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Abstract

Circuits in deterministic decomposable negation
normal form (d-DNNF) are representations of
Boolean functions that enable linear-time model
counting. This paper strengthens our theo-
retical knowledge of what classes of functions
can be efficiently transformed, or compiled, into
d-DNNF. Our main contribution is the fixed-
parameter tractable (FPT) compilation of conjunc-
tions of specific constraints parameterized by inci-
dence treewidth. This subsumes the known result
for CNF. The constraints in question are all func-
tions representable by constant-width ordered bi-
nary decision diagrams (OBDDs) for all variable
orderings. For instance, this includes parity con-
straints and cardinality constraints with constant
threshold. The running time of the FPT compila-
tion is singly exponential in the incidence treewidth
but hides large constants in the exponent. To bal-
ance that, we give a more efficient FPT algorithm
for model counting that applies to a sub-family of
the constraints and does not require compilation.

1 Introduction
Knowledge compilation is a domain of computer sci-
ences that studies the different ways to represent functions.
Classes of representations, or languages, have been in-
vented where specific problems become tractable. In partic-
ular, many Boolean languages have been created that sup-
port polynomial-time model counting, that is, determining
the number of truth assignments on which a function f :
{0, 1}n → {0, 1} evaluates to 1. In practice, several model
counters for CNF formulas are transforming, or compiling,
their inputs into the language d-DNNF of circuits in deter-
ministic decomposable negation normal form, where model
counting is feasible in linear time (in the size of the cir-
cuits). For instance, C2D [Darwiche, 2004], DSharp [Muise
et al., 2012], miniC2D [Oztok and Darwiche, 2015], and
D4 [Lagniez and Marquis, 2017] all compile CNF formulas
into (sublanguages) of d-DNNF. Other model counters do not
explicitly compile the CNF but can be seen as compilers in
disguise [Kiesel and Eiter, 2023].

Compilation to d-DNNF is often hard in the sense that the
d-DNNF circuit representations of many functions provably
have exponential size, even for functions that belong to frag-
ments where model counting is tractable such as systems of
Boolean linear equations [de Colnet and Mengel, 2023]. On a
more positive note, compiling from CNF to d-DNNF is fixed-
parameter tractable (FPT) when the parameter is the treewidth
of the CNF’s primal graph [Huang and Darwiche, 2007] and
when it is the treewidth of its incidence graph [Bova et al.,
2015]. To further understand when the input is easy to com-
pile, one possibility is to find new CNF parameters that dom-
inate treewidth and yet enable FPT compilation to d-DNNF,
for instance, decision-width [Oztok and Darwiche, 2014b],
CV-width [Oztok and Darwiche, 2014a] and PS-width [Bova
et al., 2015]. Another direction is to part from the CNF in-
put and study the parameterized compilability of functions
given in a different format such as DNF or a general Boolean
circuit [Amarilli et al., 2020]. In this paper, we follow the
latter direction: we investigate the FPT compilation of sys-
tems (i.e., conjunctions) of Boolean constraints that are not
just CNF. We see each CNF formula as a system of disjunc-
tive clauses and identify other types of constraints that can
be added to the system while ensuring an FPT compilation to
d-DNNF parameterized by its incidence treewidth k. While
compiling general systems of constraints to d-DNNF cannot
be FPT parameterized k unless FPT = W[1] (since even sat-
isfiability is W[1]-hard in this setting [Samer and Szeider,
2010]), we show that there is an FPT compilation algorithm
for specific constraints. In a first approximation, these are the
constraints that can only be in a constant number of states
when assigning any subset of the variables in any way. Parity
constraints (i.e., constraints of the form “the sum of the vari-
ables is odd/even”) are a good example where there are only
two possible states: given a parity constraint and a subset of
its variables, assigning these variables in any way either re-
sults in the odd parity constraint or the even parity constraint
on the remaining variables. Our main result is the following.

Theorem 1. Let w be a constant integer and C be a class of
constraints such that, for every c ∈ C, and every subset Y of
c’s variables, at most w different constraints can be obtained
from c by assigning variables in Y in any way. There is an al-
gorithm that, given a system F of constraints from C, returns
in time 2O(k)poly(|F |+ |var(F )|)) a d-DNNF circuit for F ,
where k is the treewidth of the incidence graph of F .
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The neatest proof we could find for this result on the compila-
tion of non-CNF systems—which we present in this paper—
goes through constructing CNF encodings of the systems and
then compiling these encodings to d-DNNF.

Theorem 1 includes a rather lengthy characterization of our
constraints. For the proof, we use a “more advanced” char-
acterization in knowledge compilation terms. The class C
will be a class of constraints that are w-slim for the language
OBDD or the language SDNNF. This notion is inspired by
Wegener’s book [2000, Section 5.3] and introduced in detail
in Section 3. We are not the first to consider OBDD con-
straints to prove FPT results, for instance Chen and Grohe
[2010] use similar constraints to prove FPT results for the
constraint satisfaction problem. We prove our theorem in
Section 4 with a more accurate running time where the expo-
nential part also depends on w. Finally, in Section 5, we show
that we can count models faster than by compilation if we put
additional restrictions on the constraints. One of our results is
based on bounded state-size (introduced in Section 3), which
captures important constraints like XORs, modulo, and car-
dinality constraints.
Theorem 2. Let F be a system of constraints whose max-
imum state-size is w. There is an algorithm that, given F
and a nice width-k tree decomposition of the incidence graph
of F , counts the models of F in time O(w2k(|F |+ |var(F )|))
in the unit-cost model.

