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Abstract

We introduce PERCVER and PERCACC, the prob-
lems asking for the percentages of the completions
of an incomplete Abstract Argumentation Frame-
work (iAAF) where a set S is an extension and an
argument a is accepted, respectively. These prob-
lems give insights into the status of S and a more
precise than the “traditional” verification and ac-
ceptance tests under the possible and necessary per-
spectives, that decide if S is an extension and a is
accepted in at least one or every completion, re-
spectively. As a first contribution, we study the
relationship between the proposed framework and
probabilistic AAFs (prAAFs) under the constella-
tions approach (that, at first sight, seem to be suit-
able for straightforwardly encoding the quantitative
reasoning underlying PERCVER and PERCACC). In
this regard, we show that translating an iAAF into
an equivalent prAAF requires a heavy computa-
tional cost: this backs the study of PERCVER and
PERCACC as new distinguished problems. Then,
we investigate the complexity of PERCVER and
PERCACC, and identify islands of tractability.

1 Introduction
Dung’s Abstract Argumentation Framework (AAF [Dung,
1995]) has proved effective in supporting the reasoning in
several scenarios, ranging from the analysis of disputes to
process mining tasks [Fazzinga et al., 2022b] and chatbot
services [Fazzinga et al., 2022c]. In order to widen the possi-
ble applications, several generalizations of AAFs have been
proposed to model the uncertainty that may affect arguments
and attacks. In fact, in real life disputes, it often happens that
the participation of the agent who claims an argument a is
not guaranteed (so a is uncertain), or that the existence of an
attack (a, b) depends not only from the occurrence of a and
b, but also on the subjective view of who analyzes the dispute
(so (a, b) is uncertain). Incomplete AAFs (iAAFs) [Baumeis-
ter et al., 2018] are prominent representatives of qualitative
approaches, where uncertain arguments and attacks can
be specified, with no measure of the extent of this un-
certainty. Recent proposals [Fazzinga et al., 2021b;

Fazzinga et al., 2021a] further extend iAAFs with “depen-
dencies”, expressing, for instance, that (the presence of) an
argument is alternative to other arguments, that an attack
implies another attack, and so on.

The fundamental notion of extension was adapted to iAAFs
by taking into account the fact that, while a classical AAF
represents a single scenario (in terms of a set of arguments
and attacks), an iAAF encodes multiple scenarios (called
completions), corresponding to the different combinations of
presence/absence of the uncertain arguments and uncertain
attacks satisfying the dependencies. Thus, based on the
notion of completion, possible and necessary i∗-extensions
were introduced: a possible (resp., necessary) i∗-extension
is a set of arguments that is extension in at least one (resp.,
every) completion of the iAAF. Similarly, an argument a is
accepted under the possible (resp., necessary) perspective if
it is accepted in at least one (resp., every) completion.

Example 1 Seven agents have been asked for their opinion
on which arguments will be claimed in a dispute, and which
attacks should be considered. The agents have 7 different
views, summarized by the iAAF IF in Figure 1 under the
dependency NAND(e1, e2, e3) (meaning that, in the agents’
opinions, e1, e2, e3 do not occur together). So, IF encodes
the agent’s views as 7 completions, that are the AAFs with
the arguments a, b, plus a strict subset of {e1, e2, e3}, plus
the attacks in IF between the arguments in the completions.

Under the complete semantics, there is no necessary exten-
sion, as no set of arguments is a complete extension in every
completion. Examples of possible i∗-extensions are the sets
S1 = {a} (as it is extension in every completion but that
where none of e1, e2, e3 occurs) and S2 = {a, b} (as it is ex-
tension in the only completion where e1, e2, e3 do not occur).
Correspondingly, a is accepted under the possible and the
necessary perspective, while b is accepted under the possible
perspective, but not under the necessary perspective.

The main reason for the popularity of iAAFs is their sim-
plicity, mostly deriving from the fact that they do not require a
quantitative modeling of the uncertainty. Nevertheless, some

Figure 1: The iAAF of Example 1 (“?” marks uncertain arguments)
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quantitative reasoning over iAAFs is likely to be useful when
analyzing the dispute modeled by an iAAF. For instance,
in Example 1, the fact that S1 and S2 are not necessary i∗-
extensions but are possible i∗-extensions simply tells us that
they have some chance to meet the extension’s requirements,
but S1 and S2 are indistinguishable in terms of how risky it is
to consider them as if they were extensions. In this regard, the
analysis of the dispute would definitely benefit from knowing
the number of completions where S1 and S2 are extensions.
In this case, S1 = {a} is an extension in 6 of the 7 comple-
tions, while S2 = {a, b} only in 1 of the 7 completions: this
tells us that, despite they are both possible i∗-extensions, S1

has more chances than S2 to meet the extension’s require-
ment when the actual scenario materializes. Similarly, the
information that b is accepted under the possible perspective
is much less insightful than knowing that b is accepted in
1 of the 7 completions, which tells us that its acceptance
is unlikely. The point is that, in the absence of quantitative
measures implying a rank of the completions, it is reasonable
to consider them “alternative scenarios that may occur with
the same probability”, and, in turn, to measure the closeness
of a set (resp. an argument) to being an extension (resp., ac-
cepted) as the percentage of completions where this happens.

In this paper, we present a reasoning paradigm over iAAFs
based on three problems, whose input includes an iAAF IF ,
a set of dependencies D, a set of arguments S, an argument a:
1) PERCVERσ(IF,D,S) and PERCACCσ(IF,D,a,X), ask-
ing for the percentages of completions of IF (satisfying D)
where S is an extension and a accepted, respectively;
2) CNTCOM(IF,D), counting the completions of IF (satis-
fying D): this problem supports a preliminary analysis, as its
answer is a measure of the uncertainty encoded in the iAAF
and helps interpret the answers of PERCVER and PERCACC.

