2) and states (s1,s2) in the usual, pointwise, manner:
• l1 ≤8

i l2 iff for every ψ ∈ ∆, l1(ψ) ≤8
i l2(ψ).

• s1 ≤8
i s2 iff ls1 ≤8

i l
s2 . 5

The following, alternative characterization of ≤8
i is useful:

Lemma 1. Let s = (∆i,∆d,∆u) and t = (Θi,Θd,Θu). Then
s ≤8

i t iff ∆i ⊆ Θi and ∆d ⊆ Θd and ∆u ⊇ Θu.6

Our semantics is now defined by generalizing the ideas un-
derlying both abstract and assumption-based argumentation:
Definition 7. We say that a state s is:

• admissible, if s ≤i G(s),
• complete, if s = G(s),
• preferred, if s is ≤8

i -maximally admissible,
• grounded, if s is ≤8

i -minimally complete.
A labelling l is admissible, complete, preferred or grounded
if so is its associated state sl.
Example 6. The labeling l(p) = l(q) = in, l(r) = cont
(recall Example 4) is complete (and so also admissible) for
the running example, since, as shown in Example 5, the state
sl = ({p, q, r}, {p, q}, {p, q}) that is associated with l is a
fixpoint of G. This is also the unique grounded and preferred
labelling in this case.

The labeling lu assigning undec to each assumption is only
admissible but not complete with respect to the running ex-
ample. Indeed, the state that is associated with this label-
ing is slu = (∅, ∅, {p, q, r}), and it holds that G(slu) =
(∅, {p, q}, {p, q, r}) >i s

lu .
5Recall from Definition 5 that ls is the labeling function that is

associated with the state s.
6Due to short of space, proofs of some results are delayed to the

full version of the paper.
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The next example demonstrates the difference between the
labels cont and dis:

Example 7. Let ABF = 〈(L, {pr ,
q
¬r ,

q
¬q}), ∅, {p, q, r},¬〉

be the ABF obtained by adding the rule q
¬q to the running

example (see also Figure 4).

p r q

Figure 4: A graphical representation of the ABF in Example 7

Again, this ABF doesn’t have a complete extension accord-
ing to the ‘classical’ semantics in Definition 3. However, the
following labeling is a complete extension in our semantics:
l = ({p, r}, {p}, {p, q, r}). According to this labeling, we
are dissonant about r: l(r) = (1, 0, 1) = dis. This is to be
contrasted with the label cont assigned of r in the running ex-
ample (see Examples 4 and 6), indicating that the evidences
concerning r are not robust. The intuitive reason for this mod-
ification is that now the attacker q of r becomes less reliable,
due to the additional rule, and so the ‘balance’ between the
positive and the negative evidence concerning r is broken.

Next, we show that complete labelings are in fact 6-valued,
i.e., they are onto SIX.

Proposition 1. Let s be a compete state. Then for every ψ ∈
∆, ls(ψ) ∈ SIX.

Proof. Given s state s = (Θi,Θd,Θu) s.t. G(s) = s. We show
that ls(ψ) 6∈ {(0, 1, 0), (0, 1, 1)} for every ψ ∈ ∆. Otherwise,
ls(ψ) = (0, 1, x) for x ∈ {0, 1}. Thus, ψ ∈ Θd, and since
`R is reflexive, Γ,Θi,Θd `R ψ. Thus, if G(Θi,Θd,Θu) =
(∆i,∆d,∆u), we have that ψ ∈ ∆i. Now, since s = G(s),
∆i = Θi, and so ψ ∈ Θi. But this is a contradiction to the
assumption that ls(ψ) ∈ {(0, 1, 0), (0, 1, 1)}.

4.1 Fixpoint Computations
Next, we show that the grounded labeling of an ABF can be
computed by a standard (polynomial time) iterative process of
continuously applying the operator G. Moreover, the labeling
that is obtained is 5-valued, meaning that if an assumption
is defended, then it is inferred and not rejected. First, we
indicate some useful results.

Lemma 2. G is a≤8
i -monotonic operator, that is: if s1 ≤8

i s2
then G(s1) ≤8

i G(s2).

Corollary 1. If s is admissible then so is G(s).