2 Preliminaries
A Boolean variable x takes a value in {0, 1}. Literals are
denoted by x and x̄. An assignment to a set X of Boolean
variables is a mapping from X to {0, 1}, and a Boolean func-
tion f over X maps the assignments to X to {0, 1}. For us,
constraints are just Boolean functions that appear in systems
(conjunctions of constraints). CNF formulas are systems of
constraints whose constraints are clauses (disjunctions of lit-
erals). We write |F | for the number of constraints in the sys-
tem F . Boolean circuits are another way to represent func-
tions. The size of a circuit D, denoted |D|, is its number
of gates and connectors. We denote by gates(D) the set of
gates of D. For g ∈ gates(D), Dg is the subcircuit of D
whose output gate is g. We write f(X), D(X), and F (X) to
indicate that the variable set of a function, circuit, or system
is X , respectively. If this set is not explicit, we use var(f),
var(D), var(F ).

2.1 Treewidth and Tree Decompositions
A tree decomposition T of a graph G is a pair (T, b) with T
a tree and b : V (T ) → P(V (G)) a bag function such that
(1)

⋃
t∈V (T ) b(t) = V (G), (2) for all uv ∈ E(G), there is

t ∈ T such that {u, v} ⊆ b(t), and (3) for all v ∈ V (G), T [t |
v ∈ b(t)] is connected. The width of T is maxt∈T |b(t)|.
The treewidth of G is tw(G) := minT maxt∈T |b(t)| − 1
where T ranges over all tree decompositions of G. A tree
decomposition is nice when it is rooted and when each node
t ∈ V (T ) is of one of the following three types: a join node,
an introduce node, or a forget node. t is a join node if it
has two children t1 and t2 and b(t) = b(t1) = b(t2). t is
an introduce node for v ∈ V (G) if it has a single child t′

and v ̸∈ b(t′) and b(t) = b(t′) ∪ {v}. t is a forget node
for v ∈ V (G) if it has a single child t′ and v ̸∈ b(t) and
b(t′) = b(t) ∪ {v}. In addition, the bag of the root node is
empty. Every tree decomposition can be made nice without
increasing its width.

The incidence graph of a system F of constraints, denoted
by GF , is the graph whose vertices are the constraints and
the variables of F and such that there is an edge between a
constraint c and a variable x if and only if x ∈ var(c). The
incidence treewidth of F is tw i(F ) := tw(GF ).

2.2 OBDDs and SDNNF Circuits
(d-)SDNNF Circuits. A variable tree (vtree) τ over a set
X of variables is a rooted binary tree whose leaves are in bi-
jection with X . For every t ∈ V (τ), var(t) is the set of
variables on the leaves below t. A circuit D in structured-
decomposable negation normal form (SDNNF) [Pipatsri-
sawat and Darwiche, 2008] is a Boolean circuit with literal
inputs, whose gates are binary ∨-gates and binary ∧-gates,
and such that there exist a vtree τ over var(D) and a map-
ping λ : gates(D) → V (τ) verifying the following:
• For every g ∈ gates(D), var(Dg) ⊆ var(λ(g)).
• For every ∨-gate g = g1 ∨ g2, λ(g) = λ(g1) = λ(g2).
• For every ∧-gate g = g1 ∧ g2, λ(g) has two children t1 and
t2 and λ(g1) is below t1 and λ(g2) is below t2.
We say that D is structured by (τ, λ) and sometimes omit λ.
An example of an SDNNF circuit is shown in Figure 2b with
the mapping λ given by the color code. An SDNNF circuit D
is deterministic (d-SDNNF) when for all ∨-gates g = g1∨g2,
we have D−1

g1 (1)∩D−1
g2 = ∅. Counting the models of D, i.e.,

finding |D−1(1)|, is tractable when D is a d-SDNNF circuit.
OBDDs. A binary decision diagram (BDD) is a directed
acyclic graph with a single source, two sinks labeled 0 and 1,
whose internal nodes are decision nodes with two distinct
children and labeled by variables. A node v labeled by vari-
able x and with children v0 and v1 is recursively interpreted
as a Boolean function v = (x̄ ∧ v0) ∨ (x ∧ v1). Every as-
signment α corresponds to a path in the DAG. Starting from
the root, assuming α’s path reaches v follows v0 if α(x) = 0
and v1 otherwise. The assignments satisfying the BDD are
exactly those whose paths reach the sink 1. For a total order
π on the variables, a π-Ordered BDD (π-OBDD) is a BDD
whose variables appear at most once along every path from
the root to a sink and always in an order consistent with π.
A π-OBDD is complete if every path contains all the vari-
ables. d-SDNNF circuits generalize OBDDs in the sense that
there is a simple linear-time rewriting that transforms OBDDs
into d-SDNNF circuits structured by linear vtrees (i.e., vtrees
whose internal nodes all have a leaf child).
Width measures. The width of an OBDD is the maximum
number of nodes labeled by the same variable. Note that mak-
ing an OBDD complete, while feasible in linear time, can also
increase the width by a linear factor [Bollig and Wegener,
2000]. The width of an SDNNF circuit structured by (T, λ) is
defined as maxt∈V (T ) |λ−1(t)|. This definition differs from
that of Capelli and Mengel [2019] but is more convenient for
stating our results.
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3 Slim Functions and STS
In this paper, constraints are global constraints [van Hoeve
and Katriel, 2006]. So we know the type (e.g., clauses, par-
ity constraints, cardinality constraints) of every constraint we
manipulate.

