
Epistemic Logic Programs: Non-Ground and Counting Complexity

Thomas Eiter1 , Johannes K. Fichte2 , Markus Hecher3 , Stefan Woltran1

1Institute of Logic and Computation, TU Wien
2Department of Computer and Information Science (IDA), Linköping University

3Computer Science & Artificial Intelligence Laboratory, Massachusetts Institute of Technology
thomas.eiter@tuwien.ac.at, johannes.fichte@liu.se, hecher@mit.edu stefan.woltran@tuwien.ac.at,

Abstract
Answer Set Programming (ASP) is a prominent
problem-modeling and solving framework, whose
solutions are called answer sets. Epistemic logic
programs (ELP) extend ASP to reason about all or
some answer sets. Solutions to an ELP can be seen
as consequences over multiple collections of answer
sets, known as world views. While the complex-
ity of propositional programs is well studied, the
non-ground case remains open.
This paper establishes the complexity of non-ground
ELPs. We provide a comprehensive picture for well-
known program fragments, which turns out to be
complete for the class NEXPTIME with access to
oracles up to ΣP

2 . In the quantitative setting, we es-
tablish complexity results for counting complexity
beyond #EXP. To mitigate high complexity, we
establish results in case of bounded predicate arity,
reaching up to the fourth level of the polynomial
hierarchy. Finally, we provide ETH-tight runtime
results for the parameter treewidth, which has appli-
cations in quantitative reasoning, where we reason
on (marginal) probabilities of epistemic literals.

1 Introduction
Answer set programming (ASP) is a widely applied model-
ing and solving framework for hard combinatorial problems
with roots in non-monotonic reasoning and logic program-
ming [Brewka et al., 2011] and solving in propositional satisfi-
ability [Fichte et al., 2023]. In ASP, knowledge is expressed by
means of rules forming a (logic) program. Solutions to those
programs are sets of atoms known as answer sets. Epistemic
logic programs (ELPs) [Gelfond, 1991; Kahl et al., 2015;
Shen and Eiter, 2016; Truszczyński, 2011a] extend ASP by
allowing for modal operators K and M, which intuitively mean
“known” or “provably true” and “possible” or “not provably
false”, respectively. These operators can be included into a
program and allow for reasoning over multiple answer sets.
Then, solutions to an ELP are known as world views.

Interestingly, the complexity of decision problems, such
as whether a ground ELP admits a world view, or whether
a literal is true in all respectively some world view, reaches

up to the fourth level of the polynomial hierarchy [Shen and
Eiter, 2016]. Despite its hardness in the decision case, also
counting world views is of vivid research interest today (see
e.g., [Besin et al., 2021]), as it provides the connection of
quantitative reasoning for ELPs and computing conditional
probabilities by considering the proportion of world views
compatible with a set of literals. State-of-the-art systems even
allow for solving non-ground programs by either replacing
variables with domain constants or structural guided grounding
and then employing existing ASP solvers [Cabalar et al., 2020;
Besin et al., 2022]. Despite the practical implementations
and weak known lower bounds [Dantsin et al., 2001; Eiter
et al., 2007], the actual complexity for non-ground ELPs –
and thus the capabilites of today’s non-ground ELP systems –
remained entirely open. In particular, it is not known whether
epistemic operators in combination with grounding lead to
significant complexity amplifications or whether we see only
a mild increase (reflected by a jump of one level in the PH –
as in the ground case) compared to standard non-ground ASP.

Contributions. In this paper, we study the precise computa-
tional complexity of qualitative and quantitative decision and
reasoning problems for non-ground ELPs. Our contributions
are detailed below. In addition, Table 1 surveys details and
illustrates relations to existing results.

1. We provide a comprehensive picture of the non-ground
ELP landscape, including common program fragments.
We mitigate complexity by showing how complexity re-
sults drop if predicate arities are bounded — a typical
assumption for solving.

2. We establish detailed complexity results for counting
problems, which enables more fine-grained reasoning.
To this end, we lift counting complexity notions to the
weak-exponential hierarchy.

3. We analyze the impact of structural restrictions in form of
bounded treewidth. If the predicate arities are bounded,
we obtain precise upper bounds. Surprisingly, the com-
plexity for tight and normal programs match in the non-
ground case, which is different to ground programs. We
complete the upper bounds by conditional lower bounds
assuming ETH1 rendering significant runtime improve-

1The exponential time hypothesis (ETH) implies 3-CNF satisfia-
bility cannot be solved in time 2o(n) [Impagliazzo and Paturi, 2001].

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3333

ments for treewidth very unlikely.

Interestingly, our results are based on two sophisticated tech-
niques. First, a classical technique employing second-order
logic with dependencies to descriptive complexity for the qual-
itative setting. Second, a direct approach relying solely on
the validity problem for succinct quantified Boolean formulas,
which enables results for the quantitative setting as well as
when considering bounded treewidth.

Broader Relation to AI. We see use cases and connections
of our results in areas beyond the scope of logic program-
ming. In particular, there are complex challenges in, e.g.,
conformant planning [Bonet, 2010] or in reasoning modes like
abduction [Aliseda, 2017; Eiter and Gottlob, 1995b], which
reach the third and the fourth level of the polynomial hierarchy.
Such situations can be elegantly modeled via modal operators
K and M, even in the non-ground setting. We expect that
the interplay between introspection (i.e., K and M operator
capabilities) and non-ground (first-order-like) rules will be of
broader interest, as this is essential to formally model rational
agents with different belief sets. Here, we provide precise com-
plexity results, consequences of different modeling features,
and insights in parameterized complexity. In addition, with
the availability of efficient ELP solvers [Bichler et al., 2020;
Cabalar et al., 2020], one obtains a first ELP modeling guide.

Related Work. Eiter et al. (2007) establish the computa-
tional complexity for qualitative problems of non-ground ASP
under bounded predicate arities. For ground ELP, Shen and
Eiter (2016) show that qualitative problems are higher up in
the Polynomial Hierarchy than for ASP, see Ground case in Ta-
ble 1. In fact, the central decision problem, checking whether
an ELP has a world view, is ΣP

3-complete. For treewidth and
ground ELP, there are solvers that exploit treewidth [Bichler
et al., 2020; Hecher et al., 2020] and also solvers for quan-
titative reasoning, which relate the the number of accepting
literals to number of compatible world views [Besin et al.,
2021]. Very recent works address the grounding bottleneck
for solving with ELP solvers by grounding that exploits struc-
ture [Besin et al., 2023] and complexity of ground ELP when
bounded by treewidth Fandinno and Hecher (2023). Our re-
sults reach beyond as we consider the non-ground quantitative
and qualitative setting. While the non-ground case might seem
somewhat expected, establishing results on the exponential hi-
erarchy requires different techniques, especially for treewidth.
Fichte et al. (2022b) consider plausibility reasoning in the
ground setting for ASP without epistemic operators.

2 Preliminaries
We assume familiarity with basics in Boolean satisfiability
(SAT) [Kleine Büning and Lettman, 1999]. By exp(ℓ, k) we
refer to k if ℓ ≤ 0 and to 2exp(ℓ−1,k) otherwise.

