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Abstract
Causal discovery seeks to unveil causal relation-
ships (represented as a so-called causal graph) from
observational data. This paper investigates the com-
plex relationship between the graph structure and
the efficiency of constraint-based causal discovery
algorithms.
Our main contributions include (i) a near-tight char-
acterization of which causal graphs admit a small
d-separating set for each pair of vertices and thus can
potentially be efficiently recovered by a constraint-
based causal discovery algorithm, (ii) the explicit
construction of a sequence of causal graphs on
which the influential PC algorithm might need expo-
nential time, although there is a small d-separating
set between every pair of variables, and (iii) the for-
mulation of a new causal discovery algorithm which
achieves fixed-parameter running time by consid-
ering the maximum number of edge-disjoint paths
between variables in the (undirected) super-structure
as the parameter.
A distinguishing feature of our investigation is that
it is carried out within a more fine-grained model
which more faithfully captures the infeasibility of
performing accurate independence tests for large
sets of conditioning variables.

1 Introduction
Causality has become a crucial topic in AI research for over-
coming the limitations of Machine Learning systems that are
typically based on correlation. While causal inference focuses
on estimating the effect of a known or hypothesized causal
relationship, causal discovery (the subject of this paper) aims
to uncover new causal relationships directly from data, often
without prior hypotheses.

The causal structure over a set of random variables can
be explicitly expressed as a causal graph, which is a di-
rected graph whose vertices are the variables, and where an
arc X → Y indicates that X is a direct cause of Y . Causal
discovery is the problem of identifying as much as possible
about the causal graph given a dataset of measurements over
the underlying variables; in some cases, part of the causal

relationships among the variables is provided from expert
knowledge [Ng et al., 2021; Chen et al., 2016; Tsamardinos
et al., 2006; Ramaswamy and Szeider, 2022] which can be
presented in terms of a super-structure [Perrier et al., 2008;
Ordyniak and Szeider, 2013; Ganian and Korchemna, 2021;
Grüttemeier and Komusiewicz, 2022], a graph containing all
edges which are known or allowed to be part of the causal
graph in some orientation.

An important family of algorithms for causal discovery
are constraint-based algorithms which work with a (usually
very large) set of observational data and repeatedly perform
independence checks between pairs of variables, i.e., test
X ⊥ Y | Z. Here, it is crucial to distinguish how one mod-
els these tests: one commonly assumes these are performed
by an oracle which can either (1) determine whether X and
Y are conditionally independent via a single query, or (2)
test independence under a specific assignment of the condi-
tioning set Z. Here, we take the latter approach—which we
from now on refer to as the fine-grained oracle model—as it
allows us to more faithfully model settings where, e.g., the
data needs to be obtained via on-the-fly experiments or when
the amount of data is excessively large. We note that un-
der the fine-grained oracle model, performing independence
tests for very large choices of Z becomes infeasible—a fact
which also corresponds well to the known unreliability of
such independence tests [Wienöbst and Liskiewicz, 2021;
Talvitie and Parviainen, 2020].

The PC algorithm, proposed by Peter and Clarke [Spirtes
et al., 2000], is a constraint-based algorithm that had a mon-
umental impact on causal discovery and served as the basis
for several other constraint-based algorithms; in fact, it is
considered the “default algorithm for attempting causal dis-
covery” [Shalizi, 2023]. The statistical independence check
used by the PC algorithm (and many other constraint-based
causal discovery algorithms) is based on so-called d-separating
sets. Since the running time of the test in the fine-grained or-
acle model is exponential in the size of the d-separating set,
the PC algorithm performs the tests with gradually increasing
d-separating sets, starting from checking unconditional inde-
pendence (which corresponds to checking for the existence of
an empty d-separating set).

The PC and other constraint-based algorithms proposed
for causal discovery over the last two decades have been re-
fined and analyzed from statistical and empirical perspectives
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(see the discussion of related work at the end of the Introduc-
tion). However, relatively little is known about the complexity-
theoretic foundations of constraint-based causal discovery al-
gorithms in the fine-grained oracle model. We perform the first
complexity-theoretic analysis in this more refined setting by
attacking the following three fundamental research questions.

Q1 Which structural properties of the causal graph guarantee
small d-separating sets between any pair of variables? A
small d-separating set is a prerequisite for applying constraint-
based causal discovery algorithms efficiently and provides
guarantees for their running times.
Q2 How large are the d-separating sets discovered by the PC
algorithm compared to smallest d-separating sets? Let us refer
to the difference between the size of a d-separating set iden-
tified by the PC algorithm and the size of a smallest such set
as the “approximation error”. The smaller the approximation
error, the closer the PC algorithm’s time complexity is to the
time complexity of an idealistic constraint-based algorithm.
Q3 Which properties of the provided super-structure guar-
antee efficient causal discovery? We consider this question
with respect to the PC algorithm, but also for new constraint-
based algorithms that we design to exploit the properties of
the super-structure better.