As a first contribution, we study the relationship between
our framework and probabilistic AAFs in the constellations
approach (prAAFs) [Fazzinga et al., 2019; Li et al., 2011;
Hunter, 2014; Fazzinga et al., 2022a], that are iAAFs where
a probability distribution function is defined over the com-
pletions (called possible worlds in the context of prAAFs).
In particular, we focus on the relationship with the problems
PROBVER and PROBACC over prAAFs, that ask for the over-
all probability of the possible worlds of a prAAF PF where
a set is an extension and an argument accepted, respectively.
We observe that, although in principle solving PERCVER and
PERCACC is the same as solving PROBVER and PROBACC
over a suitably constructed prAAF, constructing this “equiv-
alent” prAAF can require a heavy computational cost (be-
sides the fact that the so obtained prAAF is dramatically less
compact and less user-friendly than the iAAF). We show that
this issue holds also when no dependency is specified, which
is somehow counterintuitive, since an iAAF without depen-
dencies seems to be equivalent to a prAAF where arguments
and attacks are independent and whose marginal probabilities
are set equal to 1/2 (or some other constant). These results
back the need of addressing PERCVER and PERCACC as new
distinguished problems. Starting from this, we thoroughly
investigate the computational complexity of the quantitative-
reasoning paradigm, and show that CNTCOM is #P-complete
and PERCVER and PERCACC are FP#P-complete, with is-

lands of tractability depending on the semantics of extensions
and the size of S or the structural properties of the iAAF.
The example below helps the reader better appreciate the rel-
evance of studying PERCVER and PERCACC as new problems
over iAAFs, distinguished from the classical verification and
acceptance problems over prAAFs.

Example 2 A group of volunteers have been asked to analyze
a text in ancient Greek, whose sentences are the claims of the
participants to a philosophical discussion. The text consists
of 10 sentences. For each sentence, the volunteers have been
called for choosing the most accurate among 3 alternative
translations in English. Moreover, they have been asked to
specify the pairs of sentences between which, in their opin-
ion, an attack relationship holds. The result of this process is
as follows: for each sentence, each of the 3 possible transla-
tions has been chosen by some volunteer, and 92 different at-
tacks have been specified. In particular, 90 attacks have been
detected unanimously, while other 2 attacks (namely, δ1, δ2)
have been recognized by some volunteers. As for δ1 and δ2,
no volunteer has specified that both of them hold.

In order to reason on the semantics of the text, the result of
the interviews might be represented as a prAAFs: this would
require enumerating the subjective views (i.e. the different
combinations of the attacks with the alternative translations
of the 10 sentences), encoding them as distinguished possible
worlds, and assigning the same probability to each of them.
Indeed, this is a heavy task, since enumerating the possible
worlds means considering at least 310 combinations of argu-
ments, where some combination must be considered in up to
3 variants (that are the ways of combining δ1 and δ2 while
forbidding their coexistence). On the other hand, resorting to
iAAFs as a representation paradigm makes things much eas-
ier: the set of alternative possible worlds can be compactly
encoded by marking all the arguments providing the trans-
lations of the sentences as uncertain, the 90 attacks shared
by the volunteers as certain, and the two attacks δ1, δ2 as
uncertain. Then, in order to make the set of completions
exactly model the subjective views, it suffices to specify the
dependency NAND(δ1, δ2) and, for each sentence, the depen-
dency CHOICE(a1, a2, a3), meaning that, in each completion,
exactly one of the arguments a1, a2, a3 providing alterna-
tive translations occurs. Starting from this, without the need
of enumerating the subjective views (which would be neces-
sary for both defining the possible worlds and their probabil-
ity), an analysis of the original text can be accomplished by
solving instances of PERCVER and PERCACC. This way, in
the challenging scenario where each sentence has no certain
meaning (as witnessed by the existence of different subjective
views), the “robustness” of any group of sentences S or any
single sentence s can be assessed, in terms of the percentage
of subjective views where S is an extension or s is accepted.

2 Preliminaries
Abstract Argumentation Frameworks (AAFs). An ab-
stract argumentation framework (AAF) is a pair F = ⟨A,D⟩,
where A is a finite set, whose elements are called arguments,
and D ⊆ A× A is a binary relation over A, whose elements
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are called attacks. Given a set of arguments S and an argu-
ment a, we say that “S attacks a” if there is an argument b
in S such that b attacks a, and that “a attacks S” if there is
an argument b ∈ S such that a attacks b. We say that an ar-
gument a (resp., a set of arguments S) “defends b against c’s
attack” if c attacks b, while a (resp., S) attacks c. Moreover,
we say that a is acceptable w.r.t. S if S defends a against ev-
ery attack, and that S is conflict-free if there is no attack be-
tween its arguments. An AAF F can be viewed as a directed
graph (called “argumentation graph”) whose nodes are the
arguments and whose edges the attacks.

Several semantics for AAFs have been proposed to iden-
tify “reasonable” sets of arguments, called extensions [Dung,
1995]. A set S ⊆ A is: an admissible extension (ad) iff S
is conflict-free and its arguments are acceptable w.r.t. S; a
stable extension (st) iff S is conflict-free and S attacks every
a ∈ A \ S; a complete extension (co) iff S is admissible and
contains all the arguments acceptable w.r.t. S; a grounded ex-
tension (gr) iff S is a minimal (w.r.t. ⊆) complete extension;
a preferred extension (pr) iff S is a maximal (w.r.t. ⊆) com-
plete extension. ad, st, gr, co, pr will be also referred to
as Dungean semantics. Arguments belonging to at least one
(resp., every) extension are said to be Credulously (or Cr-)
accepted (resp., Skeptically (or Sk-) accepted). The funda-
mental problems supporting the reasoning over AAFs are the
verification that a set S is an extension and that an argument
a is X-accepted, with X ∈ {Cr, Sk}.
Incomplete AAFs (iAAFs). iAAFs [Baumeister et al., 2018]
allow the uncertainty affecting the real presence of arguments
and attacks to be qualitatively modeled.

Definition 1 (iAAF) An incomplete AAF (iAAF) is a tuple
⟨A,A?, D,D?⟩, where A and A? are disjoint sets of argu-
ments, and D and D? disjoint sets of attacks between argu-
ments in A ∪ A?. The arguments and attacks in A and D
(resp., A? and D?) are said to be certain (resp., uncertain),
i.e. they are (resp., are not) guaranteed to occur.