In what follows, we denote the ≤8
i -minimal state (∅, ∅,∆)

of the state-based lattice (2∆ × 2∆ × 2∆,≤8
i ) by s⊥, and

write Gi(s⊥) for the state obtained by i applications of G on
s⊥. The next result shows that (unlike classical semantics for
non-flat ABFs), the grounded labeling is unique, guaranteed
to exist, and can be constructed iteratively.

Proposition 2. Let ABF = 〈(L,R),Γ,∆,∼〉 be an ABF.
Then G∞(s⊥) is the unique grounded extension of ABF. If
∆ is finite, then there is an m ∈ N s.t. Gm(s⊥) is the unique
grounded extension of ABF.

Proof. We note, first, the following:

Lemma 3. (2∆ × 2∆ × 2∆,≤8
i ) is a complete lattice.

Now, for the proposition, we produce a sequence of states
s⊥,G(s⊥),G2(s⊥), . . .. Since G is≤8

i -monotonic (Lemma 2),
and (2∆ × 2∆ × 2∆,≤8

i ) is complete (Lemma 3), by Cousot
and Cousot [1979], G∞(s⊥) is the ≤i-minimal fixpoint of G.

If ∆ is finite, then (2∆ × 2∆ × 2∆,≤8
i ) is a finite lattice.

In that case the construction sequence is finite, thus there is
an m ∈ N s.t. Gm(s⊥) is the unique grounded extension.

The next example illustrates the process of computing the
grounded extension.

Example 8. Consider again our running example with Γ = ∅,
∆ = {p, q, r}, andR = {pr ,

q
¬r}.

(0) The initial state S⊥ = (∆0
i ,∆

0
d,∆

0
u) = (∅, ∅, {p, q, r}),

corresponding to the labeling that is uniformly undecided:
lS⊥(p) = lS⊥(q) = lS⊥(r) = (0, 0, 1) = undec.

(1) Since Γ = ∆0
i = ∆0

d = ∅, no formula in ∆ can be inferred
from the union of these sets, and so ∆1

i = ∅. Now, since
p− = q− = ∅ , we have that ∆1

d = {p, q}. The fact
∆0

i ∪ ∆0
d = ∅ also implies that ∆1

u = ∆. It follows that
G(S⊥) = (∅, {p, q}, {p, q, r}).

(2) From ∆1
d = {p, q} any formula in ∆ can be inferred, thus

∆2
i = ∆. Also, we still have that ∆2

d = {p, q}. Since
r is attacked by q, it holds that ∆2

u = {p, q}. Hence,
G2(S⊥) = ({p, q, r}, {p, q}, {p, q}).

It is easy to check that sg = G2(S⊥) is the (least) fixpoint of
G. The corresponding labeling function is lsg (p) = lsg (q) =
(1, 1, 1) = in, lsg (r) = (1, 0, 0) = cont, meaning that both
p and q are accepted in this case while r is contradictory, as
indeed expected (cf. Examples 4 and 6).

Next, we show that the grounded labelling is 5-valued:

Proposition 3. Let g be the grounded state of ABF =
〈(L,R),Γ,∆,∼〉. Then for every ψ ∈ ∆, lg(ψ) ∈ FIVE.

Proof. We first show the following two lemmas:

Lemma 4. For any 1 ≤ j ∈ N, let Gj(s⊥) = (∆j
i ,∆

j
d,∆

j
u).

Then: ∆j
i = {ψ ∈ ∆ | Γ,∆j−1

d `R ψ}.

Proof. We show this by induction on j. The base step is clear,
as ∆0

i = ∅. For the inductive step, suppose that ∆j
i = {ψ ∈

∆ | Γ,∆j−1
d `R ψ} and let ψ′ ∈ ∆j+1

i . By the definition
of G, then, Γ,∆j

i ,∆
j
d `R ψ′. This implies, by the inductive

hypothesis, that {ψ ∈ ∆ | Γ,∆j−1
d `R ψ},∆j

d `R ψ′. By
the transitivity of `R, we get Γ,∆j−1

d ,∆j
d `R ψ′. Since G is

≤i-monotonic (Lemma 2), by Lemma 1, ∆j−1
d ⊆ ∆j

d, and so
Γ,∆j

d `R ψ′. This implies that ∆j+1
i ⊆ {ψ ∈ ∆ | Γ,∆j

d `R
ψ}. The converse follows from the definition of G.