Computational Complexity. We follow standard notions
in computational complexity theory [Papadimitriou, 1994;
Arora and Barak, 2009] and use the asymptotic notation O(·)
as usual. Let Σ and Σ′ be some finite alphabets. We call
I ∈ Σ∗ an instance and n denotes the size of I . A de-
cision problem is some subset L ⊆ Σ∗. Recall that P
and NP are the complexity classes of all deterministically

and non-deterministically polynomial-time solvable decision
problems [Cook, 1971], respectively. We also need the
Polynomial Hierarchy (PH) [Stockmeyer and Meyer, 1973;
Stockmeyer, 1976; Wrathall, 1976]. In particular, ∆P

0 :=

ΠP
0 := ΣP

0 := P and ∆P
i := PΣp

i−1 , ΣP
i := NPΣP

i , and
ΠP

i := coNPΣP
i for i > 0 where CD is the class C of

decision problems augmented by an oracle for some com-
plete problem in class D. The complexity class DP

k is de-
fined as DP

k := {L1 ∩ L2 | L1 ∈ ΣP
k, L2 ∈ ΠP

k } and
DP = DP

1 [Lohrey and Rosowski, 2023]. The complexity
class NEXP is the set of decision problems that can be solved
by a non-deterministic Turing machine using time 2n

O(1)

, i.e.,
NEXPTIME =

⋃
k∈N NTIME(2n

k

). The complexity class
NTIME(f(n)) is the set of decision problems that can be
solved by a non-deterministic Turing machine which runs in
time O(f(n)). Note that CO-NEXP is contained in NEXPNP.
The weak EXP hierarchy (EXPH) is defined in terms of
oracle complexity classes: ΣEXP

0 := EXP and ΣEXP
i+1 :=

NEXPΣp
i [Hemachandra, 1987]. We follow standard notions

in counting complexity [Valiant, 1979; Durand et al., 2005;
Hemaspaandra and Vollmer, 1995]. A counting problem is
a function f : Σ∗ → N0. Then, #P is the class of all func-
tions f : Σ∗ → N0 such that there is a polynomial-time
non-deterministic Turing machine M , where for every in-
stance I ∈ Σ∗, f(I) outputs the number of accepting paths of
the Turning machine’s computation graph on input I . We will
also make use of classes preceded with the sharp-dot operator
‘#·’ defined using witness functions and respective decision
problem in a decision complexity class.
Answer Set Programming (ASP). Let (P, C) be a first-
order vocabulary of non-empty finite sets P of predicate and
C of constant symbols, and let V be a set of variable symbols.
Atoms a have the form p(t1, . . . , tn), where p ∈ P , n ≥ 0 is
the arity of p, and each ti ∈ T , where T = C ∪ V is the set of
terms. A logic program (LP) is a set P of rules r of the form

a1 ∨ . . . ∨ ak ← ak+1, . . . , am,¬am+1, . . . ,¬an,
where all ai are distinct atoms and 0≤ k≤m≤n. We
let Hr:={a1, . . . , ak}, B+

r :={ak+1, . . . , am}, and B−
r :=

{am+1, . . . , an}, and denote the set of atoms occurring in r
and P by at(r):=Hr ∪B+

r ∪B−
r , at(P):=

⋃
r∈P at(r), and

pnam(P) := { p | p(·) ∈ at(P) }. A program has bounded
arity, if every predicate occurring in P has arity at most m for
some arbitrary but fixed constant m. By bounded arity, refer
to the class of programs that are of bounded arity. A rule r
is a fact if B+

r ∪B−
r = ∅; a constraint if Hr = ∅; positive if

B−
r = ∅; and normal if |Hr| ≤ 1. A program P is positive

and normal, respectively, if each r ∈ P has the property. The
(positive) dependency graph DP is the digraph with vertices⋃

r∈P Hr∪B+
r , where for each rule r ∈ P two atoms a∈B+

r

and b∈Hr are joined by edge (a, b). Program P is tight ifDP

has no directed cycle [Fages, 1994]. We let Full, Normal, and
Tight be the classes of all, normal, and tight programs, re-
spectively. Answer sets are defined via ground programs. The
arguments and variables of an atom a = p(t1, . . . , tn) are the
sets arg(a) := {t1, . . . , tn} and vars(a) := arg(a) ∩ V . This
extends to sets A of atoms by arg(A) :=

⋃
a∈A arg(a) resp.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3334

EHorn Tight Normal Full Result

Qualitative
Ground P ΣP

2 ΣP
2 ΣP

3 [Truszczyński, 2011b]
[Shen and Eiter, 2016]

Non-Ground EXP NEXPNP NEXPNP NEXPΣP
2 Theorem 4, Lemma 5

Non-Ground(b) CONP ΣP
3 ΣP

3 ΣP
4 Theorem 4, Lemma 5

Quantitative
Ground #P # · DP # · DP # · DP

2 Lemma 15
Non-Ground #EXP #EXPNP #EXPNP #EXPΣP

2 Theorem 14
Non-Ground(b) # · DP # · DP

2 # · DP
2 # · DP

3 Lemma 16

Parameterized
Ground [tw] exp(1, o(tw))† exp(2,Θ(tw)) exp(2,Θ(tw · log(tw))) exp(3,Θ(tw)) [Fandinno and Hecher, 2023]
Non-Gr. [tw](b) exp(1,do(tw))† exp(2,dΘ(tw)) exp(2,dΘ(tw)) exp(3,dΘ(tw)) Theorems 19,20

Table 1: Complexity results of WV existence (counting/plausibility level) for ELP fragments, where each column states the corresponding
fragment and each row gives the respective problem. “(b)” indicates fixed predicate arities. Entries indicate completeness results, runtimes are
tight under ETH, omitting polynomial factors. d refers to the domain size and tw is the treewidth of the primal graph. “†”: The runtime bounds
are for the counting case, as decision is easier due to classical complexity results. Here exp(0, n) = n and exp(k, n) = 2exp(k−1,n), k ≥ 1.

vars(A) :=
⋃

a∈A vars(a) and likewise to rules and programs.
An atom, rule or program φ is ground if vars(φ) = ∅ and
propositional if arg(φ) = ∅. The Herbrand universe of a pro-
gram P is the set UP := arg(P)∩C (if empty, UP := {c} for
any c ∈ C), and its Herbrand base BP consists of all ground
atoms with a predicate from P and constants from UP .

A set M ⊆ BP of atoms satisfies (is a model of) a ground
rule r resp. ground program P if (i) (Hr ∪B−

r)∩M ̸= ∅
or (ii) B+

r \M ̸= ∅ resp. M satisfies each r ∈ P . Fur-
thermore, M is an answer set of P if M is a ⊆-minimal
model of PM :=

⋃
r∈P {Hr ← B+

r | B−
r ∩M = ∅ }, i.e.,

the GL-reduct of P [Gelfond and Lifschitz, 1991] w.r.t. M ;
AS(P) denotes the set of all answer sets of P . The an-
swer sets of a general program P are those of its ground-
ing grd(P) :=

⋃
r∈P grd(r), where grd(r) is the set of all

rules obtained by replacing each v ∈ vars(r) with some el-
ement from UP . We assume safety, i.e., each rule r∈P sat-
isfies vars(Hr ∪ B−

r) ⊆ vars(B+
r). We can ensure it by a

unary domain predicate dom with facts dom(c), c ∈ UP

and adding dom(x) in the body of r for each x ∈ vars(r).
To select rules in grd(P) with the same head D, we define
def(D,P) := {r ∈ grd(P) | Hr = D} and to select non-
ground rules in P that define atoms with predicate p, we let
pdef(p, P) := { r ∈ P | p(t1, . . . , tn) ∈ Hr }. Deciding
whether a program P has an answer set (called consistency) is
ΣP