An iAAF compactly represents the alternative scenarios for
the argumentation, i.e. all the possible combinations of argu-
ments and attacks that can occur according to what is certain
and uncertain. Each scenario is called completion.

Definition 2 (Completion) Given an iAAF IF =
⟨A,A?, D,D?⟩, a completion of IF is an AAF
F = ⟨A′, D′⟩ where A ⊆ A′ ⊆ (A ∪ A?) and
D ∩ (A′ ×A′) ⊆ D′ ⊆ (D ∪D?) ∩ (A′ ×A′).

The possible and necessary perspectives are natural ways
to take into account the presence of multiple completions
when adapting the notions of extension (now renamed “i∗-
extension”) and accepted argument to iAAFs:

Definition 3 Let IF be an iAAF, S a set of arguments and
a an argument. Under a semantics σ, S is an i∗-extension
and a an X-accepted argument (with X ∈ {Cr, Sk}) under
the possible (resp., necessary) perspective if, for at least one
(resp., every) completion F of IF , S is an extension of F and
a an X-accepted argument of F , respectively.

In [Fazzinga et al., 2021a; Fazzinga et al., 2021b], the pos-
sibility of restricting the set of completions (in order to make

it better fit the alternative scenarios) via OR, NAND, CHOICE,
IMPLY dependencies involving arguments/attacks was stud-
ied (this set was proved to be sufficient to encode any propo-
sitional constraint over the completions, expressing which
combinations of arguments or of attacks can/cannot occur).
Given two sets of arguments Y , Z, the semantics is:
- OR(Y ): (the completions to be considered are all and only
those where) at least one argument in Y occurs,
- NAND(Y ): at least one argument in Y does not occur,
- CHOICE(Y ): exactly one argument in Y occurs,
- IMPLY(Y, Z): if every argument in Y occurs, then all the
arguments in Z occur.
If Y and Z are sets of attacks, the semantics is analogous, but,
when checking if a completion satisfies a dependency, only
the attacks in Y and Z between arguments that both belong
to the completion are considered (this means conditioning the
dependencies to the presence of the arguments involved in the
attacks). In the presence of a set of dependencies D, the set of
completions of an iAAF IF satisfying D will be denoted as
C(IF,D), and the problems of checking, under the perspec-
tive P ∈ {Possible, Necessary}, if S is an i∗-extension and
a X-accepted (with X ∈ {Cr, Sk}) as IVERσ(IF,D, S, P )
and IACCσ(IF,D, a, P,X), respectively.
Probabilistic Abstract Argumentation Frameworks
(prAAFs). We consider prAAFs following the “constella-
tions approach”, where probabilities quantitatively model
the uncertainty affecting the knowledge of which “possible
world” (i.e. combination of the arguments and attacks) actu-
ally occurs. In the context of prAAFs, “possible world” has
the same meaning as “completion” in the context of iAAFs,
so prAAFs can be viewed as iAAFs where a pdf (probability
distribution function) is defined over the completions.

Definition 4 A prAAF PF is a tuple ⟨A,D,PW , p⟩, where
A is a set of arguments, D ⊆ A × A a set of attacks, PW a
set of possible worlds over A and D, and p is a pdf over PW .

When independence between arguments/attacks is as-
sumed, the pdf p can be encoded compactly, by specifying
the marginal probabilities µ of the arguments/attacks, so that
the probability of a possible world ω = ⟨A′, D′⟩ is
p(ω) =Πa∈A′µ(a)×Πa∈A\A′

(
1− µ(a)

)
×Π(a,b)∈D′µ

(
(a, b)

)
×Π

(a,b)∈
(
D∩(A′×A′)

)
\D′

(
1− µ

(
(a, b)

))
, (E1)

which means that the marginal probability of an attack (a, b)
is interpreted as the probability that the attacks occurs assum-
ing that a and b occur. Thus, under the independence assump-
tion, PW and p can be replaced by a marginal probability
function µ : A ∪D → [0, 1]. In this case, the prAAF will be
called IND-prAAF and denoted as a tuple PF = ⟨A,D, µ⟩.

As observed above, prAAFs are a generalization of iAAFs,
where the uncertainty is modeled quantitatively, via probabil-
ities. So, when moving from iAAFs to prAAFs, the prob-
lems IVER and IACC, that are intrinsically decision prob-
lems, become the research problems PROBVERσ(PF, S) and
PROBACCσ(PF, a,X), asking for the probability that S is
an extension and a X-accepted (with X ∈ {Cr, Sk}), i.e.
the overall probability of the possible worlds where S is an
extension and a X-accepted, respectively.
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Counting and functional complexity classes. We assume
familiarity with the complexity classes for decision problems
in the polynomial hierarchy PH (in particular, P, NP, coNP,
Σp

2 =NPNP), and recall some complexity classes tailored at
counting and functional problems. FP (resp., FPC) is the class
of the functional problems that can be solved in polynomial
time by a deterministic Turing machine (resp., by a determin-
istic Turing machine with an oracle for the class C). #P is
the class of the functions f counting the accepting paths of a
nondeterministic polynomial-time Turing machine [Valiant,
1979]. More generally, for any class C in the polynomial
hierarchy, #C is the class of the functions f counting the
accepting paths of a nondeterministic polynomial-time with
an oracle for the class C (for instance, #NP is the class of
functions counting the accepting paths in a NPNP Turing ma-
chine). For proving the hardness of counting problems for #P,
we resort to parsimonious reductions, i.e. (polynomial time)
reductions that transform an instance I ′ of a counting prob-
lem to an instance I ′′ of another counting problem such as
the answers of I ′ and I ′′ coincide. As for the hardness for
FP#P, we use polynomial time 1-Turing reductions [Toda and
Watanabe, 1992]: a polynomial time 1-Turing reduction from
a problem A to a problem B is an algorithm R that solves A
by calling at most once a subroutine solving B, such that R
runs in polynomial time if the cost of this subroutine is not
considered. It is worth noting that, despite #P and FP#P are
different (as the functions in #P return counts, while those in
FP#P return more general values), a function is FP#P-hard
under polynomial time 1-Turing reductions iff it is #P-hard
under the same type of reduction. So, sometimes, we prove
the hardness for FP#P via reductions from #P-hard problems.