Lemma 5. For any j ∈ N, let Gj(s⊥) = (∆j
i ,∆

j
d,∆

j
u). Then

∆j
d ⊆ ∆j

u.

Proof. Again, we show the lemma by induction on j. The
base step is immediate, as ∆0

d = ∅ ⊆ ∆ = ∆0
u. For the in-

ductive step, suppose that ∆j
d ⊆ ∆j

u and, for a contradiction,
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let ψ ∈ ∆j+1
d \∆j+1

u . As ψ 6∈ ∆j+1
u , we have Γ,∆j

i ∪∆j
d `R

∼ψ, which implies, by Lemma 4, that Γ,∆j−1
d ,∆j

d `R ∼ψ.
By the ≤i-monotonicity of G (Lemma 2) and by Lemma 1,
Γ,∆j

d `R ∼ψ. Again by Lemma 4, ∆j
d is closed under R.

Thus, ∆j
d ∈ ψ+, which implies by the definition of G and

since ψ ∈ ∆j+1
d , that Γ,∆j

i ,∆
j
d `R ∼ψ′ for some ψ′ ∈ ∆j

d.
By Lemma 4 and the ≤i-monotonicity of G, Γ,∆j

d `R ∼ψ′.
As ψ′ ∈ ∆j

d, by the definition of G, Γ,∆j−1
i ,∆j−1

d `R ∼ψ′′

for some ψ′′ ∈ ∆j
d. This means (by the same line of reason-

ing as above) that Γ,∆j−1
d `R ∼ψ′′. But then ψ′′ 6∈ ∆j

u (by
the definition of G), a contradiction to the inductive hypothe-
sis (i.e., that ∆j

d ⊆ ∆j
u) and the fact that ψ′′ ∈ ∆j

d.

Proposition 3 now follows from Proposition 1 (implying that
lg is 6-valued) and Lemma 5 (excluding the value conf).

As shown next, complete non-grounded states may be six-
valued, as the value conf (i.e., (1, 1, 0)) can be obtained.

Example 9. Let Γ = ∅, ∆ = {p, q} and R = { p
¬q}. Then

the state s = ({p, q}, {p, q}, {p}) is complete, since G(s) = s.
The labeling of this state is not onto FIVE, since ls(q) = conf.

Observe the difference between the values conf and cont:
In Example 6, r is both inferred and rejected but not defended,
thus it is assigned the value cont. Here, q is also inferred and
rejected, but now it is also defended, thus it is assigned the
value conf (denoting a higher conflicting measure).

5 Some Basic Properties
In this section we show that desiderata D1, D2 and D3 from
the introduction are satisfied by our semantics. We have al-
ready partially considered D3, showing that the grounded
labelling is unique, guaranteed to exist and iteratively con-
structible. Next, we show another property that holds for the
standard semantics of flat ABFs but not always for non-flat
ABFs: every preferred extension is also complete.

Proposition 4. Let ABF = 〈(L,R),Γ,∆,∼〉 be an ABF. If s
is a preferred state then it is complete.

Proof. Suppose that s is a preferred labelling. Then s ≤i

G(s). Suppose now towards a contradiction that s 6= G(s)
(which implies that s <i G(s)). Since G is ≤i-monotonic,
G(s) ≤i G2(s), i.e, G(s) is also admissible. But then we have
found a witness (G(s)) against the ≤i-maximality of s.

Turning to desiderata D1 and D2, we now show that the set
of complete labellings extends the (classical) complete exten-
sions, and coincides with them if the ABF is flat:

Proposition 5. Let ABF = 〈(L,R),Γ,∆,∼〉 be an ABF. If Θ
is a complete extension of ABF (Definition 3), (Θ,Θ,∆\Θ+)
is a consistent complete state for ABF. If ABF is flat, then the
converse also holds: if (Θ,Θ,∆ \ Θ+) is a consistent com-
plete state for ABF then Θ is a complete extension of ABF.