CNF formulas are known to be FPT compilable to d-
SDNNF parameterized by their incidence treewidth.

Theorem 3 (Bova et al., 2015). There is an algorithm that
transforms any CNF formula F into an equivalent d-SDNNF
circuit in time 2O(twi(F ))poly(|F |+ |var(F )|).
The result leans on the fact that for every clause c, every sub-
set Y ⊆ var(c), and every assignment α to Y , the clause
c|α where variables are assigned as in α can be in only two
states: either it is satisfied, or it is the projection of c onto
the complement of Y . Note that α falsifying c falls into the
second case (Y = var(c) and c|α is the empty clause). Our
intuition is that FPT compilation to d-SDNNF should be pos-
sible for systems of constraints with a similar property: when
subject to any assignment to any fixed set Y , every constraint
of the system can only be in a few states. For example, con-
sider an XOR constraint c : x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 = 0 and
Y = {x1, x2, x3}. Then c|α is either the odd parity constraint
x4 ⊕ x5 = 1, or the even parity constraint x4 ⊕ x5 = 0.

3.1 Slim Functions for Complete OBDDs and
SDNNFs

One can consider a complete OBDD is as state diagram where
the values of the variables are read in a predefined order. The
width of the complete OBDD is then the maximum number
of states reachable after having set any number of variables in
that order. The property we want for our constraints translates
into the requirement that the smallest possible width in one of
their π-OBDD representations is bounded for all the variable
orders π. In the following, h : N → R is a real function.

Definition 4. A class F of Boolean functions is h-slim for
complete OBDDs when, for every n-variables function f ∈
F and every total order π of var(f), there is a complete π-
OBDD of width at most h(n) computing f .

The notions of O(1)-slim functions, O(n)-slim functions,
etc. should be self-explanatory. Given a fixed constant w, we
talk of w-slim functions when h is the constant w function.
When h is an unknown polynomial, the h-slim functions for
complete OBDDs coincide with the nice functions from We-
gener’s book [2000, Section 5.3]. Our proofs below rely on
SDNNF representations rather than OBDD representations.
The concept of h-slim functions generalizes to SDNNF.

Definition 5. A class F of Boolean functions is h-slim for
complete SDNNFs when, for every n-variables function f ∈
F and vtree T over var(f), there is a complete SDNNF of
width at most h(n) and with vtree T that computes f .

Given the rewriting of complete OBDDs into complete d-
SDNNFs, it is immediate that having a small OBDD-width
for every variable ordering implies having a small SDNNF-
width for every linear vtree. However, generalizing to all
possible vtrees is not straightforward.

Lemma 6. Let F be a class of functions.

• If F is h-slim for complete OBDDs, then it is O(h3)-slim
for complete SDNNFs.

• If F is h-slim for complete SDNNFs, then it is 22
O(h)

-slim
for complete OBDDs.
The doubly exponential upper bound could be a bit loose but
cannot be decreased below exponential due to the following.
Lemma 7. There are functions computed by complete
SDNNFs of width O(n) for every vtree, but that are only com-
puted by OBDDs and d-SDNNFs of width 2Ω(n)/n.

Let us now restate our main result, i.e., Theorem 1, using
constraints that belong to families of functions O(1)-slim for
complete SDNNFs. Recall that our constraints are global. We
will need the following assumption.
Assumption 8. For every type of constraint appearing in
our system, we have a polynomial-time algorithm to compile
every constraint of this type into a minimal-width complete
SDNNF for any given vtree.
Theorem 9. Let w ∈ N be a fixed constant. Under assump-
tion 8, there is an algorithm that, given a system F of con-
straints that are all w-slim for complete SDNNFs, constructs
in time 2O(w·twi(F ))poly(|F | + |var(F )| + w) a circuit in
d-SDNNF that computes F .

In Table 1, we give several families of constraints along
with upper bounds on the smallest h functions for which they
are h-slim for complete OBDDs and SDNNFs. The proof of
the correctness of these values for h appear in the long version
of the paper. Assumption 8 is reasonable for most constraint
types of the table 1, in particular for clauses, XORs, sums
modulo, cardinality and threshold constraints.

3.2 Commutative State Transitions Systems
Definition 10. A state transition system (STS) consists of a
set of states S, two transition functions f0, f1 : S → S, a
starting state s0 ∈ S and a set of accepting states T ⊆ S.
The extended transition function δ : {0, 1}∗ → S is defined
as:

δ(ϵ) := s0, δ(l0) := f0(δ(l)), δ(l1) := f1(δ(l)).