#P- or FP#P- completeness mean intractability, since
PH⊆FP#P and the conjecture #P⊈FP is believed to hold (a
consequence of its negation is P=NP).

3 Quantitative Reasoning Over iAAFs Vs.
Probabilistic Reasoning Over prAAFs

We introduce the problems CNTCOM, PERCVER and PER-
CACC, as the core of a framework for quantitatively reason-
ing over iAAFs. Then, we investigate their relationship with
PROBVER and PROBACC, the probabilistic counterparts of
the verification and acceptance problems over prAAFs. In
the rest of the paper, an iAAF IF = ⟨A,A?, D,D?⟩, a set of
dependencies D, a set of arguments S of IF , and a semantics
σ ∈ {ad, st, co, gr, pr}, are assumed to be given.

Definition 5 CNTCOM(IF,D) is the problem of computing
|C(IF,D)|, and PERCACCσ(IF,D,a,X) (with X∈{Cr, Sk})
and PERCVERσ(IF,D,S) the problems of computing the per-
centage of completions in C(IF,D) where, under σ, a is X-
accepted and S is an extension, respectively. Conventionally,
the answer of PERCVER and PERCACC is 0 if C(IF,D) = ∅.

Observe that PERCACCσ(IF,D,a,X) trivially returns 0 if
σ = ad and X = Sk, as no argument can be skeptically ac-
cepted in any completion (as ∅ is always an admissible exten-
sion). Hence, in most of the results regarding PERCACC, the
combination σ = ad and X = Sk will not be considered.

The following proposition states that PERCVER and PER-
CACC can be solved by viewing IF as a prAAF whose pos-
sible worlds are the completions of IF and whose pdf is the
uniform distribution, and then reasoning on this prAAF via
PROBVER and PROBACC. Obviously, translating iAAFs to
prAAFs makes sense if D is satisfiable, as prAAFs are not
defined if there is no possible world.
Proposition 1 Assume C(IF,D) ̸= ∅. Let PF = ⟨A ∪
A?, D ∪ D?, PW, p⟩ be the prAAF where PW = C(IF,D)
and p is the pdf that assigns 1/|PW| to every possible world
of PW . Then PERCVERσ(IF,D,S)=PROBVERσ(PF, S)
and PERCACCσ(IF,D,a,X)=PROBACCσ(PF, a,X).

Interestingly, although Proposition 1 states that the quanti-
tative reasoning underlying PERCVER and PERCACC can be
simulated via classical problems over a prAAF PF having
a straightforward logical correspondence with IF , this does
not diminish the reasonability of addressing PERCVER and
PERCACC as new distinguished problems. In fact:
Issue 1: prAAFs are not compact, as they require the enumer-
ation of the possible worlds (whose number can be exponen-
tial compared with the number of attributes and attacks) and
the definition of the pdf over them: this makes their use much
less user-friendly than iAAFs, where no pdf must be specified
and the completions are not enumerated;
Issue 2: prAAFs are more expressive than iAAFs, so a general
machinery solving PROBVER/PROBACC may not be capa-
ble of exploiting possible simplifications of the implemented
computational mechanism allowed by the specificity of the
considered prAAFs, that are prAAFs simulating iAAFs;
Issue 3: the definition of the pdf p of the prAAF (i.e. the
probability value assigned by p to every possible world) is
not trivial at all. On the contrary, the theorem below states
that CNTCOM(IF,D) (which returns 1/p) is #P-complete.
Theorem 1 CNTCOM(IF,D) is #P-complete, even if D = ∅
and IF contains no certain argument and no certain attack.
Proof sketch. CNTCOM can be viewed as the problem of
counting the accepting paths in the non-deterministic poly-
nomial time Turing machine guessing a set of arguments and
attacks and checking if it is a completion, so it is in #P.
Moreover, it can be shown that it is equivalent to the #P-
complete problem of evaluating the overall weight of the ho-
momorphisms between the argumentation graph and a spe-
cific weighted graph (see Appendix for details). ✷

Theorem 1 is of independent interest, since it character-
izes a problem that can support the analysis of the real-world
modeled by an iAAF: the answer of CNTCOM gives insights
into the “extent of uncertainty” encoded in IF , and is a base-
line that can help better understand the answers of PERCVER
and PERCACC. In our current reasoning, Theorem 1 implies
that constructing the prAAF PF defined in Proposition 1 is
a heavy task (even if the possible worlds were not explicitly
enumerated), so it is not reasonable to give up the quantitative
framework based on PERCVER and PERCACC with the moti-
vation that it can be simulated by a prAAF with a straightfor-
ward logical correspondence with IF .