Proof. [⇒]: Suppose that Θ is a complete extension. (1) As
Θ is closed, we have that Γ,Θ `R ψ iff ψ ∈ Θ. (2) As Θ is
complete, ψ ∈ Θ iff ψ is defended by Θ. (3) By definition,

∆ \ Θ+ = {ψ ∈ ∆ | ψ− ∩ Θ = ∅}. By (1)–(3), the triple
(Θ,Θ,∆ \Θ+) is a consistent complete state for ABF.
[⇐]: Suppose that (Θ,Θ,∆ \ Θ+) is a consistent complete
state for ABF and ABF is flat. We have to show that Θ is
conflict-free, defended, and contains all the assumptions it
defends. Conflict-freeness follows from the fact that, by the
definition of G, ∆ \ Θ+ = {φ ∈ ∆ | φ− ∩ Θ = ∅} and
since Θ ⊆ ∆ \ Θ+ (which we know since we assumed con-
sistency). Likewise, the fact that Θ = {φ ∈ ∆ | φ− ⊆ Θ+}
immediately implies that φ ∈ Θ iff φ is defended by Θ.

Note 2. The next example shows that not every complete
(non-classical) labelling corresponds to a classical complete
extension, even if the ABF has classical complete extensions.
Example 10. Let R = {pr ,

p
¬q ,

q
¬p ,

q
¬r ,

r
¬r}, Γ = ∅, and

∆ = {p, q, r}. A diagram of this ABF appears in Figure 5.

pq r

Figure 5: A graphical representation of the ABF in Example 10

{q} is the unique classical complete extension of the ABF. By
Proposition 5, {q} corresponds to the state ({q}, {q}, {q}).
Yet, the state ({p, r}, {p}, {p}) is also complete.

The coincidence of complete extensions carries over to pre-
ferred/grounded extensions for flat ABFs.
Proposition 6. Let ABF = 〈(L,R),Γ,∆,∼〉 be a flat ABF.
Then Θ is a [preferred/grounded] extension of ABF (accord-
ing to Definition 3) iff (Θ,Θ,∆ \ Θ+) is a consistent [pre-
ferred/grounded] state for ABF.

Proof. Suppose that Θ is a preferred extension of ABF. Then
it is a maximally complete extension (this is shown in [Bon-
darenko et al., 1997]), which means, with Proposition 5
that (Θ,Θ,∆ \ Θ+) is a consistent complete state. Sup-
pose now that (Θ,Θ,∆ \Θ+) is not preferred, which means
(with Proposition 4) that there is some (Θ′,Θ′,∆ \ Θ′+) >i

(Θ,Θ,∆ \ Θ+) that is complete. This means that Θ ⊆ Θ′

and ∆ \ Θ′+ ⊆ ∆ \ Θ+ (the latter simply means again that
Θ ⊆ Θ′), and one of these inclusions is proper, which al-
together means that Θ ⊂ Θ′. Also, as (Θ′,Θ′,∆ \ Θ′+) is
complete, by Proposition 4, Θ′ is complete. But this contra-
dicts Θ being preferred.

The ⇐-direction and the case for grounded semantics are
similar.

Note 3. The last results immediately imply that the grounded
state sg = (∆g

i ,∆
g
d,∆

g
u) approximates any classical complete

extension s = (Θ,Θ,∆ \Θ+), in the sense that sg ≤8
i s.

Finally, we show that the grounded state and the well-
founded extension are incomparable:
Example 11. Let Γ = ∅, ∆ = {p}, and R = {p ,

p
¬p}

(see Figure 6, left). Then the grounded state is ({p}, ∅, ∅).
As there are no classical complete extensions, the well-
founded extension is ∅, corresponding to the state (∅, ∅, ∅).
Thus, in this case, the grounded state is more informative (as
(∅, ∅, ∅) ≤8

i ({p}, ∅, ∅)).
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Example 12. Consider Γ = ∅, ∆ = {p, q, r, s}, and
R = { p

¬q ,
q
¬p ,

p
¬s ,

q
¬s ,

s
¬r , r} (Figure 6, right). There are

two (classically) complete extensions in this case: {p, r}
and {q, r}. Thus, the well-founded extension is {r} (corre-
sponding to the state ({r}, {r}, {p, q, r, s})). The grounded
state, on the other hand, is ({r}, ∅, {p, q, r, s}). Hence,
in this case, the well-founded extension is more informa-
tive than the grounded state (as ({r}, ∅, {p, q, r, s}) ≤8

i
({r}, {r}, {p, q, r, s})).