The STS is finite if S is finite, and commutative if f0(f1(s)) =
f1(f0(s)) for all s ∈ S. We write CSTS for commutative STS.
Note that the extended transition function δ for a CSTS has
the following property: for any l1, l

′
1, l2, l

′
2 ∈ {0, 1}∗, if

δ(l1) = δ(l′1) and δ(l2) = δ(l′2), then δ(l1l2) = δ(l′1l
′
2). This

is because δ(l1l2) = δ(l′1l2) = δ(l2l
′
1) = δ(l′2l

′
1) = δ(l′1l

′
2).

If we assume that for every s ∈ S there is l ∈ {0, 1}∗ such
that δ(l) = s, that is, the CSTS is in a sense connected, we
can then define a binary operation + : S×S → S as follows:
for any s1, s2, s ∈ S, s1 + s2 = s if there is l1, l2 ∈ {0, 1}∗
such that δ(l1) = s1, δ(l2) = s2, and δ(l1l2) = s. Note that
for all s, s′, s′′ ∈ S, we have s+ s0 = s, s+ s′ = s′ + s and
(s + s′) + s′′ = s + (s′ + s′′). That is, (S,+, s0) forms a
commutative monoid.

Given a function f : {0, 1}n → {0, 1}, we say an STS
describes f if, for every l ∈ {0, 1}n, δ(l) ∈ T if and only
if f(l) = 1. Let f, g : {0, 1}n → {0, 1} be two functions.
We say that a CSTS describes f modulo literal-flipping if it
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describes g and there exists a literal-flipping function ϕ that
sends xi to either xi or x̄i such that f = g ◦ ϕ. We call
the minimum number of states of a CSTS that describes f
modulo literal-flipping the state size of f .

s0 s1

1

1

0 0 s0 s1
1

0 0,1 s0 s1 s2
1 1

0

0 0,1

Figure 1: CSTS for XOR, OR and “x1 + · · ·+xn ≥ 2” constraints.

Lemma 11. Let f be a symmetric (resp. literal-symmetric)
function. If f admits a complete OBDD representation of
width w, then f is described (resp. described modulo literal-
flipping) by a CSTS with at most (w + 1)2/4 states.

4 FPT Compilation of Systems of O(1)-Slim
Constraints

In this section, we explain the proof of Theorem 9. The
proof is in three steps: (1) find a CNF encoding H(X,Z) of
F (X) whose incidence treewidth is at most O(w · twi(F )),
(2) compile H(X,Z) to d-SDNNF using Theorem 3, and
(3) existentially forget the auxiliary variables Z from the re-
sulting d-SDNNF circuit. We do not have to take care of
(2). For (3), forgetting the variables Z from a d-SDNNF cir-
cuit D(X,Z) means finding another d-SDNNF circuit com-
puting ∃Z.D(X,Z). Forgetting many variables from a d-
SDNNF circuit is generally intractable [Pipatsrisawat and
Darwiche, 2008]. However the operation is tractable when
the Z-variables are completely defined in terms of the X-
variables. We make sure to be in this situation by using only
Tseitin CNF encodings to generate H(X,Z).

4.1 The Tseitin CNF Encoding
Let D(X) be a Boolean circuit whose internal gates are bi-
nary ∨-gates and binary ∧-gates. Let gates∗(D) be the set of
its internal gates. Every gate g is associated with a variable
zg . Let Z = {zg | g ∈ gates∗(D)}. The Tseitin encoding
of D is the CNF

HTseitin
D (X,Z) :=

∧
g∈gates∗(D)

Tseitin(g)

where, for every gate g, if g = g1 ∧ g2 then Tseitin(g) :=
(z̄g ∨ zg1)∧ (z̄g ∨ zg2)∧ (z̄g1 ∨ z̄g2 ∨ zg), if g = g1 ∨ g2 then
Tseitin(g) := (z̄g ∨ zg1 ∨ zg2) ∧ (z̄g1 ∨ zg) ∧ (z̄g2 ∨ g), and
if g is an input gate, so if g = x, x̄, 0 or 1, then zg = g. The
formula HTseitin

D is a CNF encoding of D in the sense that

∃Z.HTseitin
D (X,Z) ≡ D(X).

We often drop the Tseitin superscript in the rest of the paper.
Lemma 12. Let f(X) be a Boolean function and
D1(X1), . . . , Dm(Xm) be Boolean circuits. There is a
linear-time algorithm that, given a d-SDNNF circuit D com-
puting f(X) ∧ HTseitin

D1
(X1, Z1) ∧ · · · ∧ HTseitin

Dm
(X1, Zm),

where the sets Z1, . . . , Zm are pairwise disjoint, returns a d-
SDNNF circuit computing f(X)∧D1(X1)∧· · ·∧Dm(Xm).