2-complete for ground programs [Eiter and Gottlob, 1995a]
and NEXPNP for non-ground programs [Eiter et al., 1994].
Epistemic Logic Programs (ELPs). Epistemic logic pro-
grams extend LPs with epistemic literals in rule bodies. A lit-
eral is either an atom a (positive literal) or its negation¬a (neg-
ative literal). A set L of literals is consistent if for every ℓ ∈ L,
¬ℓ ̸∈ L assuming that ¬¬ℓ = ℓ. For a set A of atoms, we
define ¬A := {¬a | a ∈ A } and lits(P) := at(P)∪¬ at(P).
An epistemic literal an expression not ℓ where ℓ is a literal.
Following common convention, we use Kℓ as shorthand for
¬ not ℓ and Mℓ for not¬ℓ. An epistemic atom is an atom that

is used in an epistemic literal. For a set S consisting of atoms,
literals, and/or epistemic literals, we denote by at(S) and
lits(S), the set of atoms and literals, respectively, that occur
in S. These notations naturally extend to rules and programs.
Definitions for logic programs such as classes of programs nat-
urally extend to ELP. The dependency graph DP of an ELP P
is as for ASP, but for every rule r ∈ P and b ∈ Hr, we also
add an edge (a, b) if r contains a body literal not¬a or ¬ not a.
Properties are similar to ASP. In addition, we define EHorn
with no negations (neither ¬ nor not) and no disjunctions,
however, Ka and Ma are allowed. There are different se-
mantics for ELPs , e.g. [Gelfond, 1991; Truszczyński, 2011b;
Kahl et al., 2015; Fariñas del Cerro et al., 2015; Shen and Eiter,
2016]; see [Fandinno et al., 2022] for an overview. We con-
sider [Shen and Eiter, 2016], which provides a reduct-based
framework and offers highest problem solving capacity.

In what follows, let P be a ground ELP. A world view
interpretation (WVI) for P is a consistent set I ⊆ lits(P).
Intuitively, every ℓ ∈ I is considered “known” and every
a ∈ at(P) with {a,¬a} ∩ I = ∅ is treated as “possible”.
The epistemic reduct [Shen and Eiter, 2016; Morak, 2019]
of program P under WVI I is PI := {rI | r ∈ P}, where
rI results by replacing in r each epistemic literal not ℓ with
¬ℓ if ℓ ∈ I and with ⊤ otherwise; double negation cancels.
This amounts to FLP-semantics for nested negation; we omit
HT-semantics, for which similar complexity results can be
obtained. Note that PI has no epistemic negations. A WVI I
over lits(P) is compatible with a set I of WVIs if (i) I ̸= ∅ and
for each atom a, (ii) a ∈ I implies a ∈

⋂
J∈I J ; (iii) ¬a ∈ I

implies {J ∈ I | a ∈ J} = ∅; and (iv) a ∈ at(P) \ at(I)
implies that a ∈ J and a ̸∈ J ′. for some J, J ′ ∈ I. I is
a candidate world view (WV) of P if I is compatible with
the set AS(PI). WV existence is ΣP

3-complete [Truszczyński,
2011b; Shen and Eiter, 2016]. The counting problem #WV
asks to output the number of WVs. Semantics of non-ground
ELPs is defined by grounding, as for LPs.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3335

Example 1 (cf. Gelfond 1991). Take the well-known scholar-
ship eligibility problem encoding, which is as follows:
P1 = { lowGPA(mark); highGPA(mia);

lowGPA(maya) ∨ highGPA(maya);
inelig(X)← lowGPA(X);
elig(X)← highGPA(X);
⊥ ← elig(X), inelig(X);
interview(X)← not elig(X), not inelig(X) }.

Then, the set of WVs of the program is
{ {¬interview(mark), lowGPA(mark), inelig(mark),
¬elig(mark), interview(maya),¬interview(mia),
highGPA(mia), elig(mia),¬inelig(mia)} }.

First- and Second-Order Logic. We assume familiarity
with logic and follow standard definitions [Grädel et al., 2007]
(see also the supplemental material). Throughout we assume
that σ is a signature, which we omit if it is clear from context.
The class Σ1

k[σ] consists of all prenex second-order formulas
Φ ∈ SO[σ], i.e., Φ = Q1R1Q2R2 · · ·QkRk.φ where Qi ∈
{∀, ∃} and Qi ̸= Qi+1 for 1 ≤ i < k, the Ri are disjoint non-
empty sets of SO-variables, and φ ∈ FO[σ]; Φ is existential
if Q1 = ∃. We say that Φ is in CDNF if free(φ) = ∅ and (i)
k is even and φ = ∃x⃗ψ with ψ in DNF, or (ii) k is odd and
φ = ∀x⃗ψ with ψ in CNF.

3 Complexity of Non-ground ELP Reasoning
In this section, we establish results on the classical complexity
of reasoning with non-ground ELPs. Our first insight is on
qualitative reasoning. Therefore, we need Proposition 2, which
states the relationship between second-order logic and the
exponential hierarchy for combined and data complexity.

Proposition 2 (Gottlob et al. 1999). Given a sentence Φ ∈
Σ1

k and a finite structure A, deciding whether A |= Φ is
(i) NEXPΣP

k−1-complete (combined complexity) and (ii) ΣP
k-

complete if Φ is fixed (data complexity).

Next, in Lemma 3, we show a connection between the exist-
ing result on second-order logic and the exponential hierarchy
in the general case and in case predicates have bounded arity.

Lemma 3 (⋆2). Given a sentence Φ ∈ Σ1
k[σ] in CDNF and a

finite structure A, deciding whether A |= Φ is (i) NEXPΣP
k−1 -

complete and (ii) ΣP
k+1-complete if every predicate Ri in Φ

has arity at mostm for some arbitrary but fixed integerm ≥ 1.

3.1 Qualitative Reasoning
With the help of the results above, we are ready to establish the
following central insight into the complexity of non-ground
ELPs. While it turns out that world view existence on a limited
fragment is already complete for a class beyond NEXP, luckily,
for bounded predicate arity we obtain completeness results for
the fourth level of the polynomial hierarchy.

Theorem 4. Let P be an ELP and (a) i = 2 if P ∈ Full, and
(b) i = 1 if P ∈ Normal ∪ Tight. Then, deciding whether P
admits a world view is NEXPΣP

i -c for non-ground P and ΣP
i+2-

c for non-ground of bounded arity.
2 We prove (⋆)-statements in an extended version [Eiter et al.,

2024].

Proof (Sketch). Membership: For the non-ground cases, the
result follows immediately from the Σp

i+1-completeness in the
ground (propositional) case [Shen and Eiter, 2016], as ground-
ing an ELP P leads to an exponentially larger program grd(P)

and Σp
j becomes NEXPΣP

j−1 [Gottlob et al., 1999]. For the
bounded arity cases. If predicate arities are bounded by a
constant, a guess for a WVI I of an epistemic program P has
polynomial size. We can emulate the epistemic reduct PI by
replacing in P each epistemic literal not ℓ where ℓ = L(⃗t),
L ∈ {p,¬p} by an atom qnot L(⃗t), where not L is a fresh pred-
icate of arity |⃗t|, and add the following fact or rule, for each
tuple c⃗ of constants (having arity |⃗t|: (1) qnot L(c⃗), if L(c⃗) /∈ I ,
and (2) qnot L(c⃗) ← ¬L(c⃗) otherwise (double negation can-
cels). Then the answer sets of the resulting program PI,not
correspond to the answer sets of PI , as (1) and (2), respec-
tively, can be unfolded with rules in the grounding of P that
contain notL(c⃗). In particular, I is compatible with AS(PI)
iff I is compatible with AS(PI,not). As PI,not has bounded
predicate arity, brave and cautious reasoning from PI,pnot is in
Σp

3 and Πp
3, respectively, [Eiter et al., 2007]. Consequently,

we can check in polynomial time with an Σp
3 oracle whether I

fulfills conditions (i)–(ii) of compatibility with AS(PI), i.e.,
whether I is a WVI of P. This shows membership in Σp

4, i.e.,
P ∈ Full. If P ∈ Tight∪Normal, brave and cautious reasoning
from PI,pnot is in Σp

2 and Πp
2, respectively, [Eiter et al., 2007],

as program PI,pnot is normal/tight, if program P is so. This
shows membership in Σp

3.

