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Abstract
Temporal knowledge graph extrapolation has be-
come a prominent area of study interest in recent
years. Numerous methods for extrapolation have
been put forth, mining query-relevant information
from history to generate forecasts. However, ex-
isting approaches normally do not discriminate be-
tween causal and non-causal effects in reasoning;
instead, they focus on analyzing the statistical cor-
relation between the future events to be predicted
and the historical data given, which may be decep-
tive and hinder the model’s capacity to learn real
causal information that actually affects the reason-
ing conclusions. To tackle it, we propose a novel
approach called Causal Subhistory Identification
(CSI), which focuses on extracting the causal sub-
history for reasoning purposes from a large amount
of historical data. CSI can improve the clarity and
transparency of the reasoning process and more ef-
fectively convey the logic behind conclusions by
giving priority to the causal subhistory and elim-
inating non-causal correlations. Extensive experi-
ments demonstrate the remarkable potential of our
CSI in the following aspects: superiority, improve-
ment, explainability, and robustness.

1 Introduction
Knowledge graphs (KGs) are a powerful tool for representing
and reasoning about structured knowledge [Song et al., 2021;
Zhao et al., 2021; Yu et al., 2024]. In recent years, there has
been a growing interest in extending knowledge graphs to in-
corporate temporal information, leading to the development
of temporal knowledge graphs (TKGs) [Trivedi et al., 2017;
Han et al., 2020; Goel et al., 2020]. TKGs capture not only
static relationships between entities, but also time-varying re-
lationships, thus enabling a more nuanced analysis of how
knowledge evolves. With the temporal information included,
a fact in TKGs are usually in the format of a quadruple, i.e.,
(subject, relation, tail, timestamp).

Despite the ubiquity of TKGs, they remain far from be-
ing complete, primarily due to the limitations of our cog-
nition. This has led to the emergence of TKG reason-
ing (TKGR), which involves inferring new facts based on

existing knowledge. And there are generally two TKGR
settings: interpolation [Xu et al., 2020; Xu et al., 2021;
Chen et al., 2022] and extrapolation [Jin et al., 2020; Sun
et al., 2021; Liu et al., 2022]. The interpolation seeks to
complete missing facts within a specified range of times-
tamps. The extrapolation, on the other hand, predicts fu-
ture events based on past knowledge. Our work aligns with
extrapolation reasoning, which focuses on predicting future
facts and presents a greater level of challenge [Li et al., 2021;
Liang et al., 2023].

In recent years, various TKG extrapolation methods have
been proposed, including those based on neural networks
[Li et al., 2021; Liang et al., 2023] and logical rules [Liu
et al., 2022; Bai et al., 2023], which have demonstrated
impressive reasoning performance. These methods funda-
mentally rely on the statistical correlations between data,
specifically the correlations between the input historical fea-
tures and the queries to be answered, without fully consid-
ering the necessity of identifying the true evidence for rea-
soning. However, the statistical correlations between data
encompass not only causal relationships but also numerous
spurious or shortcut correlations [Pearl and others, 2000;
Pearl, 2014]. These shortcuts are frequently the result of
noisy features in the input data or biases in the data selection
process [Sui et al., 2022]. They can be misleading and can
impede the model’s ability to learn genuine causal evidence
that truly influences the reasoning outcomes if not carefully
accounted for in the analysis. Figure 1 depicts an example
of a TKG that illustrates the spread of a specific epidemic
virus among a population. When attempting to reason about
(Virus, infect, ?, 1-14) (in dashed line), the reasoning model
can arrive at the answer (entity C) through multiple paths:

a. Virus
infect, 1-10−−−−−−→ A kiss, 1-11−−−−−→ B dine with, 1-13−−−−−−−→ C,

b. Virus
infect, 1-10−−−−−−→ A

make a phone call, 1-12−−−−−−−−−−−−→ C,

c. Virus
infect, 1-12−−−−−−→ D talk with, 1-9−−−−−−−→ C.

Recent efforts [Knyazev et al., 2019; Fan et al., 2022;
Wu et al., 2022] reveal that reasoning methods are prone to
exploiting shortcut features to make predictions and construct
rationales. Although all three paths above lead to the answer,
it is evident from a human perspective that only Path a is suf-
ficiently compelling and can serve as evidence, while Path b
and Path c are insufficient to genuinely support the reasoning
outcome. Despite satisfying the statistical correlations, Path
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Figure 1: An example of a TKG illustrating the spread of a specific
epidemic virus within a population.

b and Path c exhibit “spurious” or shortcut features, which do
not genuinely contribute to the reasoning results. Therefore,
it is crucial to use rigorous statistical analysis and experimen-
tal design to identify and control for these shortcuts and en-
sure that the conclusions drawn from data are based on solid
causal evidence.