4.2 Proof Sketch of Theorem 9
The only real hurdle in the proof of Theorem 9 is (1), that
is, encoding the system of constraints F (X) = c1(X1) ∧
· · · ∧ cm(Xm) into the CNF H(X,Z) while controlling the
incidence treewidth. For every i ≤ m we do the follow-
ing. First, using a certain tree decomposition of F ’s in-
cidence graph, we construct a vtree τci over Xi. Second,
we construct an SDNNF circuit Di(Xi) structured by τci
that computes ci(Xi). Next, we encode Di into a CNF for-
mula Hi(Xi, Zi) using the Tseitin encoding and a set Zi of
fresh auxiliary variables. The CNF encoding of F is then
H(X,Z) := H1(X1, Z1) ∧ · · · ∧ Hm(Xm, Zm). Given the
vtrees τci , it should be quite clear that H(X,Z) can be con-
structed in polynomial time under Assumption 8, and that the
Z variables can be forgotten using Lemma 12. So we only
need to justify that the τci can be found efficiently, and that
the incidence treewidth of H(X,Z) can be controlled.
Constructing the vtrees. To construct the vtree τc for c ∈
F , we need a tree decomposition (t.d.) of GF with specific
properties. We do not give the details here but, basically, we
use nice t.d. in which a few bags are cloned. Roughly put, τc
shows how the variables of c appear relative to each other in
the t.d. For instance, in the t.d. shown Figure 2c (not of the
type used in the proof, but sufficient for the example) for the
incidence graph of Figure 2a, we have x2, x3 and x4, x5 are
introduced in a different branches, and this yields the vtree
τc2 shown Figure 2b. τc is found using the following lemma.
Lemma 13. Every tree decomposition (t.d.) of GF can be
transformed in linear time into another t.d. (T, b) of GF , that
has the same width, and that can be used to find in linear time
a vtree τc over var(c) for every c ∈ F . Each vtree τc has a
t.d. (T, bc) of width 2 such that, for all t ∈ V (T ),
i. if c ̸∈ b(t) then bc(t) = ∅,
ii. if c ∈ b(t) then bc(t) ∩ b(t) ⊆ b(t) ∩ var(c).

It may seem bizarre that Lemma 13 looks at t.d. for
vtrees. The key point here is that the vtrees have width-
2 t.d. with the same underlying tree T as the t.d. of GF .
For instance, a t.d. (T, bc2) for τc2 from Figure 2b us-
ing the same tree T as the t.d. from Figure 2c could use
bc2(t1) = { 1 }, bc2(t2) = { 1 , 3 }, bc2(t3) = { 3 , x4},
bc2(t4) = { 3 , x5}, bc2(t7) = { 1 , 2 }, bc2(t8) =
{ 2 , x3}, bc2(t9) = { 2 , x2} and all the other bags empty.
Controlling the treewidth of the encoding. Thanks to the
properties stated in points i. and ii. of Lemma 13, we can
merge the t.d. (T, bc) of τc with the t.d. (T, b) of GF with a
simple bag-wise union to get a t.d. of GF ∪τc (the graph with
vertex set V (GF )∪V (τc) and with edge set E(GF )∪E(τc)).
Lemma 14. Let G and G′ be two graphs and let Vs :=
V (G)∩V (G′). Let (T, b) and (T ′, b′) tree decompositions of
G and G′, respectively. If T = T ′ and if for all t ∈ V (T ) we
have b(t) ∩ Vs ⊆ b′(t) ∩ Vs then (T, b ∪ b′) is a tree decom-
position of G ∪G′.

If we merge (T, b) with all the t.d. (T, bc1), . . . , (T, bcm)
obtained from Lemma 13 then we obtain a t.d. (T, b∗) of GF∪
τc1 ∪ · · · ∪ τcm of width at most 2 · width(T, b) because, by
property i., new elements are added to a bag b(t) only from
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functions with constant-
size one-sided CSTS

modulo literal-flipping
⊂

functions with
constant-size CSTS

modulo literal-flipping
=

literal-symmetric
functions O(1)-slim

for OBDDs
⊂

functions
O(1)-slim

for OBDDs
=

functions
O(1)-slim

for SDNNFs

Name Formal expression h-slim for OBDDs h-slim for SDNNFs

Clauses x1 ∨ · · · ∨ x̄n h = 2 h = O(1)

XORs x1 ⊕ · · · ⊕ xn = 0 or 1 h = 2 h = O(1)

Sum modulo x1 + · · ·+ xn = c mod k h = k h = O(k2)

Cardinality x1 + · · ·+ xn ≥ k h = O(min(n− k, k)) h = O(min(n− k, k)2)

Small scope
constraints f(x1, . . . , xk) h = 2k h = O(2k)

Threshold w1x1 + · · ·+ wnxn ≥ θ
with k := |w1|+ · · ·+ |wn| h = 2k + 1 h = O(k2)

Symmetric
functions

f(x1 + · · ·+ xn)
for f : N → {0, 1} h = poly(n) h = poly(n)

Literal-sym.
functions

f(ℓ1 + · · ·+ ℓn)
for f : N → {0, 1}
and ℓi ∈ {xi, x̄i}

h = poly(n) h = poly(n)

Table 1: Families of constraints

representable by
one-sided STS
of constant size
when k = O(1)

the vtrees τc such that c ∈ b(t), and each vtree contributes at
most 2 elements.