Hardness: We construct from a given sentence Φ ∈ Σ1
k and

finite structure A an ELP P , thereby, we reduce deciding
whether A |= Φ (model checking) to deciding whether P
admits a world view (world-view-existence). In our reduction,
we lift the existing ELP encoding that solves QBF validity
to SO [Shen and Eiter, 2016]. In detail, Case P ∈ Full:
let A = (A, σA) and Φ = ∃R1∀R2∃R3.φ ∈ Σ1

k where
φ = ∀x⃗ψ and ψ =

∧m
j=1

∨ℓj
h=1 Lj,h is in CNF, i.e., as in

Lemma 3. We take u and v as propositional atoms and for
each relation symbol R ∈ R1 ∪ R2 ∪ R2, we introduce
predicates R and R. Then, we construct programs P1, . . . , P5

as follows. Let e(x⃗) = (e(x1), e(x2), . . . , e(xm)) and
e(v) := v, if v is an FO-variable and e(v) := cA if v is
a constant symbol. Intuitively, P1 selects with epistemic
negation a candidate world view corresponding to a guess for
each relation symbol R1,i in R1 using an auxiliary relation
symbol R1,i for its complement.

P1 = {R1,i(e(x⃗1,i))← notR1,i(e(x⃗1,i));

R1,i(e(x⃗1,i))← notR1,i(e(x⃗1,i)) | R1,i ∈ R1}.
Program P2 generates then answer sets for each possible
relation R2,i in R2.

P2 = {R2,i(e(x⃗2,i))← ¬R2,i(e(x⃗2,i));

R2,i(e(x⃗2,i))← ¬R2,i | R2,i ∈ R2}
Programs P3 guesses for each such valuation ofR2 a valuation
of R3 such that ∀x⃗ψ is true.
P3 = {R3,i(e(x⃗3,i)) ∨R3,i(e(x3,i)) | R3,i ∈ R3}

The program P4 checks then using the saturation technique
that ∀x⃗ψ is not violated, i.e., ∃x⃗¬ψ is false; any violation

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3336

makes u true and saturates the guess. The last rule in P4

eliminates the candidate world view if ¬u cannot be derived.
P4 = {u← s(Lj,1), . . . , s(Lj,ℓj) | 1 ≤ j ≤ m}∪

{R3,i(e(x⃗3,i))← u; R3,i(e(x⃗3,i))← u | R3,i ∈R3}∪
{v ← not v, not¬u}.

where s(R(·)) := ¬R(·) if R /∈ σ, s(R(·)) := R(·) otherwise
and s(¬R(·)) := R(·).
Program P5 represents atoms of the input structure A as facts.
P5 = {Ri(c⃗) | c⃗ ∈ RA

i , c⃗ ∈ U |⃗c|, 1 ≤ i ≤ k}.
Notably, we treat equality as the other relations. Finally, we
build the program P =

⋃5
i=1 Pi. Then P is constructible in

polynomial time and it has a world view iff A |= Φ.
Case P ∈ Tight ∪ Normal: We encode evaluating an
SO sentence Φ = ∃P1∀P2∃x⃗ψ over A. We assume
ψ =

∨m
j=1

∧ℓj
h=1 Lj,h is a DNF, drop P3, and replace P4 with

the following rules:
P ′
4 = {u← Lj,1, . . . , Lj,ℓj | 1 ≤ j ≤ m}∪
{v ← not v, notu}.

For each valuation of P1 and P2, we have then a unique
answer set that contains u iff (A, RA

1 , R
A
2) |= ∃x⃗ψ. Then

P ′ = P − (P3∪P4)∪P ′
4 has a world view iffA |= P . As P ′

4
is tight, the reduction applies for tight programs as well.

Lemma 5 (⋆). Let P ∈ EHorn. Then, deciding whether P
admits a world view is in P if P is ground, CONP-complete if
P is non-ground and has bounded arity, and EXP-complete if
P is non-ground.

3.2 Counting Complexity Beyond NEXP
Before we can turn our attention to the quantitative setting, we
need to define counting classes for classifying counting prob-
lems, whose corresponding decision problems are in NEXPC

for a decision class C. Following, we provide canonical prob-
lems, followed by completeness results for ELPs.

Generalizing Counting Classes. For counting solutions of
problems in NEXP, the corresponding counting complexity
class #EXP [Papadimitriou and Yannakakis, 1986] has been
defined. However, classes based on oracle machine models,
as in the #· complexity classes [Hemaspaandra and Vollmer,
1995] have been left out for exponential time. Below, we gen-
eralize counting complexity to the realm of exponential time.
This allows us to describe in analogy to decision problems the
complexity of counting problems beyond NEXP.

Definition 6 (Exp-Oracle Classes). Let C be a decision com-
plexity class. Then, #EXPC is the class of counting problems,
whose solution is obtained by counting the number of accept-
ing paths of a non-deterministic Turing machine in exponential
time with access to a C oracle.

Observe that by construction #EXP = #EXPP. To demon-
strate these classes, we define a family of counting problems
serving as canonical representatives.

Succinct Quantified Boolean Formulas. To define suc-
cinct formula representation, we vastly follow existing
ideas [Williams, 2008]. For a circuit C with a set I of n

inputs, where C has size poly(n), we let T (C) be the truth ta-
ble of the Boolean function represented by C. Formally, T (C)
is the 2n-bit string such that T (C)[i] = C(Bi), where Bi is
the i-th of all n-bit strings in lexicographic order; intuitively,
T (C)[i] is bit i of a string that encodes a problem instance.

For a 3CNF φ, we define such a circuitCφ (“clause circuit”)
over sign-bits sj for j ∈ [1, 3] and variable-bits bkj for k ∈
[1, vφ], where vφ = ⌈log(| var(φ)|)⌉. More precisely, Cφ

has 3(vφ + 1) input bits s1, b⃗1, s2, b⃗2, s3, b⃗3, where sj tells
whether the j-th literal ℓj in a 3CNF clause, whose variable
is encoded by the bits b⃗j = b1j , . . . , b

vφ

j , is positive (sj =
1) or negative (sj = 0). That is, ℓ1 ∨ ℓ2 ∨ ℓ3 ∈ φ if and
only if Cφ(sgn(ℓ1), b⃗1, sgn(ℓ2), b⃗2, sgn(ℓ3), b⃗3) = 1. For φ
in 3DNF, a circuit Cφ (“term circuit”) is defined analogously.

Example 7. Let (a ∨ b ∨ ¬c) ∧ (¬b ∨ a ∨ d) ∧ (¬b ∨ c ∨ ¬d)
be a Boolean formula in 3CNF. Using 2 = ⌈(log(4))⌉ bits, we
can succinctly represent this formula as a circuit.