1.1 Results
Addressing Q1: We obtain a near-tight characterization of
which causal graphs admit a small d-separating set for each
pair of vertices. In particular, if the number of edge-disjoint
paths between each pair of vertices in the skeleton of the causal
graph (i.e., the undirected graph underlying the causal graph)
is bounded, then there is a d-separating set between each pair
of vertices of bounded size (Theorem 3). At the same time,
the statement cannot be strengthened to simply speak of edge-
disjoint directed paths (Observation 4) or to the number of
vertex-disjoint paths in the skeleton (Theorem 5). Conversely,
if a causal graph admits a d-separating set of size at most ℓ for
each pair of non-adjacent vertices, then for each pair of non-
adjacent vertices, the number of directed vertex-disjoint paths
is bounded by the same bound ℓ (Observation 6, Corollary 7).
We show that this result is tight in the sense that it cannot
be improved to a bound on the number of vertex-disjoint or
edge-disjoint paths in the skeleton (Lemma 8) or to a bound
on the number of directed edge-disjoint paths in the causal
graph (Lemma 9). These results are presented in Section 3.

Addressing Q2: We first observe that no constraint-based
causal discovery algorithm can run faster than in time nk,
where n is the number of variables and k is the size of a small-
est d-separating set between any pair of variables (Lemma 10).
In other words, the size of a smallest d-separating set is a hard
complexity bound for all constraint-based algorithms.

In the literature, it has been claimed that the PC algorithm
will find and use a smallest d-separating set between every
pair of variables [Claassen et al., 2013, Subsection 3.1]. We,
in fact, show that this is not the case: the PC algorithm might
fail to run efficiently due to failing to find a small d-separating
set even when such a set exists. This would be relatively easy
to show when expert knowledge is provided, but our construc-
tion works even in the base case with no expert knowledge

(i.e., when the super-structure is a complete graph). In partic-
ular, we construct a non-trivial class of instances where the
PC algorithm only discovers a d-separating set of size linear
in the total number of variables, even though there exists a
d-separating set of size 3 (Theorem 11). This direction is
investigated within our Section 4.

Addressing Q3: We have now seen two obstacles to effi-
cient causal discovery: if the d-separating set is large, then no
constraint-based algorithm will run efficiently, but even if it
is small, the PC algorithm might not run efficiently. Here, we
consider whether natural graph-theoretic structural restrictions
on the super-structure can help us address both of these ob-
stacles to guarantee efficient causal discovery for cases where
some (suitable) expert knowledge is available. In particular,
we aim to avoid the exponential blowup of nk by designing
so-called fixed-parameter algorithms for the problem.

A typical restriction one would consider in the setting
of fixed-parameter tractability would be to consider super-
structures of bounded treewidth [Robertson and Seymour,
1986]; however, as our first result in this direction we prove
that using treewidth (as well as many other more restrictive
variants of it that have been used in this context) as a pa-
rameter cannot yield fixed-parameter tractability for causal
discovery, for any constraint-based algorithm (Corollary 12).
On the other hand, we show that the maximum degree in the
super-structure is a parameter which guarantees that the PC al-
gorithm will terminate in fixed-parameter time (Theorem 13).
Unfortunately, the restriction to super-structures of bounded
degree only is very strong, and so this result begs the question
of whether tractability can be extended to super-structures of
unbounded degree.

We show that by a slight modification of the PC algo-
rithm, we can lift the tractability for the bounded-degree
case to parameterizing by the maximum degree within each
2-connected component (Theorem 14); it is worth noting that
fixed-parameter tractability for the PC algorithm without our
modification cannot be guaranteed in this case (Corollary 15).
We conclude by developing a new causal discovery algorithm
that guarantees a fixed-parameter running time in a much more
general setting—in particular, there it suffices to parameterize
by the maximum number of edge-disjoint paths between any
pair of variables (Theorem 16)—and again match this with a
lower bound showing that the PC algorithm (even the modified
one) cannot solve this case efficiently (Corollary 17). This
third set of results is presented in Section 5.