However, one might wonder whether IF can be trans-
formed into an “equivalent” prAAF using a strategy differ-
ent from ensuring that the possible worlds are equiprobable
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(that is computationally heavy, as explained above). Obvi-
ously, we consider translations towards a prAAF PF that can
be easily interpreted by the analyst who is looking into the
original iAAF IF , so IF should be defined over the same
set of arguments as IF . In this regard, the following theorem
states a strong negative result: under the hypothesis #P⊈ FP,
there is no polynomial time transformation of an iAAF into a
prAAF over the same arguments that allows for solving any
instance of PERCVER via an instance of PROBVER.
Theorem 2 Under the hypothesis #P⊈ FP, for every
σ ∈ {ad, st, co, gr, pr}, there is no algorithm tak-
ing as input an iAAF IF that runs in polynomial time
and translates IF into a prAAF over the same argu-
ments as IF such that, for every set of arguments S,
PROBVERσ(PF, S)= PERCVERσ(IF,D,S), or, for each ar-
gument a, PERCACCσ(IF,D,a,X)= PROBACCσ(PF, a,X)
(except for the case σ = ad and X = Sk).
(Proof.) By contradiction, assume that there is an algorithm
trans whose existence falsifies the part of the statement re-
garding PERCVER, for some σ ∈ {ad, st, co, gr, pr}. Let
IF = ⟨A,A?, D,D?⟩ be an iAAF with A = D = ∅ such
that: 1) the completion C0 containing all the arguments in
A? and no attack satisfies D, and 2) CNTCOM(IF,D) is a
hard instance. Such an IF exists, since Theorem 1 guaran-
tees that CNTCOM is #P-hard when D= ∅, and in this case
every completion satisfies the dependencies. Let PF be the
IND-prAAF obtained by running trans over IF . Let S = A?.
It is easy to see that the only completion of IF where S is a
σ- extension is C0. Thus, the answer of PERCVERσ(IF,D,S)
is 1/CNTCOM(IF,D). On the other hand, the only possi-
ble world of PF where S is a σ-extension is ω0, coinciding
with C0. Since PERCVERσ(IF,D,S)=PROBVERσ(PF, S)
and PROBVERσ(PF, S)= p(ω0) (where p is the pdf of PF ),
we obtain CNTCOM(IF,D)= 1/p(ω0). Hence the overall
procedure (running trans and then inverting p(ω0)) computes
CNTCOM(IF,D) in polynomial time, contradicting (under
the assumption #P⊈FP) Theorem 1. The statement for PER-
CACC can be proved analogously (see Appendix). ✷

However, the above theorem does not exclude forms of
iAAFs for which the polynomial-time translation mentioned
in Theorem 2 exists. A nice candidate seems the case where
no dependencies are specified: at first sight, one may think
that IF can be translated into an IND-prAAF PF over
the same arguments and attacks as IF , where the marginal
probabilities are suitably set so that the possible worlds are
equiprobable. Such a translation would also fix Issue 1, since
the resulting IND-prAAF would have the same size as IF (as
now PW and the pdf p are represented implicitly). Unfortu-
nately, the example below shows that this intuition is wrong.
Example 3 The different opinions of 5 agents on the argu-
ments that will occur in a dispute and on the attacks that exist
between them are encoded by the 5 completions of the IF
having A = D = ∅, A? = {a, b}, and D? = {(a, b)}. At
first sight, it may seem that reasoning on IF is the same as
on the IND-prAAF PF = ⟨A?, D?, µ⟩ with µ(·) = 1/2, as
this choice for µ seems to imply that the possible worlds are
equiprobable. Indeed, this is false: using Eq. (E1), we ob-
tain that the possible worlds containing both a and b have

lower probability than the others. As a matter of fact, there
is no µ that implies a uniform pdf over the possible worlds:
the reader can check that the system of equalities whose vari-
ables are the arguments’ and attacks’ marginal probabilities,
and whose equations impose that all the possible worlds are
assigned the same probability by Eq. (E1) has no solution.

However, also when D= ∅ (as discussed for the general
case above), it is natural to wonder whether there is some
general easy-to-compute translation from IF into an equiva-
lent IND-prAAF over the same arguments, that does not pur-
sue the equivalence by making the possible worlds equiprob-
able. Unfortunately, analogously to the general case, comput-
ing such a translation (assuming that it exists) would require
a huge computational effort, as formally stated below.

Theorem 3 Under the hypothesis #P⊈ FP, even if D= ∅,
under σ ∈ {ad, st, co, gr, pr}, there is no polynomial-time
algorithm translating any iAAF IF into an IND-prAAF
PF over the arguments of IF such that, for any set of ar-
guments S, PROBVERσ(PF, S)=PERCVERσ(IF,D,S),
or, for any argument a, PERCACCσ(IF,D,a,X)=
PROBACCσ(PF, a,X) (except for the case σ = ad,X = Sk).

(Proof.) The same strategy as Theorem 2’s proof can be used:
the difference is that now computing p(ω0) requires the poly-
nomial time evaluation of Eq. (E1). ✷

Our investigation on the translatability of iAAFs in
prAAFs continues with the following theorem, describing a
form of iAAF for which the polynomial-time translation men-
tioned in Theorem 3 exists.

Theorem 4 Assume that D=∅ and every uncertain attack in
IF involves at least one certain argument. Let PF = ⟨A ∪
A?, D ∪D?, µ⟩ be the IND-prAAF where ∀a ∈ A µ(a) = 1,
∀δ ∈ D µ(δ) = 1, ∀δ ∈ D? µ(δ) = 1

2 , and ∀a ∈ A? µ(a) =

2|D
?(a)|

1+2|D?(a)| , where D?(a) is the set of uncertain attacks involv-

ing a. Then, for any S ⊆ A ∪ A?, PERCVER(IF,D, S) =
PROBVERσ(PF, S), and, for each a ∈ A ∪ A?,
PERCACCσ(IF,D,a,X)= PROBACCσ(PF, a,X).

Proof sketch. It can be proven by showing that µ implies a
uniform pdf over the possible worlds (see Appendix). ✷

Finally, Theorem 5 below (whose proof is in Appendix)
gives an insight into the sufficient condition of Theorem 4, as
it states that this condition makes CNTCOM tractable too.

Theorem 5 CNTCOM(IF,D) is in P if D= ∅ and every un-
certain attack of IF involves at least one certain argument.

Concluding remarks. Overall, the results in this section,
along with the motivations regarding the usefulness of ac-
complishing a quantitative reasoning over iAAFs, show the
reasonability and relevance of studying PERCVER and PER-
CACC as new problems: even if there are restricted forms of
iAAFs for which there is an easy-to-compute natural repre-
sentation as a user-friendly prAAF that allows to simulate the
reasoning underlying PERCVER and PERCACC, such a trans-
lation is not guaranteed to exist in the general case. Starting
from this, in the following section we investigate the compu-
tational complexity of PERCVER and PERCACC.
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4 Computational Complexity of Quantitative
Reasoning Over iAAFs

We start our investigation by providing a general characteri-
zation of PERCVER and PERCACC.

Theorem 6 PERCACCσ(IF,D,a,X) (except for the case
σ = ad and X =Sk) and PERCVERσ(IF,D,S) are FP#P-
complete, even if D= ∅.