For QBFs, we must also succinctly represent quantifiers.
While we could merge this into the clause or term circuit,
for the sake of readability, we use a second circuit. For a
QBF Q = ∃V1.∀V2. . . . QℓVℓ.φ with alternating quantifier
blocks Qi ∈{∃, ∀}, we define a quantifier circuit CQ with
⌈log(l)⌉+ vφ many input bits q⃗, b⃗, where q⃗= q1, . . . , q⌈log(l)⌉

and b⃗= b1, . . . , bvφ . Intuitively, v ∈ var(φ) is in Vι iff
CQ(bin(ι), bin(v)) = 1, where bin(·) is the binary rep-
resentation. Q is closed if every v ∈ var(φ) is in Vι
for some ι; otherwise Q is open and its (set of) free vari-
ables var(φ) \ (

⋃
1≤ι≤ℓ Vι).

Definition 8 (Succinct QBF). A succinct QBF Q with ℓ al-
ternating quantifier blocks (alternation depth) is given by
a quantifier circuit CQ and a clause circuit Cφ. Problem
SUCCQVALℓ is deciding whether a closed succinct QBF Q
evaluates to true; #SUCCQVALℓ asks to count assignments
θ over the free variables of Q such that Qθ evaluates to true.

The following complexity result is known.

Proposition 9 (Complexity of SUCCQVALℓ [Gottlob et al.,
1999; Stewart, 1991]). For succinct QBFs Q of alternation
depth ℓ ≥ 1, SUCCQVALℓ is NEXPΣP

ℓ−1 -complete.

This immediately yields corresponding counting complexity.

Proposition 10 (Complexity of #SUCCQVALℓ). For succinct
QBFs Q of alternation depth ℓ ≥ 0, counting the number of
assignments over its free variables under which Q evaluates
to true is #EXPΣP

ℓ -complete.

We will utilize this result by defining a parsimonious re-
duction to our counting problems of interest. A parsimonious
reduction is a polynomial-time reduction from one problem to
another that preserves the number of solutions, i.e., it induces a
bijection between respective sets of solutions of two problems.

3.3 Quantitative Reasoning
Next, we discuss how quantitative aspects enable more fine-
grained reasoning. Indeed, deciding whether a world view
exists concerns only a single world view. Instead, if we aim for
stable results towards consensus among different world views,

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3337

one would prefer computing levels of plausibility for certain
observations (assumptions). This is achieved by quantitative
reasoning, where we quantify the number of world views
satisfying a given query Q. Thereby we compute the level of
plausibility for Q. We need the following notation.

Definition 11. An (epistemic) query is a set of expressions of
the form Mℓ or Kℓ, where ℓ is a literal.

Intuitively, we can then quantify the plausibility of queries.
To this end, we define the union of an ELP P and a query Q,
which is a set of expressions as defined above, by P ⊔Q :=
P ∪ {v ← not v,¬q | q ∈ Q} for a fresh atom v.

Definition 12 (Plausibility Level). Let Q be an epistemic
query and P be an ELP. The plausibility level of Q is defined
as L(P, Q) := #WV(P ⊔Q).

We define probabilities via two counting operations and there-
fore study the complexity of computing plausibility levels.

Definition 13 (Probability). Let Q be an epistemic query and
P be an ELP. The probability of Q is defined as L(P,Q)

max(1,L(P,∅)) .

Observe that the empty query has probability 1.0 and inconsis-
tent queries or ELPs both have probability 0.0 (implausible).

Complexity of Computing Plausibility Levels. For es-
tablishing the complexity of counting, we reduce from
#SUCCQVALℓ and use Proposition 10. Indeed, computing
plausibility levels is already hard for empty queries.

Theorem 14 (⋆). Let P be an ELP and (a) i = 2 if P∈ Full, (b)
i = 1 if P∈Normal∪Tight, and (c) i = 0 if P∈EHorn. Then,
computing plausibility level L(P, ∅) is #EXPΣP

i -complete.

Proof. Membership: This follows immediately from the
ground case (propositional) where we have Σp

i+1-complete-
ness [Shen and Eiter, 2016]. With the same argument as in
the proof of Theorem 14, meaning, grounding an ELP P leads
to an exponentially larger program grd(P), and Σp

j becomes

NEXPΣP
j−1 cf. [Gottlob et al., 1999], we conclude the result.

Hardness for P ∈ EHorn:
We reduce from a restricted fragment of #SUCCQVAL0, tak-
ing a positive Boolean formula φ defined by a clause circuit C
over 3 · (1 + n) many input gates, and constructing an ELP P.

First, the evaluation of C is inductively constructed, starting
from the input gates of C to the output gate of C. Thereby,
for every gate g we construct a rule defining a predicate of
arity 3 · (1 + n), depending on the result of the predicates for
the input gates of g. By v⃗i we refer to a sequence of n many
variables v1i , . . . , v

n
i . Also, we define the facts b(0) and b(1).

For an input gate gj ofC with 1 ≤ j ≤ 3·(1+n), we construct
the fact gj(v1, . . . , v3·(1+n)). if and only if vj = 1. Without
loss of generality, we assume that negation only appears at the
input gates (negation normal form).

For a conjunction gate g∧ with inputs g1, . . . , go, we define
g∧(s1, v⃗1, s2, v⃗2, s3, v⃗3)← g1(s1, v⃗1, s2, v⃗2, s3, v⃗3), . . . ,

go(s1, v⃗1, s2, v⃗2, s3, v⃗3);
for disjunction gate g∨ with inputs g1, . . . , go, we define for
every 1 ≤ k ≤ o:
g∨(s1, v⃗1, s2, v⃗2, s3, v⃗3)← gk(s1, v⃗1, s2, v⃗2, s3, v⃗3).

We refer to the predicate of the final output gate of the con-
struction by gC . Additionally, we construct the following rules
below. First, we guess an assignment over the variables, where
we decide whether a variable will be set to false:
V̇ (v1, . . . , vn)←MV̇ (v1, . . . , vn), b(v1), . . . , b(vn).

Then, we check whether there is an unsatisfied clause.
← V̇ (v⃗1), gC(1, v⃗1, s2, v⃗2, s3, v⃗3), V̇ (v⃗2),

gC(s1, v⃗1, 1, v⃗2, s3, v⃗3), V̇ (v⃗3), gC(s1, v⃗1, s2, v⃗2, 1, v⃗3).

It is easy to see that there is a bijection between satisfying
assignments of φ and world views of P.

Hardness for P ∈ Tight ∪ Normal:
We reduce from #SUCCQVAL1, taking a QBF Q = ∀U.φ
over free variables V , with 3DNF φ given by a term circuit C
over 3 · (1 + n) many input gates and a quantifier circuit D
over n input gates. From this, we construct ELP P .

First, C is inductively constructed as above. We refer to the
predicate of the output gate of the construction by gC . Then,
similar to above, we define for every gate of the circuit D a
predicate of arity n+ 1 from the input gates to the output gate
of D. For a negation gate g¬ with input g, we define
g¬(v⃗1)← ¬g(ι, v⃗1), b(ι), b(v11), . . . , b(vn1);

for a conjunction gate g∧ with inputs g1, . . . , go, we define
g∧(ι, v⃗1)← g1(ι, v⃗1), . . . , go(ι, v⃗1);

for disjunction gate g∨ with input gates g1, . . . , go, we define
for every 1 ≤ k ≤ o: g∨(ι, v⃗1)← gk(ι, v⃗1).