1.2 Related Work
There are two main approaches to causal discovery: constraint-
based and score-based. The complexity of constraint-based
causal discovery is well-studied in terms of the number of con-
ditional independence tests. As Claassen et al. [2013] noted,
the PC algorithm allows learning causal networks whose node
degree is upper-bounded by k via at most n2(k+2) indepen-
dence tests. Recent works have also explored other constraint-
based causal discovery algorithms, including the refinement
ED-PC of the PC algorithm by Wienöbst and Liskiewicz
[2021] and MARVEL [Mokhtarian et al., 2021]; the latter
achieves nearly-tight bounds in the number of independence

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3378



tests performed. However, these results do not carry over to
the fine-grained oracle model since the algorithms assume
the possibility of performing efficient independence tests with
large conditioning sets; the sizes of these sets are only upper-
bounded by the maximal in-degree.

The importance of reducing the sizes of conditioning sets
was also mentioned in many other articles (see, e.g., the dis-
cussion in the work of Mokhtarian et al. [2022]). For instance,
Talvitie and Parviainen [2020] aimed to bound the number of
oracle calls and the size of d-separating sets. They did so by
considering the so-called moral graph of the hidden causal
graph and showed that whenever the moral graph has treewidth
at most k, each pair of variables admits a d-separating set of
size at most k + 1. This is incomparable to our results ad-
dressing Q1: we show that the size of a d-separating set is
upper-bounded by a function of the maximum edge-cut of a
skeleton of the hidden causal graph (which allows us to obtain
strong bounds even for skeletons with high-degree nodes),
but it is easy to observe that a bound on the treewidth of the
moral graph implies a bound on the degree of the skeleton. An
example of an instance where our bounds supersede previous
results can be seen, e.g., in Figure 4.

It is known that the smallest d-separating set between X
and Y corresponds to the smallest vertex separator in a moral
graph of D restricted to ancestors of X and Y [Tian et al.,
1998]. We show that this characterization cannot be extended
to skeletons (and, therefore, neither to the super-structure
setting) by constructing a family of networks with skeletons
containing a vertex separator of size 3 between every pair
of variables but arbitrarily large smallest d-separating sets
between some pair of variables (Theorem 5).

Under the Faithfulness and Causal Markov conditions,
causal networks are known to be Bayesian [Mokhtarian et al.,
2022]. The parameterized complexity of score-based Bayesian
network structure learning was extensively studied in the liter-
ature [Ordyniak and Szeider, 2013; Korhonen and Parviainen,
2015; Ganian and Korchemna, 2021; Grüttemeier et al., 2021;
Grüttemeier and Komusiewicz, 2022].

2 Preliminaries
We use standard terminology for graph theory [Diestel, 2012].
Let N denote the set of positive integers. We use [i] to de-
note the set {1, . . . , i}. To obtain our results, we will need
to consider undirected graphs as well as directed graphs,
i.e., digraphs. We use V (G) to denote the vertex set of a
(di)graph G. For a directed graph D, we use A(D) to denote
its arc set. The in-neighborhood of a vertex X ∈ V (D) is the
set {Y ∈ V (D) | Y X ∈ A(D) }, and the out-neighborhood
of X is the set {Y ∈ V (D) | XY ∈ A(D) }. Elements of
these sets are called the in- and out-neighbors of X and the
sizes of these sets are called the in-degree and out-degree of
X , respectively. If H is a subgraph of a (directed or undi-
rected) graph G, we denote this as H ⊆ G. The skeleton
(sometimes called the underlying undirected graph) D of a di-
rected graph D is the simple graph obtained by replacing each
arc in D with an undirected edge. An edge-cut in D which
separates X from Y is a set E of edges such that X and Y lie
in different connected components of D − E ; we say that E

touches a vertex Z if it contains at least one edge incident to Z.
A path between a vertex X1 and a vertex Xn is a non-repeating
sequence of vertices X1, . . . , Xn such that for each pair of
vertices Xi and Xi+1, there is an arc XiXi+1 or Xi+1Xi

(edge XiXi+1 for an undirected graph). A causal graph is a
directed acyclic graph D over a set V (D) of variables (repre-
sented as vertices) whose arcs represent causal relationships
between these variables. In this paper, we consider variables
to range over a finite and fixed domain of size B. A vertex
(or variable) Xi is a collider on a path P if the path contains
Xi−1 → Xi ← Xi+1; otherwise it is a non-collider [Glymour
et al., 2019]. A directed path from X1 to Xn in D is a path
which contains an arc XiXi+1 for each pair Xi and Xi+1. If
such a path exists, we say that Xn is reachable from X1 or,
equivalently, Xn is a descendant of X1 inD. As a special case
for n = 1, every variable is reachable from (is a descendant
of) itself. A super-structure G is a graph on the same vertex
set as the causal graph D which forms a supergraph of the
skeleton D of D, i.e., D can be obtained from G by removing
some set of edges. In the context of causal discovery, it is
used to represent all potential dependencies between variables
(known, e.g., from prior or expert knowledge).
Conditional Independence and d-Separation. Let S be a
subset of variables in D, and let X and Y be two different
variables outside of S . We say that X is d-separated from Y
conditional on S if and only if all paths between X and Y in
D are blocked by S. A path P is blocked by S if at least one
of the following two contions holds:
• P contains a non-collider which is in S , or
• P contains a collider which has no descendants in S .