Proof. PERCVER is solved by a polynomial-time Turing ma-
chine returning y/x, where x is computed by an oracle solv-
ing CNTCOM(IF,D), and y by an oracle computing the num-
ber of accepting paths in a non-deterministic polynomial-time
Turing machine guessing a completion C and then checking
if S is a σ-extension of C. The oracle for x is in #P (The-
orem 1), while that for y is in #P for σ ∈ {ad, st, gr, co}
and in #NP for σ = pr (since verifying if a set is an exten-
sion of a completion is in P and in coNP in the two cases,
respectively). This implies that PERCVER is in FP#P for
σ ∈ {ad, st, gr, co} and in FP#NP for σ = pr. Since,
for any C ∈ PH, FP#P coincides (via polynomial-time 1-
Turing reductions) with FP#C [Toda and Watanabe, 1992],
the classes FP#P and FP#NP coincide. This implies the
membership of PERCVER in FP#P under every semantics.
The membership of PERCACC can be proved similarly, as
testing if a is X-accepted in a completion is in PH [Di-
mopoulos and Torres, 1996; Dunne and Bench-Capon, 2002;
Coste-Marquis et al., 2005]. The hardness can be proved via
reductions from CNTCOM (see Appendix). ✷

Starting from this general result, we analyze the sensitivity
of the computational complexity to the form of uncertainty
encoded in the iAAF and to the semantics of extensions. A
first result straightforwardly follows from Theorem 4, which
states that, when D= ∅ and the uncertain attacks involve at
least one certain argument, PERCVERσ(IF,D,S) is equiva-
lent to PROBVERσ(PF, S), and PERCACCσ(IF,D,a,X) to
PROBACCσ(PF, a,X), where PF is an IND-prAAFs ob-
tained via a polynomial-time transformation from IF . Since,
under σ ∈ {ad, st}, PROBVERσ(PF, S) is in FP over IND-
prAAFs (as shown in [Fazzinga et al., 2015]), we obtain:

Corollary 1 Assume that D= ∅ and IF is such that every
uncertain attack involves at least one certain argument. Un-
der σ ∈ {ad, st}, PERCVERσ(IF,D,S) is in FP.

Under the Dungean semantics other than ad and st, PROB-
VER over IND-prAAFs is not known to be in FP but is FP#P-
complete [Fazzinga et al., 2015], and, under every Dungean
semantics, PROBACC is FP#P-complete. Thus, Theorem 4
implies that PERCVER is in FP#P under σ ∈ {gr, co, pr} and
PERCACC is in FP#P under σ ∈ {ad, st, gr, co, pr}. The
following theorem states that these are also lower bounds,
even if only the arguments or only the attacks are uncertain.

Theorem 7 If D= ∅ and IF contains no uncertain ar-
gument or no uncertain attacks, then: 1) under σ ∈
{gr, co, pr}, PERCVERσ(IF,D,S) is FP#P-complete, and
2) under σ ∈ {ad, st, gr, co, pr}, PERCACCσ(IF,D,a,X)
is FP#P-complete (except for the case σ = ad and X = Sk).

Proof sketch. The membership is implied by Theorem 6,
and the hardness can be shown via reductions from problems

counting the truth assignments making positive DNF or CNF
formulas true (see Appendix). ✷

From what shown so far, it is natural to wonder whether the
tractability islands of Theorem 5 for CNTCOM and of Corol-
lary 1 for PERCVER can be extended to the case D ̸= ∅. The
following theorem gives a negative answer: even in the sim-
pler case where the uncertainty involves only arguments or
only attacks, specifying any form of dependency makes CNT-
COM and PERCVER under σ ∈ {ad, st} intractable.

Theorem 8 If IF contains no uncertain arguments or no un-
certain attacks, and D contains dependencies of only one of
the forms OR, NAND, CHOICE, IMPLY, then CNTCOM(IF,D)
is #P-hard and PERCVERσ(IF,D,S) is FP#P-hard.

Theorem 8 does not mention PERCACC, as it is already
FP#P-hard with D= ∅ (Theorem 7). As for PERCVER, Theo-
rem 8 interestingly states that PERCVER is FP#P-hard what-
ever the form of dependencies, even when its decision coun-
terpart (IVER) is tractable (see Section 5 for a comprehensive
discussion). We conclude by locating an island of tractability
of PERCVER under σ = ad, that depends on the size of S and
how S is connected to the rest of the iAAF. The tractability
holds for a form of iAAF for which CNTCOM is not tractable
(as no restriction is imposed on the portion of IF outside S).
To state the result, we denote as fr(S) the frontier of S, i.e.
the set of arguments outside S attacking or attacked by S.
Moreover, we denote as IF \ S the iAAF obtained from IF
by removing every argument in S and every attack to/from S.

Theorem 9 Assume that the size of S is logarithmic w.r.t.
size of IF , that the arguments in fr(S) are certain, that, for
each dependency d ∈ D, d involves only arguments/attacks in
S or only arguments/attacks in IF \S, and that |C(IF,D)| >
0. Then, under σ = ad, PERCVERσ(IF,D,S) is in FP.

Proof sketch. As the size of S is logarithmic, the completions
of the portion In of IF consisting of the arguments and at-
tacks inside S can be enumerated in polynomial time. The
rest of the hypothesis avoids the need of evaluating the num-
ber the completions of IF \ S when computing the percent-
age of completions of the whole IF where S is an extension,
since both the numerator and the denominator of this ratio are
proportional to |C(IF \S,D)|, so this term can be simplified,
while the other terms can be computed in polynomial time by
exploiting the enumeration of the completions of In. ✷

It is worth noting that this tractability result cannot be
extended to the other semantics. In fact: 1) under σ ∈
{co, gr, pr}, the proof of Theorem 7 (see Appendix) shows
that PERCVER is FP#P-hard even in the restricted case where
D= ∅, fr(S) = ∅, and S is of constant size; 2) under σ = st,
a minor change of the reduction used in the proof of The-
orem 6 (consisting in adding no attack involving the fresh
argument a) shows that PERCVER is FP#P-hard even when
D= ∅, fr(S) = ∅, and S is of constant size.