∅ p ∅

p

p

s r

Figure 6: Representations of the ABFs in Example 11 (left) and
Example 12 (right)

5.1 Computational Complexity
We now investigate the complexity of reasoning tasks asso-
ciated with the new semantics. We assume familiarity with
standard complexity concepts, including oracles and the poly-
nomial hierarchy. First,we note the following:
Note 4. By Propositions 2 and 4, the verification (existence)
problem (i.e., checking whether an ABF admits a complete,
grounded or preferred state) is trivial.

For studying the complexity of computing states and label-
ing, we assume that R consists only of Horn-rules, namely,
rules of the form p1, ..., pn

q , where pi (1 ≤ i ≤ n) are atomic
formulas and q is either an atomic formula or the proposi-
tional constant for falsity. ABFs with only Horn rules are
called Horn-ABFs [Čyras et al., 2021].
Lemma 6. In Horn-ABFs, G(s) can be computed from a state
s in polynomial time.

Proof. Let s = (Θi,Θd,Θu) and G(s) = (∆i,∆d,∆u).
We first recall that derivation of consequences of a Horn-

rule set is in P. Thus, ∆i is computed in polynomial time.
To compute ∆u we need to check for every ψ ∈ ∆ whether

Γ,Θi,Θd `R ∼ψ. This requires O(|∆|) polynomial checks
(of `R), which is again polynomial.

Finally, ∆\∆d is calculated by: (1) calculating (Θi∪Θd)+

by checking for every ψ ∈ ∆ whether Γ,Θi ∪ Θd `R ∼ψ
(so O(|∆|) `R-checks), and (2) checking for every φ ∈ ∆
whether Γ,∆ \ (Θi ∪ Θd)+ `R ∼ψ (so again O(|∆|) `R-
checks). As ∆ \∆d can be calculated in polynomial time, we
have also determined ∆d in polynomial time.

Corollary 2. Checking whether a state s is complete for a
Horn-ABF is in P.

Proof. Since by Lemma 6 the computation of G(s) is polyno-
mial, so is the checking whether s = G(s).

Proposition 7. Computing the grounded state for a Horn-
ABF is in P and checking whether a state s is preferred for a
Horn-ABF is coNP-complete.

Proof. The claim concerning the grounded state (and the cor-
responding grounded labeling) follows from Proposition 2
and its proof, showing that the grounded extension can be
computed by m ∈ N iterations of applying the G operator
on given states, starting from s⊥. By Lemma 6, each such
application is computable in polynomial time.

Concerning the preferred semantics, membership is shown
as follows: one can check whether s is not preferred by first
checking whether it is complete (this is polynomial by Corol-
lary 2) and then guessing a state s′ >i s and verifying that
it is complete (again, this is polynomial). Hardness follows
from the fact that flat ABFs are a special case (Proposition 6)
and by [Dimopoulos et al., 2002, Theorem 14].

The last results imply that the computational complexity
of all the reasoning tasks considered here is preserved when
moving from flat ABFs under the classical semantics to non-
flat ABFs under the labeling and state semantics introduced in
this paper. This stands in contrast to the classical semantics
for non-flat ABFs, which, as shown in [Čyras et al., 2021],
result in an increased complexity for all these reasoning tasks
(namely, coNP-complete for skeptical grounded reasoning,
DP-complete for verifying completeness and ΠP

2 -complete
for verifying preferedness).

6 Summary, Related Work, and Conclusion
We introduced an 8-valued bilattice-based labeling semantics
for assumption-based argumentation frameworks that over-
comes some anomalies of the standard 3-valued semantics
for such frameworks. In particular, this labeling enables sev-
eral degrees of acceptance and as a consequence it is capa-
ble of accepting, to different levels, every inferred assertion.
Following Dung’s original method of providing semantics to
argumentation frameworks by fixpoints of operators, we for-
mulated semantics which preserve the semantics of flat ABFs,
extend the classical semantics of non-flat ABFs, and satisfy
all the usual properties of argumentative semantics.