Assuming the well-established Causal Markov Condition
and the Faithfulness Condition, X is d-separated from Y by S
if and only if X and Y are conditionally independent given S
[Glymour et al., 2019]. Further, we will denote both of these
facts (namely, conditional independence and d-separation of
X from Y given S) by X ⊥ Y | S .
The PC algorithm. The PC algorithm is one of the basic
algorithms used to determine the Markov Equivalence Class
(i.e., a partially oriented skeleton) of the causal graph. It
receives as input a set V (D) of variables, possibly a super-
structure of the (hidden) causal graph over V (D), and an
oracle that can check conditional (in)dependencies between
variables X , Y w.r.t. a subset of V (D) \ {X,Y }.

In its entirety, the PC algorithm consists of two phases: the
first phase (called the learning phase) computes a skeleton,
while the second obtains a partial orientation of the skeleton
obtained in the first phase. The key distinction is that while
the second phase can be implemented as a polynomial-time
postproceessing routine, the learning phase can in general take
exponential time. Hence, in this complexity-theoretic study
we focus our attention solely to the learning phase, which
forms the bottleneck in the worst-case running time of the PC
algorithm. This phase consists of the following sequence of
procedures [Glymour et al., 2019]:
1. Construct a complete undirected graph over the provided
set of variables.
2. Eliminate edges between variables that are either uncondi-
tionally independent or are known to be independent due to
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expert knowledge (non-adjacent in the super-structure).
3. For each pair of variables {X,Y } having an edge between
them, and for each variable Z with an edge connected to
either of them, eliminate the edge between X and Y if X is
conditionally independent of Y given Z.
4. For each pair of variables {X,Y } having an edge between
them, and for each pair of variables {Z,W} with edges both
connected to X or both connected to Y , eliminate the edge
between X and Y if X ⊥ Y | {Z,W}.
5. Continue checking independencies conditional on subsets
of variables of size 3, . . . , i until there are no more adjacent
pairs X,Y , such that there is a subset of variables of size i
such that all of the variables in the subset are adjacent to X or
all adjacent to Y .

Let k ≤ i be the maximum size of sets that need to be
considered in Step 5 in order for the PC algorithm to discover
the whole skeleton of the causal graph. We remark that if k
is known in advance, it can be used to provide a basic upper
bound on the running time of the PC algorithm, since we may
safely stop the process once all sets of size at most k have
been checked.

Various variants of the PC algorithm have been proposed
over the last two decades [Glymour et al., 2019]. We will
refer to all such variants—and in particular, all complete al-
gorithms that are based on checking the conditional indepen-
dence of pairs of variables in terms of d-separation in a learn-
ing phase, followed by an orientation phase (such as the FCI
algorithm [Spirtes et al., 2000])—as constraint-based causal
discovery algorithms.
Parameterized Complexity. Parameterized complexity the-
ory [Cygan et al., 2015; Downey and Fellows, 2013; Nieder-
meier, 2006] analyzes the running time of algorithms not only
with respect to the input size n, but also to a specified pa-
rameter k ∈ N. The high-level idea is to identify parameters
which capture the structural properties of instances for com-
putationally challenging problems such that the combinatorial
explosion in the running time can be confined to this parame-
ter. The parameterized counterpart to the classical complexity
class P is FPT (fixed-parameter tractable), which contains all
problems that can be solved by an algorithm running in time
f(k) ·nO(1), where f is a computable function. Naturally, not
all parameterizations give rise to fixed-parameter tractability
for problems of interest, and identifying which do is a central
task of parameterized analysis.

3 Characterizing Small d-Separating Sets
The aim of this section is to characterize necessary and suffi-
cient conditions for the existence of bounded-size d-separating
sets in a hidden causal graph D. While one would at first
glance expect that such conditions would be closely tied to
structural properties that depend on the orientation of the arcs
in D (and, in fact, some of our results provide precisely such
a relationship), here we provide positive results for conditions
that are oblivious to the orientation of the arcs, i.e., conditions
that solely depend on the undirected skeleton D. There are
two reasons for this:
1. It is known to be impossible to identify the exact hidden
causal graph D using constraint-based algorithms, but such

algorithms can reliably compute D [Eberhardt, 2017, Section
2]. This makes the latter a tangible and guaranteed output of
such algorithms.
2. We provide concrete examples and constructions which
show that the results linking the existence of bounded-size
d-separating sets to undirected structures in D cannot be lifted
to analogous directed structures in D.