Now suppose we have a complete DNNF circuit Di com-
puting ci and respecting the vtree τci . Every gate of Di

and, by extension, every clause and every auxiliary variable
of its Tseitin encoding, is mapped to a node of τci . We
claim that, if for every bag b∗(t) and every node s of τci in
this bag, one replaces s by the clauses clauses(Tseitin(g))
and the auxiliary variables used in these clauses for all gates
g of Di mapped to s, then the result is a t.d. (T, b+) of
GF ∪ GH1 ∪ · · · ∪ GHm = GF ∪ GH . One then just have
to remove the initial constraints of F from every bag to ob-
tain a t.d. of GH . Going back to our example, if D2 is the
SDNNF circuit shown in Figure 2b, one would replace all oc-
currences of the vtree node 2 in b∗(t) by the clauses and
variables used in the Tseitin encoding of the nodes squared in
red in Figure 2b: each such gate g with input g1 and g2 will
contribute the clauses of Tseitin(g) plus the variables zg , zg1
and zg2 when they are not input variables of D2.

Since every ci is w-slim for complete SDNNFs, at most
w gates of Di is mapped to s, and the Tseitin encoding
generates a constant number of clauses and auxiliary vari-
ables per gate of Di. So we will have that |b+(t)| ∈
O(w|b∗(t)|) ∈ O(w|b(t)|). So, if we started from a t.d. of GF

of width O(twi(F )) (computable in time FPT parameterized
by tw i(F ) [Bodlaender, 1996]), then we end up with an CNF
encoding H whose incidence treewidth is O(w · tw i(F )).

In the detailed proof, available in the long version of the
paper, we directly merge the tree decompositions of the CNF
encodings Hi, whose incidence treewidth we control using
the following lemma for D = Di and τ = τci . This is equiv-
alent to what we have just explained.

Lemma 15. Let D(Y ) be a complete SDNNF circuit whose
respecting (τ, λ). Let T = (T, b) be a tree decomposition of τ
and let ϕ be defined as ϕ(x) = {x} for every variable x and
as ϕ(s) =

⋃
g:λ(g)=s var(Tseitin(g)) ∪ clauses(Tseitin(g))

for every internal node s ∈ τ . Let b′(t) =
⋃

s∈b(t) ϕ(s).
Then (T, b′) is a tree decomposition of HTseitin

D ’s incidence
graph and has width O(width(D)width(T )).

4.3 Lower Bounds for Systems of Slim Constraints
Theorem 9 requires a compilation time with a 2O(w·k) com-
ponent, with k = tw i(F ) and w an upper bound on the width
of complete SDNNF circuits representing the constraints.
Can we get rid of w in the exponent? The answer is nega-
tive due to Lemma 7. One can use the hard functions from
this lemma as constraints and show that w cannot be dropped
from the exponent in the compilation time simply by consid-
ering systems made of a single constraint (so of incidence
treewidth 1). The hard functions of Lemma 7 are specific
monotone DNF formulas and the proof uses d-SDNNF lower
bounds shown by Amarilli et al. [2020]. But DNF formulas
can be converted in linear time in SDNNF circuits, so the hard
functions for Lemma 7 admit SDNNF circuits of width poly-
nomial in the number n of variables, whereas they only have
OBDD representations of width exponential in n. Thus it
could be possible that the best running time of an FPT compi-
lation to d-SDNNF is of the form f(w+k)poly(n+w) when
w is the SDNNF-width, but also of the form f(k)poly(n+w)
when w is the OBDD-width. We can prove that, even for
classes of functions that are w-slim for OBDDs, we cannot
remove w from f ’s argument.

Theorem 16. For every k, there exist systems of constraints
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c1 c2 c3

x1 x2 x3 x4 x5 x6 x7

F =


c1 : x1 ∨ x2 ∨ x3

c2 : x2 ⊕ x3 ⊕ x4 ⊕ x5 = 1

c3 : x4 + x5 + x6 + x7 ≥ 2

(a) The incidence graph of F
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(c) A tree decomposition of GF

Figure 2

over n variables and of incidence treewidth O(k) whose
d-SDNNF representations all have size (n/k)Ω(k), whereas
these systems only comprise constraints that are O(nk)-slim
for OBDDs.

The hard systems are CSP (constraints satisfaction prob-
lems) encodings of W[1]-hard problems. It seems unlikely
that there exist FPT-reductions parameterized by incidence
treewidth of W[1]-hard problems to CSP where all con-
straints are O(1)-slim for complete OBDDs. Indeed, us-
ing Theorem 9 plus the fact that deciding the satisfiability
of a d-SDNNF circuit is straightforward, the existence of
such reductions would imply FPT = W[1]. So, to find hard
systems of constraints for the theorem, we started from a
W[1]-hard problem with parameter k and reduced it to a
CSP of incidence treewidth O(k) and whose constraints are
all O(nk)-slim for OBDDs (and not O(1)-slim). We have
used the problem k-CLIQUE. The reduction is inspired by
that used by Samer and Szeider [2010, Theorem 6] for k-
INDEPENDENTSET.