Non-flat ABFs have been studied in relation to other for-
malisms, such as autoepistemic logic [Bondarenko et al.,
1997] and bipolar argumentation [Čyras et al., 2017]. In
future work we will investigate these translations in our se-
mantics. Some complexity results for classical semantics of
non-flat ABFs appear in [Čyras et al., 2021]. Many of the
problems for classical semantics for non-flat ABFs have been
noted elsewhere (see, e.g., [Čyras et al., 2018]), and our list
of desiderata is based on such problems. To the best of our
knowledge, this is the first proposal for an alternative seman-
tics for non-flat ABFs, which copes with such problems.

Future work involves a number of issues, such as the con-
siderations of further argumentative semantics (e.g., the sta-
ble, ideal and semi-stable semantics). Another interesting is-
sue for future explorations is the providing of constructive
ways of computing labelings other than the grounded label-
ing. One way of doing so is by expressing the labeling assign-
ments in terms of theories consisting of formal rules (e.g.,
as in [Arieli and Caminada, 2013]). This then allows to use
off-the-shelf solvers for computing the labelings (see, for in-
stance, [Cerutti et al., 2017; Besnard et al., 2020]).

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3419



Acknowledgments
The second author is partially supported by the Israel Science
Foundation, grant No. 550/19.

References
[Arieli and Caminada, 2013] Ofer Arieli and Martin W.

Caminada. A QBF-based formalization of abstract
argumentation semantics. Journal of Applied Logic,
11(2):229–252, 2013.

[Arieli and Straßer, 2015] Ofer Arieli and Christian Straßer.
Sequent-based logical argumentation. Journal of Argu-
ment and Computation, 6(1):73–99, 2015.

[Arieli, 2016] Ofer Arieli. On the acceptance of loops in ar-
gumentation frameworks. Journal of Logic and Computa-
tion, 26(4):1203–1234, 2016.

[Arieli, 2022] Ofer Arieli. Four-valued semantics for ab-
stract argumentation frameworks using (extensions of)
Dunn–Belnap four-valued logic, volume 46 of Tributes,
Essays in honor of J. M. Dunn. College Publications, 2022.

[Baroni et al., 2018] Pietro Baroni, Dov Gabbay, Massimil-
iano Giacomin, and Leendert van der Torre. Handbook of
Formal Argumentation, volume 1. College Publications,
2018.

[Baroni et al., 2021] Pietro Baroni, Martin Caminada, and
Massimiliano Giacomin. Abstract argumentation frame-
works and their semantics. In Dov Gabbay, Massimiliano
Giacomin, Guillermo Simari, and Matthias Thimm, edi-
tors, Handbook of Formal Argumentation, volume 2. Col-
lege Publications, 2021.

[Besnard and Hunter, 2001] Philippe Besnard and Anthony
Hunter. A logic-based theory of deductive arguments. Ar-
tificial Intelligence, 128(1):203–235, 2001.

[Besnard et al., 2020] Philippe Besnard, Claudette Cayrol,
and Marie-Christine Lagasquie-Schiex. Logical theories
and abstract argumentation: A survey of existing works.
Journal of Argument & Computation, 11(1-2):41–102,
2020.

[Bistarelli and Taticchi, 2021] Stefano Bistarelli and Carlo
Taticchi. A unifying four-state labelling semantics for
bridging abstract argumentation frameworks and belief re-
vision. In Proceedings of the 22nd Italian Conference on
Theoretical Computer Science (ICTCS’21), volume 3072
of CEUR Workshop Proceedings, pages 93–106, 2021.

[Bondarenko et al., 1997] Andrei Bondarenko, Phan Minh
Dung, Robert Kowalski, and Francesca Toni. An ab-
stract, argumentation-theoretic approach to default reason-
ing. Artificial Intelligence, 93(1):63–101, 1997.

[Cerutti et al., 2017] Federico Cerutti, Sarah Alice Gaggl,
Matthias Thimm, and Johannes Peter Wallner. Founda-
tions of implementations for formal argumentation. Jour-
nal of Applied Logics-IfCoLog Journal of Logics and their
Applications, 4(8):2623–2706, 2017.

[Cousot and Cousot, 1979] Patrick Cousot and Radhia
Cousot. Constructive versions of Tarski’s fixed point

theorems. Pacific journal of Mathematics, 82(1):43–57,
1979.
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