The predicate of the final output gate of D is given by gD.
Additionally, we construct the following rules below,

thereby following ¬∃U.φ over the inverse formula of φ. First,
we guess an assignment over the variables:
A(v1, . . . , vn)← not Ȧ(v1, . . . , vn), gD(1, v1, . . . , vn).

Ȧ(v1, . . . , vn)← notA(v1, . . . , vn), gD(1, v1, . . . , vn).

A(v1, . . . , vn)← ¬Ȧ(v1, . . . , vn), gD(2, v1, . . . , vn).

Ȧ(v1, . . . , vn)← ¬A(v1, . . . , vn), gD(2, v1, . . . , vn).
Then, we check whether all terms are dissatisfied.
usat(1, v⃗1, s2, v⃗2, s3, v⃗3)← Ȧ(v⃗1), gC(1, v⃗1, s2, v⃗2, s3, v⃗3)
usat(0, v⃗1, s2, v⃗2, s3, v⃗3)← A(v⃗1), gC(0, v⃗1, s2, v⃗2, s3, v⃗3)

usat(s1, v⃗1, 1, v⃗2, s3, v⃗3)← Ȧ(v⃗2), gC(s1, v⃗1, 1, v⃗2, s3, v⃗3)
usat(s1, v⃗1, 0, v⃗2, s3, v⃗3)← A(v⃗2), gC(s1, v⃗1, 0, v⃗2, s3, v⃗3)

usat(s1, v⃗1, s2, v⃗2, 1, v⃗3)← Ȧ(v⃗3), gC(s1, v⃗1, s2, v⃗2, 1, v⃗3)
usat(s1, v⃗1, s2, v⃗2, 0, v⃗3)← A(v⃗3), gC(s1, v⃗1, s2, v⃗2, 0, v⃗3).

We prohibit WVs with an answer set satisfying a term.
sat← gC(s1, v⃗1, s2, v⃗2, s3, v⃗3),¬usat(s1, v⃗1, s2, v⃗2, s3, v⃗3)
v ← not v, not¬sat.
It is easy to see that there is a bijection between satisfying

assignments over V of Q and world views of P . Hardness
for normal programs follows immediately from the reduction
above, since the resulting programs are already normal.
Hardness for P ∈ Full: We provide details in an extended
version [Eiter et al., 2024].

Similarly, we conclude the following statement.

Lemma 15 (⋆). Let P be a ground ELP and i = 2 if P ∈ Full,
and i = 1 if P ∈ Normal ∪ Tight, and i = 0 if P ∈ EHorn.
Then, computing plausibility level L(P, ∅) is # · DP

i -complete.

If the arity is a fixed constant, we obtain the following.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3338

Lemma 16 (⋆). Let P be a non-ground ELP of bounded arity
and i = 2 if P ∈ Full, and i = 1 if P ∈ Normal ∪ Tight,
and i = 0 if P ∈ EHorn. Then, computing plausibility level
L(P, ∅) is # · DP

i+1-complete.

4 Non-Ground ELPs of Bounded Treewidth
Before we discuss consequences of evaluating non-ground
ELPs for treewidth, we recall tree decompositions (TDs) for
which we need the following definition.
Definition 17 (TD [Robertson and Seymour, 1985]). Let G =
(V,E) be a graph. A pair T = (T, χ), where T is a rooted
tree with root r(T) and χ is a labeling function that maps
every node t of T to a subset χ(t) ⊆ V called bag, is a tree
decomposition (TD) of G if (i) for each v ∈ V some t in T
exists s.t. v ∈ χ(t); (ii) for each {v, w} ∈ E some t in T
exists s.t. {v, w} ⊆ χ(t); and (iii) for each r, s, t of T s.t. s
lies on the unique path from r to t, χ(r) ∩ χ(t) ⊆ χ(s).

The width of T is the largest bag size minus one and the
treewidth of G is the smallest width among all TDs of G. To
simplify case distinctions in the algorithms, we use nice TDs
in a proof (see extended version), which can be computed in
linear time without increasing the width [Kloks, 1994]. To
capture atom (predicate) dependencies of programs, we use
the following primal graph GP = (V,E) of a program P
defined as follows. For ground P , we let V := at(P) and
{a, b} ∈ E if atoms a ̸= b jointly occur in a rule of P , while
for non-ground P , we let V := pnam(P) and {p1, p2} ∈ E
if predicates p1 ̸= p2 jointly occur in a rule of P . Tree de-
compositions allow us to establish tight complexity bounds for
WV existence under ETH. To this end, we resort to quantified
CSP (QCSP), which, intuitively, is analogous to quantified
Boolean formulas, but over arbitrary finite domains instead of
domain {0, 1}. To this end, we define primal graph PQ for a
QCSP Q similarly to programs, but on the formula’s matrix.
Further, exp(0, n) = n and exp(k, n) = 2exp(k−1,n), k ≥ 1,
denotes the k-fold exponential function of n. The following
bounds are known.
Proposition 18 (Fichte et al. 2020). Given any QCSP Q
with constraints C over finite domain D and alternation depth
ℓ ≥ 1, where each constraint has at most s ≥ 3 variables.
Then, under ETH the validity of Q cannot be decided in time
exp(ℓ−1, |D|o(k)) ·poly(|C|), where k is the treewidth of PC .

With his result at hand, we obtain the following.
Theorem 19 (⋆). Let P be an arbitrary ELP of bounded
arity a over domain size d = |dom(P)|, where the treewidth
of GP is k. Furthermore, let (a) i = 2 if P ∈ Full, (b) i = 1
if P ∈ Normal ∪ Tight, and (c) i = 0 if P ∈ EHorn. Then,
under ETH, WV existence of grd(P) cannot be decided in time
exp(i+ 1, do(k))· poly(|at(P)|).
Indeed, one can obtain a runtime adhering to this lower bound.
Theorem 20 (⋆). Let P be an arbitrary ELP of bounded
arity a over domain size d = |dom(P)|, where the treewidth
of GP is k. Furthermore, let (a) i = 2 if P ∈ Full and (b)
i = 1 if P ∈ Normal ∪ Tight. Then, deciding world view
existence as well as computing plausibility level L(P, ∅) of
grd(P) can be done in time exp(i+1, dO(k))· poly(|at(P)|).

5 Conclusion and Outlook

We consider non-ground ELP, a popular concept to enable rea-
soning about answer sets. We settle the complexity landscape
of qualitative and quantitative reasoning tasks for non-ground
ELPs, including common program fragments. In particular,
we establish that deciding whether a program admits a world
view ranges between NEXP and NEXPΣ

P
3 . We mitigate result-

ing high complexity by bounding predicate arities. Then, the
complexity drops, ranging from ΣP

2 to ΣP
4. In the quantitative

setting, we consider levels of plausibility by quantifying the
number of world views that satisfy a given query Q. We show
completeness results for all common settings and classes of
programs, namely, ground programs, non-ground programs,
and non-ground programs of bounded arity. We complete
these results by incorporating treewidth and establish results
ranging up to four-fold exponential runtime in the treewidth,
including ETH-tight lower bounds. Due to the techniques, our
proofs also work for other common ELP-semantics.