5 Faster Model Counting
In this section, we show that model counting for three special
cases of systems of constraints that are O(1)-slim for OBDDs
can be done faster than by compiling the system as in Sec-
tion 4 and counting from the compiled form. To this aim, we
provide an FPT algorithm based on dynamic programming
over a nice tree-decomposition of the incident graph of the
system. We start with describing the algorithm for systems of
literal-symmetric functions that are O(1)-slim for OBDDs,
and then show that the speed of the algorithm can be im-
proved when we consider even more particular cases, namely
systems of one-sided constraints and systems of a mixture of
CNF clauses and modulo constraints. All results in this sec-
tion are stated in the unit-cost model, where every arithmetic
operation is counted as an elementary operation.

5.1 Algorithm
In Section 3.2, we have shown that literal-symmetric func-
tions that are O(1)-slim for OBDDs are precisely the func-
tions described by a CSTS of constant size modulo literal-
flipping. We use the latter representation and provide an
FPT algorithm for model counting for a system of such con-
straints. The algorithm is based on dynamic programming
over a nice tree decomposition of the incident graph of the

system and is parameterized by the treewidth k of the inci-
dent graph of the system and the maximum state size w of its
constraints. Throughout the entire section, we assume w ≥ 2.

Theorem 17. Let F be a system of constraints whose max-
imum state size is w, and let T = (T, b) be a nice width-k
tree decomposition of the incidence graph GF . Then, given
F and T , one can count the number of models of F with
O(w2k · |GF |) elementary operations.

The idea for the algorithm is to perform dynamic program-
ming over the nice tree decomposition. Let F , T be as in
Theorem 17. For each node t of T , let Tt denote the sub-
tree of T rooted at t, let Ft and Vt be the set constraints and
the set of variables that appear in the bags of Tt, respectively.
We write bF (t) = b(t) ∩ F , and bV (t) = b(t) ∩ var(F ) for
the set of constraints and variables in b(t), respectively. For
all t ∈ T , let Ṽt := Vt \ bV (t). For each c ∈ bF (t), let
(Sc, f c

0 , f
c
1 , s

c
0, T

c) be a minimal CSTS that describes c mod-
ulo literal-flipping and let ϕc be the literal-flipping that wit-
nesses this. We fix this choice of CSTS before the start of the
algorithm. Let δc be the corresponding extended transition
function. For each F ′ ⊆ F , let S(F ′) := {R ⊆

⋃
c∈F ′{c} ×

Sc | for each c ∈ F ′ there is a unique s s.t. (c, s) ∈ R}.
Given F ′ ⊆ F , c ∈ F ′ and s̄ ∈ S(F ′), we use sc to denote
the unique s such that (c, s) ∈ s̄. Define a binary operation +
on S(F ′) by s̄1+s̄2 := s̄ where sc = sc1+sc2. For each c ∈ F ,
we use c+ to denote the set of variables xi that occur in c with
ϕc(xi) = xi, and c− the set of variables xi that occur in c with
ϕc(xi) = x̄i. For any partial assignment τ to the variables,
let q0(τ, c) := |{v ∈ c+ | τ(v) = 0}|+ |{v ∈ c− | τ(v) = 1}|
and q1(τ, c) := |{v ∈ c+ | τ(v) = 1}| + |{v ∈ c− | τ(v) =
0}|. Finally let δc[τ ] := δc(1q1(τ,c)0q0(τ,c)).

Definition 18. For each assignment α : bV (t) → {0, 1} and
s̄ ∈ S(bF (t)), we define N(t, α, s̄) as the set of assignments
τ : Vt → {0, 1} for which the following conditions hold:
(1.) τ(v) = α(v) for all variables v ∈ bV (t). (2.) For each
c ∈ bF (t), δc[τ |Ṽt

] = sc. (3.) For each c ∈ Ft \ bF (t),
δc[τ ] ∈ T c.

We represent the values of n(t, α, s̄) = |N(t, α, s̄)| for
all α : bV (t) → {0, 1} and s̄ ∈ S(bF (t)) by a table Mt

with |b(t)| + 1 columns and 2|bV (t)| · |S(bF (t))| ≤ 2|bV (t)| ·
w|bF (t)| ≤ wk rows. The first |bV (t)| columns of Mt contain
Boolean values encoding α(v) for variables v ∈ bV (t), fol-
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lowed by |bF (t)| columns, one for each c ∈ bF (t) with the
entry sc. The last column contains the integer n(t, α, s̄).

The following lemmas show how to compute the table Mt

for a node t ∈ T depending on its type, assuming the tables
of its children have already been computed.
Lemma 19. Let t be a join node with children t1, t2. For
each assignment α : bV (t

′) → {0, 1}, and s̄ ∈ S(bF (t)), we
have

n(t, α, s̄) =
∑

s̄1+s̄2=s̄

n(t1, α, s̄1) · n(t2, α, s̄2).

Lemma 20. Let t be an introduce node with child t′. For each
truth assignment α : bV (t

′) → {0, 1}, and s̄ ∈ S(bF (t′)), we
have the following equalities depending on whether it is a
variable or a constraint that is introduced at t.
1. A variable v is introduced. We have

n(t, α ∪ {(v, 0)}, s̄) = n(t, α ∪ {(v, 1)}, s̄) = n(t′, α, s̄).

2. A constraint c is introduced. We have

n(t, α, s̄ ∪ {(c, s)}) =
{
n(t′, α, s̄), if s = sc0;

0, otherwise.