As a first basic step, it will be useful to provide a lemma that
can be seen as an independent short proof of the correctness
of the PC algorithm. For two distinct variables X and Y in D,
let DXY and DXY be the subgraphs of D and D respectively
induced on the vertices of the set of all undirected paths be-
tween X and Y in D. For the following, it will be useful to
recall that the causal graphs considered here are acyclic.
Lemma 1. Let X and Y be distinct and non-adjacent vari-
ables such that X is not reachable from Y in D. Let S be the
set of all in-neighbors of Y in DXY . Then X ⊥ Y | S .

Lemma 1 immediately implies that if the causal graph has in-
degree ℓ, then every pair of variables admits a d-separating set
of size at most ℓ. In particular, bounded maximum in-degree
in D—and hence also bounded maximum degree in D—is a
sufficient condition for the existence of small d-separating sets.
Naturally, such a condition is far from necessary: for instance,
the class of simple stars with all edges oriented towards the
center has arbitrarily large maximum in-degree even though
each pair of non-adjacent variables admits a d-separating set
of size 0.

As our next task, we will provide a stronger sufficient con-
dition on D for the existence of small d-separating sets—
specifically, the existence of a bounded number of edge-
disjoint paths between each pair of variables. The next lemma
provides the first step towards this goal:
Lemma 2. Let X and Y be non-adjacent vertices in D such
that X is not reachable from Y in D. Assume that D admits
an edge-cut of size k which separates X and Y and does not
touch X . Then X and Y can be d-separated by a set of size at
most 2k in D.

We note that it is crucial that the edge-cut considered in
Lemma 2 does not touch X: Figure 1 depicts a causal graph
admitting an edge-cut {XZ,XW} of size two, but requires
large d-separating set for X and Y .

X Y

V1

V2

Vn

Z

W

.

.

.

Figure 1: An example of a causal graph where X and Y are separated
by two edges XZ and XW , but any d-separating set for X and Y
has size at least n+ 1.

Interestingly, when aiming for a sufficient condition that would
guarantee the existence of small d-separating sets between all
pairs of variables, we show that the existence of arbitrary
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edge-cuts of bounded size is sufficient (regardless of which
variables they touch).
Theorem 3. If every pair of vertices X and Y can be sepa-
rated in D by an edge-cut of size at most k, then every pair
of non-adjacent variables can be d-separated in D by a set of
size at most 2k2.

Notice that the bound above is imposed on the number of
undirected edge-disjoint paths. By contrast, restricting the
number of directed edge-disjoint paths does not suffice: as a
simple example, consider a causal graph Ln that consists of
two variables X and Y plus n vertex-disjoint paths of length 2
between them, where every vertex other than X and Y is a
source. In particular, X and Y are sinks.
Observation 4. Ln does not contain a directed path between
any pair of non-adjacent variables, but the only d-separating
set for X and Y has size n.

However, this still raises the question of whether Theorem 3
could be strengthened by simply requiring the existence of a
vertex-separator of size at most k (instead of having an edge-
cut of size at most k) between each pair of variables. Below,
we answer this in the negative:
Theorem 5. There exists a family {Di : i ∈ N} of causal
graphs with |V (Di)| = O(4i), i ∈ N, such that each Di

contains a pair of non-adjacent variables with no d-separating
set of size smaller than 2i−1+1, and yet each pair of variables
in Di admits a vertex separator of size 3.

Proof Sketch. For convenience, let us define D0 to simply be
a causal graph consisting of a single arc. If the edge begins
in X and ends in Y , we say that D0 has orientation XY . We
construct the family by induction; to this end, let us assume
that the causal graphDi, i ∈ N∪{0}, has already been defined
and has a special pair of vertices called its orientation.

For the construction itself, take two vertex-disjoint copies
of Di with orientations XR and R′Y and glue them together
by identifying R and R′, and denote the obtained graph as
Drepeat

i . Take another two vertex-disjoint copies of Di with
orientations M ′X ′ and MY ′ and glue them together by iden-
tifying M and M ′, and denote the graph as Dmirror

i . Finally,
glue together Drepeat

i and Dmirror
i by identifying X ′ with X and

Y ′ with Y . The resulting graph is Di+1 with orientation XY .
An illustration of the construction—which may be viewed as
“fractal” in nature—is provided in Figure 2.