Our results contribute to several avenues for future research.
First, we have an indication that well-known problems from
the AI domains with high complexity are amenable to ELPs. In
particular, we now have an understanding that epistemic opera-
tors and fixed predicate arities provide a suitable target formal-
ism for problems on the second, third, or fourth level of the PH,
as certain variants of the diagnosis problem [Eiter and Gottlob,
1995b; Eiter et al., 1997], counterfactual reasoning [Eiter and
Gottlob, 1996], or default logic [Fichte et al., 2022c]. Mod-
eling such problems using epistemic operators might yield
elegant and instructive ASP encodings.Second, they indicate
alternative ways for solver design: so far, standard non-ground
ELP systems ground the ELP first and then solve the resulting
ground ELP. Our results justify that epistemic operators can
be reduced on the non-ground level without the exponential
blowup. Recall that non-ground, normal ELPs and proposi-
tional, disjunctive LPs are of similar complexity (see Table 1).
This makes alternative grounding techniques such as lazy
grounding [Weinzierl et al., 2020] or body-decoupled ground-
ing [Besin et al., 2022] immediately accessible for ELPs. Also,
our results from Section 4 build a theoretical foundation for
structure-aware ELP grounders. This could also be interest-
ing for structure-guided reductions to ELP [Hecher, 2022].
Finally, extending the complexity landscape of non-ground
ELPs is on our agenda. Finding natural NP-fragments would
be interesting, since the complexity beyond EHorn almost
immediately jumps two levels in PH for the Shen-Eiter seman-
tics. A comprehensive complexity picture in ELP similar to
ASP could be of interest in this setting [Truszczyński, 2011b;
Fichte et al., 2015]. We have left aside the case of maximal
world views so far, although we expect that the complexity
increases by one level on the PH for reasoning problems. It
might also be interesting to consider complementary aspects
in ELPs where modal operators require some literals to be
present in answer sets [Fichte et al., 2022a] or where we com-
pute quantitative aspects approximately [Kabir et al., 2022].
Restrictions on epistemic atoms that might be of interest or
other structural restrictions on programs, for example, frac-
tional hyper-treewidth [Grohe and Marx, 2014], is subject of
future research.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3339

Acknowledgements
Authors are ordered alphabetically. The work has been carried
out while Hecher visited the Simons Institute at UC Berkeley.
Research is supported by the Austrian Academy of Sciences
(ÖAW), DOC Fellowship; the Austrian Science Fund (FWF),
grants P30168 and J4656; ELLIIT funded by the Swedish
government; Humane AI Net (ICT-48-2020-RIA / 952026);
the Society for Research Funding in Lower Austria (GFF)
grant ExzF-0004; and Vienna Science and Technology Fund
(WWTF) grants ICT19-065 and ICT22-023.

References
[Aliseda, 2017] Atocha Aliseda. The Logic of Abduction: An

Introduction, pages 219–230. Springer, Cham, 2017.
[Arora and Barak, 2009] Sanjeev Arora and Boaz Barak.

Computational Complexity: A Modern Approach. Cam-
bridge University Press, 2009.

[Besin et al., 2021] Viktor Besin, Markus Hecher, and Stefan
Woltran. Utilizing Treewidth for Quantitative Reasoning on
Epistemic Logic Programs. TPLP, 21(5):575–592, 2021.

[Besin et al., 2022] Viktor Besin, Markus Hecher, and Stefan
Woltran. Body-Decoupled Grounding via Solving: A Novel
Approach on the ASP Bottleneck. In IJCAI’22, pages 2546–
2552. ijcai.org, 2022.

[Besin et al., 2023] Viktor Besin, Markus Hecher, and Stefan
Woltran. On the structural complexity of grounding - tack-
ling the ASP grounding bottleneck via epistemic programs
and treewidth. In ECAI’23, pages 247–254. IOS Press,
2023.

[Bichler et al., 2020] Manuel Bichler, Michael Morak, and
Stefan Woltran. selp: A single-shot epistemic logic pro-
gram solver. TPLP, 20(4):435–455, 2020.

[Bonet, 2010] Blai Bonet. Conformant plans and be-
yond: Principles and complexity. Artificial Intelligence,
174(3):245–269, 2010.

[Brewka et al., 2011] Gerhard Brewka, Thomas Eiter, and
Mirosław Truszczyński. Answer set programming at a
glance. Comm. of the ACM, 54(12):92–103, 2011.

[Cabalar et al., 2020] Pedro Cabalar, Jorge Fandinno, Javier
Garea, Javier Romero, and Torsten Schaub. eclingo : A
Solver for Epistemic Logic Programs. TPLP, 20(6):834–
847, 2020.

[Cook, 1971] Stephen A. Cook. The Complexity of Theorem-
Proving Procedures. In STOC’71, pages 151–158. ACM,
1971.

[Dantsin et al., 2001] Evgeny Dantsin, Thomas Eiter, Georg
Gottlob, and Andrei Voronkov. Complexity and expres-
sive power of logic programming. ACM Comput. Surv.,
33(3):374–425, 2001.

[Durand et al., 2005] Arnaud Durand, Miki Hermann, and
Phokion G. Kolaitis. Subtractive reductions and complete
problems for counting complexity classes. Theoretical
Computer Science, 340(3):496–513, 2005.

[Eiter and Gottlob, 1995a] Thomas Eiter and Georg Gottlob.
On the computational cost of disjunctive logic program-
ming: Propositional case. Annals of Mathematics and
Artificial Intelligence, 15(3–4):289–323, 1995.

[Eiter and Gottlob, 1995b] Thomas Eiter and Georg Gottlob.
The Complexity of Logic-Based Abduction. Journal of the
ACM, 42(1):3–42, 1995.

[Eiter and Gottlob, 1996] Thomas Eiter and Georg Gottlob.
The complexity of nested counterfactuals and iterated
knowledge base revisions. J. Comput. Syst. Sci., 53(3):497–
512, 1996.

[Eiter et al., 1994] Thomas Eiter, Georg Gottlob, and Heikki
Mannila. Adding disjunction to datalog (extended abstract).
In PODS ’94, pages 267–278, New York, NY, USA, 1994.
ACM.

[Eiter et al., 1997] Thomas Eiter, Georg Gottlob, and Nicola
Leone. Abduction from logic programs: Semantics and
complexity. Theor. Comput. Sci., 189(1-2):129–177, 1997.

[Eiter et al., 2007] Thomas Eiter, Wolfgang Faber, Michael
Fink, and Stefan Woltran. Complexity results for answer
set programming with bounded predicate arities and impli-
cations. Annals of Mathematics and Artificial Intelligence,
51(2-4):123–165, 2007.

[Eiter et al., 2024] Thomas Eiter, Johannes K. Fichte, Markus
Hecher, and Stefan Woltran. Epistemic logic programs:
Non-ground and counting complexity. CoRR, 2024. Ex-
tended Version of a paper that has been accepted for publi-
cation at IJCAI’24.

[Fages, 1994] François Fages. Consistency of Clark’s com-
pletion and existence of stable models. Logical Methods in
Computer Science, 1(1):51–60, 1994.

[Fandinno and Hecher, 2023] Jorge Fandinno and Markus
Hecher. Treewidth-aware complexity for evaluating epis-
temic logic programs. In IJCAI’23, pages 3203–3211. ij-
cai.org, 2023.

[Fandinno et al., 2022] Jorge Fandinno, Wolfgang Faber, and
Michael Gelfond. Thirty years of epistemic specifications.
TPLP, pages 1043–1083, 2022.

[Fariñas del Cerro et al., 2015] Luis Fariñas del Cerro, An-
dreas Herzig, and Ezgi Iraz Su. Epistemic equilibrium
logic. In IJCAI, pages 2964–2970, 2015.

[Fichte et al., 2015] Johannes K. Fichte, Mirosław
Truszczyński, and Stefan Woltran. Dual-normal logic
programs – the forgotten class. TPLP, 15(4–5):495–510,
2015.