The above theorem is the only statement regarding the
computational complexity where the satisfiability of the de-
pendencies (i.e. |C(IF,D)| > 0) is a prerequisite. Observe
that the general hardness results of Theorem 8 hold even
when D is known to be satisfiable, as they can be proved
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via parsimonious reductions to CNTCOM from counting prob-
lems that always return a value greater than 0. This means that
CNTCOM and PERCVER have sources of complexity other
than the uncertainty on the existence of at least one comple-
tion. In turn, this means that, in the general case, assuming
D satisfiable cannot imply that PERCVER becomes tractable,
and makes the result of Theorem 9 relevant.

It is also worth noting that the assumption that D is satisfi-
able may be implied in practical scenarios (where the analyst
knows that there are some completions satisfying the depen-
dencies) and, in any case, can be preliminarily investigated:
in [Fazzinga et al., 2021a], the computational complexity of
the satisfiability of dependencies over iAAFs is studied, and
shown to be trivial or in P for several combinations of depen-
dencies, although it is NP-complete in the general case.

5 Related Work
Except for the case of Partial Argumentation Frame-
works [Coste-Marquis et al., 2007; Cayrol et al., 2007] and
their generalizations [Mailly, 2023], most of the works deal-
ing with incompleteness in AAFs use the completion-based
semantics adopted in this paper. In the light of the results
in the literature, we can conclude that PERCVER is one of
those functional problems that are hard to solve but having
an easy decision version (when D= ∅). In fact, under all
Dungean semantics but pr, PERCVER is FP#P-hard, while,
as shown in [Fazzinga et al., 2020], deciding the existence of
a completion where S is an extension is in P (under σ = pr,
the decision problem is instead Σp

2-complete). On the other
hand, in [Baumeister et al., 2021], the acceptance problem
was shown to be hard already in the decision version, that
ranges from NP-complete to Σp

3-complete, depending on the
semantics and the perspective (Cr or Sk), except for the triv-
ial case of the skeptical acceptance under σ = ad. As for the
case D̸= ∅, in [Fazzinga et al., 2021b; Fazzinga et al., 2021a;
Mailly, 2021] it was shown that specifying dependencies (OR,
NAND, CHOICE, IMPLY) typically makes the complexity of
the verification increase, for the semantics under which it
was polynomial, to NP-complete. There are notable excep-
tions: the verification remains in P under σ ∈ {ad, st} when
only arguments or only attacks are uncertain, and only OR or
combinations of NAND and IMPLY are used. In this regard,
we have shown that PERCVERσ(IF,D,S) is FP#P-complete
under every semantics even if only arguments or attacks are
uncertain and dependencies of only one form are used.

As for the relationship, in terms of complexity, with
prAAFs in the constellations approach [Li et al., 2011], com-
paring our results with those on PROBVER and PROBACC
in [Fazzinga et al., 2019; Fazzinga et al., 2015], we can draw
these conclusions:
- if D = ∅ (when it makes sense to compare iAAFs with
IND-prAAFs), some aspects of the quantitative reasoning
over iAAFs are more complex than over IND-prAAFs: under
σ ∈ {ad, st}, PERCVER is FP#P-complete while PROBVER
is in FP. Under the other semantics, the complexity of PER-
CVER and PROBVER is the same. Instead, PERCACC and
PROBACC have the same complexity under every Dungean
semantics.

− if D ̸= ∅ (when it makes sense to compare iAAFs
with prAAFs without the independence assumption), both
PERCVER and PERCACC are FP#P-complete, so the com-
plexity is higher than PROBVER (that is in FP under σ ∈
{ad, st, gr, co} and FP||NP-complete under σ = pr) and
than PROBACC (that, under each semantics σ, is in FP||Cσ ,
where Cσ is the complexity class of the classical acceptance
problem ACC under σ). Indeed, this was quite expected, since
in prAAFs the possible worlds are enumerated, so the compu-
tational complexity benefits from some “discount” compared
with iAAFs, where the completions are compactly encoded.

This work is also related to [Alfano et al., 2023a], where
some relationships between prAAFs and iAAFs have been
analyzed, and with prAAFs following the epistemic ap-
proach [Thimm, 2012; Hunter and Thimm, 2014], where,
similarly to IND-prAAFs, arguments are associated with
probabilities. However, these probabilities are degrees of
belief in the acceptance of the arguments, so the reasoning
paradigm does not take into account the possibility that the
structure of the argumentation graph changes as the effect of
considering the presence/absence of arguments or attacks.

Our framework is also related to the use of constraints,
preferences, and/or explicit acceptance conditions to sup-
port the reasoning (as done in several frameworks where
these constructs are used to filter out extensions [Alfano
et al., 2023a; Alfano et al., 2023b; Alfano et al., 2023d;
Alfano et al., 2023c; Alfano et al., 2024], rather than com-
pletions), to iAAFs with supports [Fazzinga et al., 2018;
Fazzinga et al., 2023], to the credulous/skeptical conclusion
problems in Control Argumentation Frameworks [Dimopou-
los et al., 2018], and to revising AAFs to enforce the existence
of an extension [Baumann and Ulbricht, 2019], or to make a
set an extension [Coste-Marquis et al., 2015]. In this regard,
if we interpret the uncertain arguments/attacks as elements
that can be added or removed, the framework can be used to
count the possible ways of making a set an extension (or an
argument accepted) via insertions or removals.

Finally, this work is related to [Baroni et al., 2010; De-
woprabowo et al., 2022; Fichte et al., 2019], where the prob-
lem of counting the number of extensions in an AAF has
been addressed. A nice direction of future work is integrat-
ing these paradigms with our framework into a new reasoning
paradigm addressing questions like “How many sets of argu-
ments are extensions in at least 80% of the completions?”