To complete the proof, it now remains to establish the fol-
lowing two claims:
Claim 1. For every i ∈ N, Di admits a vertex separator of size
at most 3 between any pair of vertices.

D0

D1

repeat

D0

mirror

D1

mirror
D2

D1

repeat

Figure 2: Construction of Di+1 from 4 copies of Di for i = 0, 1.
The red dashed arcs depict the orientations.

Figure 3: Vertex separators in the skeleton of D3 from the proof of
Claim 1. Red vertices form the vertex separator between A1 and B1,
while blue vertices form the vertex separator between A2 and B2.

Claim 2. For every i ∈ N, the causal graphDi with orientation
XY contains no d-separating set between X and Y of size
smaller than 2i−1 + 1.

The proof of Claim 1 is based on case analysis for all pairs
of variables, and is illustrated on Figure 3. The key insight
underlying the proof of Claim 2 is that at each step from Di to
Di+1, the size of a minimum d-separating set can be shown to
increase by a factor of 2.

Theorems 3 and 5 imply that while having a bounded num-
ber of undirected edge-disjoint paths between variables guar-
antees the presence of a bounded-size d-separating set, this
is not the case for undirected vertex-disjoint paths. Hence,
having a bounded number of undirected edge-disjoint paths
can be seen as a sufficient condition for the existence of a
bounded-size d-separating set. Our aim in the rest of this
section is to identify a condition which is necessary.

We begin by making a simple observation concerning a nec-
essary condition tied to the hidden causal graph (as opposed
to the skeleton). In particular, since a d-separating set must
intersect each directed path between a pair of variables in the
causal graph, we obtain:
Observation 6. If a causal graph D admits a d-separating
set of size k for each pair of non-adjacent variables, then for
each pair of non-adjacent variables the number of directed
vertex-disjoint paths is bounded by the same bound k.

In terms of conditions on the actual skeleton D, we note the
following. If the number of vertex-disjoint paths between two
non-adjacent variables X and Y inD is large, then there exists
an acyclic orientation of D with no small d-separating set
between X and Y (this occurs, e.g., when all of the X-Y paths
are oriented from X to Y ). Hence, having a small number
of vertex-disjoint paths between each pair of non-adjacent
variables is necessary to guarantee that every orientation of D
admits a small d-separating set. In other words:
Corollary 7. Let D be an undirected graph. Assume that, in
every acyclic orientation D of D, every pair of non-adjacent
variables can be d-separated in D by a set of size k. Then
every pair of non-adjacent variables can be separated in D by
a vertex separator of size at most k.

Finally, the fact that Corollary 7 references every orientation
D of D is crucial. Indeed:
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Lemma 8. There exists a family of undirected graphs H =
{X i | i ∈ N } with the following properties: (I) Each X i
admits an acyclic orientation Xi where every pair of non-
adjacent variables can be d-separated by a set of size 0, and
(II) X i contains a pair of non-adjacent variables A, B whose
minimum vertex separator has size i.

As the final result in this section, we also exclude the possi-
bility of generalizing Observation 6 to a bound on the number
of directed edge-disjoint paths (as opposed to a bound on the
number of directed vertex-disjoint paths).

Lemma 9. There exists a family {D′
i : i ∈ N} of causal

graphs with |V (D′
i)| = O(4i), i ∈ N, such that each Di

contains 2i directed edge-disjoint paths between some pair
of non-adjacent variables, and yet each pair of non-adjacent
variables can be d-separated by a set of size at most 3.

Proof Sketch. For every i ∈ N0, we define the causal graphD′
i

as follows. The skeleton of D′
i coincides with the skeleton

of Di from Theorem 5, and if such Di has orientation XY ,
in D′

i we orient all the arcs on every path from X and Y
towards Y . In particular, D′

i+1 can be obtained by gluing
together 4 copies of D′

i, i ∈ N0. To complete the proof, it
suffices to show that there are constant-sized d-separating sets
between each pair of variables in D′

i; at that point, the lemma
follows from the fact that each causal graph D′

i consists of 2i
edge-disjoint directed paths from X to Y .

4 Limits of Tractability for the PC Algorithm
While the previous section was aimed at identifying neces-
sary and sufficient conditions for the existence of a small d-
separating set, having a small d-separating set itself is merely
a necessary condition for efficient causal discovery. Indeed, in
this section we show that the existence of a small d-separating
set cannot on its own guarantee efficient running times for
causal discovery.