Lemma 21. Let t be a forget node with child t′. For each
truth assignment α : bV (t) → {0, 1}, and s̄ ∈ S(bF (t)), we
have the following two equalities depending on whether it is
a variable or a constraint that is forgotten at t.
1. A variable v is forgotten. Let α0 and α1 denote the exten-
sion to α that sets v to 0 and 1, respectively. We have

n(t, α, s̄) =
∑

s̄′∈σ0(v,s̄)

n(t′, α0, s̄
′)+

∑
s̄′∈σ1(v,s̄)

n(t′, α1, s̄
′)

where σ1(v, s̄
′) is the set{

s̄′ ∈ S(bF (t))

∣∣∣∣∣ sc =


f c
0 (s

′c) v ∈ c−

f c
1 (s

′c) v ∈ c+

s′
c

v ̸∈ var(c)

}

and σ0 is defined similarly by exchanging f c
0 and f c

1 .
2. A constraint c is forgotten. We have

n(t, α, s̄) =
∑

δc′ [α]+s∈T c′

n(t′, α, s̄ ∪ {(c′, s)}).

Lemma 22. Let t be a leaf node. For each truth assignment
α : bV (t) → {0, 1} and s̄ ∈ S(bF (t)), we have

n(t, α, s̄) =

{
1, if sc = sc0 for all c ∈ bF (t);

0, otherwise.

5.2 One-Sided and Modulo Constraints
A close inspection of the proof of Theorem 17 reveals that
the bottleneck lies in the computation of the table Mt for a
join node t. In fact, if we restrict ourselves to more partic-
ular cases of systems of constraints, namely systems of one-
sided constraints and systems of disjunctive clauses and mod-
ulo constraints, we can speed-up the algorithm by computing

the tables for join nodes faster, using advanced techniques
like the Convolution Theorem and fast Fourier transform (see,
e.g., Björklund et al., 2007, Slivovsky and Szeider, 2020).

We call a constraint one-sided when there exists an STS
that describes it where either f0(s) = s for every state s,
or f1(s) = s for every state s. In the first case, we talk of
1-only constraints and STS, and in the second case, we talk
of 0-only constraints and STS. Throughout this section, we
assume that for each one-sided constraint c ∈ F , a minimal
one-sided STS that describes it is known before the algorithm
starts. Given a one-sided constraint c, if c is a 1-only (resp.
0-only) constraint, then let c(i) denote the state the STS is in
after receiving i many 1’s (resp. i many 0’s).

Theorem 23. Let F be a system of one-sided constraints of
maximal state size w. Given F and a width-k tree decompo-
sition of GF , one can compute the number of models of F in
O((2w)kk log(w) · |GF |) elementary operations.

Let m ∈ N, an m-modulo constraint c is a constraint
such that, for all x1, . . . , xn, x

′
1, . . . , x

′
n ∈ {0, 1} verifying∑

i∈[n] xi =
∑

i∈[n] x
′
i mod m, we have c(x1, . . . , xn) =

c(x′
1, . . . , x

′
n). Note that every m-modulo constraint is 1-

only. We assume that the CSTS chosen for a disjunctive
clause is always as shown in Figure 1, where c(0) = s0 and
c(i) = s1 for all i > 0.

Theorem 24. Let w be a natural number. Let F be a system
of constraints comprising only clauses and m-modulo con-
straints for possibly different m ≤ w. Given F and a width-k
tree decomposition of GF , one can compute the model count
of F in O(wkk log(w) · |GF |) elementary operations.

Since XOR constraints are 2-modulo constraints, we obtain
the following corollary.

Corollary 25. Let F be a system of clauses and XOR con-
straints. Given F and a width-k tree decomposition of GF ,
one can compute the model count of F in O(2kk · |GF |) ele-
mentary operations.

6 Conclusion
We have shown that the compilation of systems of constraints
parameterized by incidence treewidth to d-SDNNF is FPT
for specific families of constraints, namely, constraints whose
OBDD- and SDNNF-width are bounded by a constant for all
variable orders and all vtrees. This generalizes known re-
sults for CNF, i.e., systems of disjunctive clauses, to many
more constraints, including modulo and small-threshold con-
straints. Since compilation to d-SDNNF is often used in
practice as a first step towards model counting, we have also
shown that faster FPT model counting algorithms exist with-
out compilation when we restrict the constraints considered.
A natural question here is whether one can push our results
further, that is, to constraints that do not belong to the fam-
ilies considered in this paper. It seems that positive compi-
lation results can always be established by reduction to the
compilation of CNF formulas (in this paper, CNF encodings
of the constraints). We also ask if there are situations where
encoding the problem to CNF before compiling is provably a
worse strategy than reasoning on the original problem.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3321



Acknowledgments
The research leading to this publication has received funding
from the European Union’s Horizon 2020 research and in-
novation programme under grant agreement No. 101034440,
and was supported by the Vienna Science and Technol-
ogy Fund (WWTF) within the project ICT19-065 and
from the Austrian Science Fund (FWF) within the projects
10.55776/ESP235, 10.55776/P36688, and 10.55776/P36420.

References
[Amarilli et al., 2020] Antoine Amarilli, Florent Capelli,
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