[Fichte et al., 2020] Johannes Klaus Fichte, Markus Hecher,
and Maximilian F. I. Kieler. Treewidth-Aware Quantifier
Elimination and Expansion for QCSP. In CP’20, pages
248–266. Springer, 2020.

[Fichte et al., 2022a] Johannes K Fichte, Sarah Alice Gaggl,
and Dominik Rusovac. Rushing and strolling among an-
swer sets – navigation made easy. In AAAI’2022, 2022.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3340

[Fichte et al., 2022b] Johannes K. Fichte, Markus Hecher,
and Mohamed A. Nadeem. Plausibility reasoning via pro-
jected answer set counting - a hybrid approach. In IJCAI’22,
pages 2620–2626. IJCAI Organization, July 2022.

[Fichte et al., 2022c] Johannes K. Fichte, Markus Hecher,
and Irina Schindler. Default logic and bounded treewidth.
Information and Computation, 2022.

[Fichte et al., 2023] Johannes K. Fichte, Daniel Le Berre,
Markus Hecher, and Stefan Szeider. The silent (r)evolution
of sat. Commun. ACM, 66(6):64–72, May 2023.

[Gelfond and Lifschitz, 1991] Michael Gelfond and Vladimir
Lifschitz. Classical Negation in Logic Programs and
Disjunctive Databases. New Generation Computing,
9(3/4):365–386, 1991.

[Gelfond, 1991] Michael Gelfond. Strong Introspection. In
AAAI’91, pages 386–391. AAAI Press / The MIT Press,
1991.

[Gottlob et al., 1999] Georg Gottlob, Nicola Leone, and Hel-
mut Veith. Succinctness as a source of complexity in logical
formalisms. Annals of Pure and Applied Logic, pages 231–
260, 1999.

[Grädel et al., 2007] Erich Grädel, Phokion G Kolaitis,
Leonid Libkin, Maarten Marx, Joel Spencer, Moshe Y
Vardi, Yde Venema, Scott Weinstein, et al. Finite Model
Theory and its applications. Springer, 2007.

[Grohe and Marx, 2014] Martin Grohe and Dániel Marx.
Constraint solving via fractional edge covers. ACM Trans-
actions on Algorithms (TALG), 11(1):1–20, 2014.

[Hecher et al., 2020] Markus Hecher, Michael Morak, and
Stefan Woltran. Structural Decompositions of Epistemic
Logic Programs. In AAAI’20, pages 2830–2837. AAAI
Press, 2020.

[Hecher, 2022] Markus Hecher. Treewidth-aware reductions
of normal ASP to SAT – is normal ASP harder than SAT
after all? Artificial Intelligence, 304:103651, 2022.

[Hemachandra, 1987] Lane A. Hemachandra. The strong ex-
ponential hierarchy collapses. In STOC’87, pages 110–122,
New York, New York, USA, 1987. ACM.

[Hemaspaandra and Vollmer, 1995] Lane A. Hemaspaandra
and Heribert Vollmer. The Satanic Notations: Counting
Classes Beyond #P and Other Definitional Adventures.
SIGACT News, 26(1):2–13, March 1995.

[Impagliazzo and Paturi, 2001] Russell Impagliazzo and Ra-
mamohan Paturi. On the Complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001.

[Kabir et al., 2022] Mohimenul Kabir, Flavio O Everardo,
Ankit K Shukla, Markus Hecher, Johannes Klaus Fichte,
and Kuldeep S Meel. ApproxASP – a scalable approximate
answer set counter. In AAAI’22, pages 5755–5764. AAAI
Press, 2022.

[Kahl et al., 2015] Patrick Thor Kahl, Richard Watson, Ev-
genii Balai, Michael Gelfond, and Yuanlin Zhang. The
Language of Epistemic Specifications (Refined) Including
a Prototype Solver. J. Logic Comput., 25, 2015.

[Kleine Büning and Lettman, 1999] Hans Kleine Büning and
Theodor Lettman. Propositional Logic: Deduction and
Algorithms, volume 48 of Cambridge tracts in theoretical
computer science. Cambridge University Press, 1999.

[Kloks, 1994] Ton Kloks. Treewidth, Computations and Ap-
proximations, volume 842 of LNCS. Springer, 1994.

[Lohrey and Rosowski, 2023] Markus Lohrey and Andreas
Rosowski. On the complexity of diameter and related
problems in permutation groups. In ICALP’23, pages 134:1–
134:18. Dagstuhl Publishing, 2023.

[Morak, 2019] Michael Morak. Epistemic Logic Programs:
A Different World View. In ICLP’19, pages 52–64, 2019.

[Papadimitriou and Yannakakis, 1986] Christos H. Papadim-
itriou and Mihalis Yannakakis. A Note on Succinct Repre-
sentations of Graphs. Inf. Control., 71(3):181–185, 1986.

[Papadimitriou, 1994] Christos H. Papadimitriou. Computa-
tional Complexity. Addison-Wesley, 1994.

[Robertson and Seymour, 1985] Neil Robertson and Paul D.
Seymour. Graph Minors – a Survey. In Surveys in Combi-
natorics 1985, London Mathematical Society Lecture Note
Series, pages 153–171. Cambridge University Press, 1985.

[Shen and Eiter, 2016] Yi-Dong Shen and Thomas Eiter.
Evaluating epistemic negation in answer set programming.
Artificial Intelligence, 237:115–135, 2016.

[Stewart, 1991] Iain A. Stewart. Complete Problems Involv-
ing Boolean Labelled Structures and Projection Transac-
tions. J. Logic Comput., 1(6):861–882, 12 1991.

[Stockmeyer and Meyer, 1973] Larry J. Stockmeyer and Al-
bert R. Meyer. Word problems requiring exponential time.
In STOC’73, pages 1–9. ACM, 1973.

[Stockmeyer, 1976] Larry J. Stockmeyer. The polynomial-
time hierarchy. Theoretical Computer Science, 3(1):1–22,
1976.

[Truszczyński, 2011a] Miroslaw Truszczyński. Revisiting
Epistemic Specifications. In Logic Programming, Knowl-
edge Representation, and Nonmonotonic Reasoning - Es-
says Dedicated to Michael Gelfond on the Occasion of His
65th Birthday, LNCS, pages 315–333. Springer, 2011.

[Truszczyński, 2011b] Miroslaw Truszczyński. Trichotomy
and dichotomy results on the complexity of reasoning with
disjunctive logic programs. TPLP, 11(6):881–904, 2011.

[Valiant, 1979] Leslie G. Valiant. The complexity of com-
puting the permanent. Theoretical Computer Science,
8(2):189–201, 1979.

[Weinzierl et al., 2020] Antonius Weinzierl, Richard Taupe,
and Gerhard Friedrich. Advancing lazy-grounding ASP
solving techniques - restarts, phase saving, heuristics, and
more. TPLP, 20(5):609–624, 2020.

[Williams, 2008] Ryan Williams. Non-Linear Time Lower
Bound for (Succinct) Quantified Boolean Formulas. Elec-
tron. Colloquium Comput. Complex., TR08-076, 2008.

[Wrathall, 1976] Celia Wrathall. Complete Sets and the
Polynomial-Time Hierarchy. Theoretical Computer Sci-
ence, 3(1):23–33, 1976.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3341

	Introduction
	Preliminaries
	Complexity of Non-ground ELP Reasoning
	Qualitative Reasoning
	Counting Complexity Beyond NEXP
	Quantitative Reasoning

	Non-Ground ELPs of Bounded Treewidth
	Conclusion and Outlook