We begin with a lower bound ruling out fixed-parameter
causal discovery by any constraint-based algorithm:

Lemma 10. There exists a class of causal graphs H =
{Di,k | i, k ∈ N; k ≤ i } such that: (I) each Di,k contains
i + 3 vertices, (II) each Di,k has a single pair X , Y of non-
adjacent vertices with a d-separating set of size k, and (III)
on each Di,k, no constraint-based algorithm can determine
whether X and Y are conditionally independent in time less
than Θ(nk−1).

While Lemma 10 may already seem disheartening, the
lower bound it provides only becomes truly problematic as k
grows above a small constant. In other words, at this point it
would still seem plausible that the PC algorithm achieves a
running time of, e.g., nO(k), where k is the size of the largest
d-separating set in the causal graph. As our second result in
this section, we show that the situation is in fact much worse—
there is a class of causal graphs for which the PC algorithm
will necessarily run in exponential time, even though all pairs
of variables admit very small d-separating sets between them.

Theorem 11. For each n ≥ 2, there exists a causal graph Tn
on O(2n) vertices such that Tn admits d-separating sets of
size at most 3 between every pair of non-adjacent variables,

but the PC algorithm only discovers a d-separating set of size
2n + 2 for at least one pair of variables.

Proof Sketch. To obtain Tn, we start from two full binary trees
T 1
n and T 2

n with 2n leaves each, where all the arcs are oriented
from the roots to the leaves. We glue T 1

n and T 2
n together

at their roots and denote the resulting common root by On.
Moreover, we introduce a variable Wn and add an incoming
arc to it from every leaf of T 1

n . Symetrically, we introduce
a variable En and add an incoming arc to it from every leaf
of T 2

n . Finally, we add two variables Nn and Sn along with
out-going arcs to X and Y from both of them, see Figure 4
for an illustration.

Now, let us analyze how the PC algorithm will discover
the d-separating sets in Tn. In the first stage, it searches for
d-separating sets of size 0, which will disconnect Sn and Nn

from all the other vertices except En and Wn. It will then pro-
ceed by searching for d-separating sets in the neighborhoods
of each pair of variables which still have an edge between
them, and one can show that this results in the discovery of
Tn plus one additional edge WnEn by the time it completes
its check for d-separating sets of size at most 3. However, to
eliminate this final edge, the PC algorithm will need to use a
d-separating set containing Nn, Sn and all the leaves of T 1

n
or T 2

n . Such a set has size at least 2n + 2.

5 Utilizing the Super-Structure for
Fixed-Parameter Algorithms

In our final section, we show that the lower bounds arising
from Lemma 10 and Theorem 11 can both be circumvented
if we are provided with a super-structure possessing suitable
structural properties. In particular, our aim is to show that
causal discovery can be carried out in fixed-parameter time
not with respect to the size of a maximum d-separating set (as
this was ruled out in Lemma 10), but instead with respect to a
structural measure of a provided super-structure.

A natural graph-theoretic measure of the super-structure
is the well-established treewidth—a fundamental graph pa-
rameter which intuitively captures the “tree-likeness” of a
graph [Robertson and Seymour, 1986]. However, we can
immediately rule out the use of treewidth (and also many
other related graph parameters) by recalling the graph class

Figure 4: The causal graph T3, where E3 and W3 admit a d-
separating set of size 3 but the PC algorithm only discovers a d-
separating set of size 10.
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L = {Li | i ∈ N } used in Observation 4. Indeed, X and
Y form a vertex cover of each graph Li ∈ L, and hence all
graphs in that class have treewidth at most 2. However, the
only d-separating set between X and Y has size i. Thus, by
setting L′

i to be a super-structure for Li that contains each
edge in Li plus the edge XY , we obtain the corollary below.
In particular, each Li consists of X , Y , and a set of i sources
adjacent to both X and Y , and L′

i adds a “superfluous” edge
XY to the skeleton of Li.

Corollary 12. For every i ∈ N, there exists a super-structure
L′
i of Li with a vertex cover of size 2 such that no constraint-

based causal discovery algorithm can compute the skeleton of
the hidden causal graph Li in time less than Bi.

We remark that the same construction rules out efficient al-
gorithms based on not only the treewidth and the vertex
cover number, but also pathwidth, treedepth [Nesetril and
de Mendez, 2012], tree-cut width [Ganian et al., 2022] and
a range of other graph parameters typically used to achieve
fixed-parameter tractability. However, as we will see in the
rest of the section, there are natural structural properties of
the super-structure which guarantee efficient causal discovery.
The first such property is the maximum degree in the super-
structure. It may be worth noting that it is exceedingly rare for
a computational problem to be fixed-parameter tractable w.r.t.
the maximum degree and yet intractable w.r.t. parameters such
as the vertex cover number.