6 Conclusions and Future Work
A new quantitative reasoning paradigm supporting the anal-
ysis of iAAFs has been introduced. Its core consists in the
problems PERCVER and PERCACC, whose answers give in-
sights into how likely it is that, once the dispute modeled by
the iAAF takes place, a set is an extension or an argument
is accepted. The relationship with the classical reasoning
paradigm over prAAFs has been investigated, first in terms
of translatability, and then of computational complexity, af-
ter having characterized this aspect for the introduced frame-
work. Future work will investigate the possibility of simul-
taneously looking into the counts of completions and exten-
sions, as sketched at the end of the previous section.
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Sébastien Konieczny, Jean-Guy Mailly, and Pierre
Marquis. Extension enforcement in abstract argumenta-
tion as an optimization problem. In Proc. Int. Conf. on
Artificial Intelligence (IJCAI), pages 2876—-2882, 2015.

[Dewoprabowo et al., 2022] Ridhwan Dewoprabowo, Jo-
hannes Klaus Fichte, Piotr Jerzy Gorczyca, and Markus
Hecher. A practical account into counting dung’s exten-
sions by dynamic programming. In Proc. Logic Program-
ming and Nonmonotonic Reasoning (LPNMR), Genova,
Italy, pages 387–400, 2022.

[Dimopoulos and Torres, 1996] Yannis Dimopoulos and Al-
berto Torres. Graph theoretical structures in logic pro-
grams and default theories. Theor. Comput. Sci., 170(1-
2):209–244, 1996.

[Dimopoulos et al., 2018] Yannis Dimopoulos, Jean-Guy
Mailly, and Pavlos Moraitis. Control argumentation
frameworks. In Proc. Conf. on Artificial Intelligence
(AAAI), New Orleans, USA, pages 4678–4685, 2018.

[Dung, 1995] Phan Minh Dung. On the acceptability of ar-
guments and its fundamental role in nonmonotonic reason-
ing, logic programming and n-person games. Artif. Intell.,
77(2):321–358, 1995.

[Dunne and Bench-Capon, 2002] Paul E. Dunne and Trevor
J. M. Bench-Capon. Coherence in finite argument systems.
Artif. Intell., 141(1/2):187–203, 2002.

[Fazzinga et al., 2015] Bettina Fazzinga, Sergio Flesca, and
Francesco Parisi. On the complexity of probabilistic ab-
stract argumentation frameworks. ACM Trans. Comput.
Log. (TOCL), 16(3):22, 2015.

[Fazzinga et al., 2018] Bettina Fazzinga, Sergio Flesca, and
Filippo Furfaro. Probabilistic bipolar abstract argumenta-
tion frameworks: complexity results. In Proc. Int. Joint
Conf. on Artificial Intelligence (IJCAI), pages 1803–1809,
2018.

[Fazzinga et al., 2019] Bettina Fazzinga, Sergio Flesca, and
Filippo Furfaro. Complexity of fundamental problems
in probabilistic abstract argumentation: Beyond indepen-
dence. Artif. Intell., 268:1–29, 2019.

[Fazzinga et al., 2020] Bettina Fazzinga, Sergio Flesca, and
Filippo Furfaro. Revisiting the notion of extension over
incomplete abstract argumentation frameworks. In Chris-
tian Bessiere, editor, Proc. International Joint Conference
on Artificial Intelligence (IJCAI), pages 1712–1718, 2020.

[Fazzinga et al., 2021a] Bettina Fazzinga, Sergio Flesca, and
Filippo Furfaro. Reasoning over argument-incomplete

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3367



aafs in the presence of correlations. In Zhi-Hua Zhou,
editor, Proc. International Joint Conference on Artificial
Intelligence (IJCAI), Virtual Event / Montreal, Canada,
pages 189–195, 2021.

[Fazzinga et al., 2021b] Bettina Fazzinga, Sergio Flesca, and
Filippo Furfaro. Reasoning over attack-incomplete aafs in
the presence of correlations. In Meghyn Bienvenu, Ger-
hard Lakemeyer, and Esra Erdem, editors, Proc. Interna-
tional Conference on Principles of Knowledge Represen-
tation and Reasoning (KR), Online event, pages 301–311,
2021.

[Fazzinga et al., 2022a] Bettina Fazzinga, Sergio Flesca, and
Filippo Furfaro. Abstract argumentation frameworks with
marginal probabilities. In Proc. Int. Joint Conference
on Artificial Intelligence (IJCAI), Vienna, Austria, pages
2613–2619, 2022.

[Fazzinga et al., 2022b] Bettina Fazzinga, Sergio Flesca, Fil-
ippo Furfaro, and Luigi Pontieri. Process mining
meets argumentation: Explainable interpretations of low-
level event logs via abstract argumentation. Inf. Syst.,
107:101987, 2022.

[Fazzinga et al., 2022c] Bettina Fazzinga, Andrea Galassi,
and Paolo Torroni. A privacy-preserving dialogue system
based on argumentation. Intell. Syst. Appl., 16:200113,
2022.

[Fazzinga et al., 2023] Bettina Fazzinga, Sergio Flesca, and
Filippo Furfaro. Incomplete bipolar argumentation frame-
works. In Proc. European Conference on Artificial Intelli-
gence (ECAI), Kraków, Poland, pages 684–691, 2023.

[Fichte et al., 2019] Johannes Klaus Fichte, Markus Hecher,
and Arne Meier. Counting complexity for reasoning in
abstract argumentation. In Proc. Conference on Artificial
Intelligence (AAAI), Honolulu, Hawaii, USA, pages 2827–
2834, 2019.

[Hunter and Thimm, 2014] Anthony Hunter and Matthias
Thimm. Probabilistic argumentation with epistemic ex-
tensions. In Proc. of DARe@ECAI, 2014.

[Hunter, 2014] Anthony Hunter. Probabilistic qualification
of attack in abstract argumentation. Int. J. Approx. Rea-
soning, 55(2):607–638, 2014.

[Li et al., 2011] Hengfei Li, Nir Oren, and Timothy J. Nor-
man. Probabilistic argumentation frameworks. In Proc.of
TAFA, 2011.

[Mailly, 2021] Jean-Guy Mailly. Constrained incomplete ar-
gumentation frameworks. In Jirina Vejnarová and Nic Wil-
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