Theorem 13. If the PC algorithm is provided an n-variable
super-structure G of maximum degree k, then it will discover
the skeletonD of the hidden causal graph in time 2kBkO(nk),
where B is the size of domain.

Next, we show that the tractability result of Theorem 13 can
be extended to the setting where only the maximum degree
of each 2-connected component is bounded. To this end, we
define a new constraint-based algorithm PC∗. For a super-
structure G and two variables X,Y ∈ V (G), let GXY be the
subgraph of G induced by all paths between X and Y in G.
PC∗ takes G (which may, in the worst case, be the complete
graph) as input and proceeds similarly to the PC algorithm,
with only a single modification: while looking for potential
d-separating sets for X and Y , it only checks those subsets of
neighbors of Y that belong to GXY .

Theorem 14. Given a super-structure G ofD over n variables,
PC∗ computes the skeleton of D in time 2kBkO(nk), where k
is the maximum degree over all 2-connected components of G.

Even though the difference between the PC and PC∗ algo-
rithms might seem rather subtle, the latter immediately ex-
tends the class of instances for which the skeleton can be
computed efficiently. This can be illustrated, e.g., on the class
{Ln

k | n, k ∈ N } of causal graphs obtained from the graphs
Lk (cf. Observation 4) by introducing n− k new in-neighbors
of X and n− k new in-neighbors of Y .

Corollary 15. If Ln
k is a hidden causal graph and G contains

the only extra edge between its pair of high-degree vertices,
then the PC algorithm requires Ω(nk−1) iterations to elimi-
nate the single superfluous edge in G, while the PC* algorithm
computes the skeleton in time 2kBkO(nk).

As our final contribution, we provide a new causal discovery
algorithm called PCcut that features fixed-parameter runtime
guarantees not only on all instances where the PC and PC*
algorithms do, but also on more general classes of inputs.
To this end, it will be useful to recall that a bound on the
size of smallest edge-cuts between each pair of variables is a
sufficient condition for the existence of small d-separating sets
(see Theorem 3). While causal graphs with this property need
not be efficiently discoverable by constraint-based algorithms,
this changes when dealing with a provided super-structure.

The PCcut algorithm alters the original PC algorithm by
testing conditional independence via subsets selected from a
smallest edge-cut between the variables X , Y , instead of sim-
ply checking the neighborhood of these two variables. More
precisely, we define the PCcut algorithm as follows. It begins
by performing the same initial two steps as the PC algorithm
(see Section 2). Afterwards, it performs a subroutine that starts
with j := 1 and increments this up to a value of 2k2, where k
upper-bounds the size of a smallest edge-cut. For each choice
of j, it runs over all ordered pairs of adjacent variables, and
for each such pair (X,Y ) it computes an edge-cut E of min-
imum size between X and Y in the graph computed so far
(but without the edge XY ) that does not touch X (this can be
done, e.g., via the Ford-Fulkerson algorithm where we make
the edges incident to X undeletable). Let SE be the set of vari-
ables incident to the edges in E . We now perform essentially
the same procedure the PC algorithm originally performs over
the neighborhood of X and Y , but on the set SE ; in particular,
for all subsets S of SE of size j, we test whether X ⊥ Y | S
and if this test succeeds we eliminate the edge XY .

Theorem 16. When given a super-structure G of an n-variable
causal graph D such that each pair of variables can be sep-
arated by an edge-cut of size at most k in G, the PCcut al-
gorithm will compute the skeleton D of D in time at most
22k

2

B2k2O(nk).
We conclude this section by noting that there exist classes
of inputs where PCcut will outperform both the PC and PC*
algorithms by an arbitrarily large factor. For instance, this
occurs on the class of causal graphs depicted in Figure 4.

Corollary 17. If Tn is a hidden causal graph and G contains
the only extra edge between its pair of high-degree vertices,
PC and PC* need 2Ω(2n) iterations to eliminate the single
extra edge, while PCcut computes the skeleton in time BO(1)n.

6 Concluding Remarks
Our results yield deep insights into how causal graph struc-
tures impact constraint-based causal discovery algorithms. We
have provided detailed near-tight characterizations of causal
graphs allowing small d-separating sets, identified obstacles
for the PC algorithm to run efficiently, and established fixed-
parameter tractability by exploiting properties of the super-
structure. However, it remains open whether a skeleton with
many edge-disjoint paths between variable pairs implies the
existence of a large d-separating set orientation. Although
the immediate practical implications of our results may be
limited, we believe they will inspire novel approaches for the
foundational as well as empirical aspects of causal discovery.
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