To this end, we aim to decouple historical information re-
lated to a query into two parts: 1) the causal subhistory, con-
sisting of historical information that exhibits causal relation-
ships with the query to be reasoned, and 2) the shortcut sub-
history, consisting of non-causal but relevant features. We
propose a Causal Subhistory Identification (CSI) strategy, to
maximize the causal effect between the causal subhistory and
the predicted label, while reducing the confounding effect of
the shortcut subhistory. To elaborate, we begin by utilizing an
attention module to estimate both causal and shortcut features
from the input TKG. Furthermore, leveraging causal theory
[Pearl and others, 2000; Pearl, 2014], we parameterize the
backdoor adjustments in the representation space, combining
each causal estimate with various shortcut estimates and en-
couraging these combinations to maintain stable predictions.
This approach promotes the invariant relationship between
causal patterns and predictions, regardless of the variations
and distributions in the shortcut components. By prioritizing
the causal subhistory and excluding non-causal correlations,
we can achieve greater clarity and transparency in our reason-
ing, enabling us to explain the rationale behind our conclu-
sions more effectively. Extensive experiments demonstrate
the promising capacity of our CSI from four aspects: superi-
ority, improvement, explainability, and robustness.

We summarize our main contributions as follows:

1. We propose a novel causal subhistory identification
strategy for extrapolation, to explain the rationale behind
reasoning conclusions more effectively.

2. To the best of our knowledge, we are the first to con-
sider the causality in TKG extrapolation. From a causal
perspective, we analyze both the causal effects and non-
causal effects that influence reasoning.

3. Comprehensive experiments show that our CSI outper-
forms SOTA extrapolation methods on the link predic-
tion task, with decent interpretability and robustness.

2 Related Work

2.1 TKG Reasoning Methods

In recent years, a significant number of methods [Bordes
et al., 2013; Yang et al., 2015; Dettmers et al., 2018;
Schlichtkrull et al., 2018; Shang et al., 2019] have been
proposed for static KG reasoning. Furthermore, tempo-
ral knowledge graph (TKG) reasoning has also attracted at-
tention, which can be categorized into two types: interpo-
lation [Dasgupta et al., 2018; Garcı́a-Durán et al., 2018;
Xu et al., 2019; Lacroix et al., 2020; Jain et al., 2020;
Xu et al., 2021] and extrapolation.

This work focuses on TKG extrapolation, which aims to
predict facts in the future. Many methods based on neural
networks have made significant contributions to improving
the extrapolation reasoning performance, such as RE-NET
[Jin et al., 2020], RE-GCN [Li et al., 2021], TANGO [Han
et al., 2021b], CyGNet [Zhu et al., 2021], RE-GCN [Li et
al., 2021], HiSMatch [Li et al., 2022b], and TiRGN [Li et
al., 2022a]. Recently, DaeMon [Dong et al., 2023] adaptively
models the temporal path information between the query sub-
ject and each object candidate across historical time peri-
ods. RPC [Liang et al., 2023] employs relational GCN and
gated recurrent units to mine relational correlations and peri-
odic patterns from temporal facts. On the other hand, some
other methods have been developed to enhance the reason-
ing explainability. TLogic [Liu et al., 2022] automatically
learn rules from data to improve reasoning performance and
obtain explicit rules and explainable reasoning paths, while
TITer [Sun et al., 2021] explores possible reasoning paths us-
ing reinforcement learning. And xERTE [Han et al., 2021a]
provides explanations of the reasoning process and results
through subgraph extraction and process tracing.

2.2 Causal Inference on Graphs

Causal theory [Pearl and others, 2000; Pearl, 2014; Morgan
and Winship, 2015; Imbens and Rubin, 2015; Yao et al.,
2021] have provided researchers with new methods to de-
sign robust measurement approaches, discover hidden causal
structures, and address data biases. Numerous studies have
shown the benefits of incorporating causal relationships in
various tasks involving graph neural networks. CFLP [Zhao
et al., 2022] leverages counterfactual links to augment data
and improve link prediction. CAL [Sui et al., 2022] inter-
venes on the representation of graph data to identify causal
subgraphs involved in graph classification. CGI [Feng et al.,
2021] applies causal relationships to estimate the causal ef-
fects of local structures of nodes to assist in node classifi-
cation. DIR [Wu et al., 2022] applies causal reasoning to
the interpretability of graphs and learns invariant principles
through intervention on the training distribution. DisC [Fan
et al., 2022] and CMRL [Lee et al., 2023] learn disentangled
representations and combine each causal feature with various
shortcut features to alleviate confounding effects. To the best
of our knowledge, there is currently no existing work that uti-
lizes causal theory to guide TKG reasoning.
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3 Preliminaries
3.1 TKG Extrapolation
A Temporal Knowledge Graph (TKG) is a compilation of nu-
merous temporal facts, denoted as G = {E ,R, T ,F}, where
E ,R, T , and F represent the sets of entities, relations, times-
tamps, and facts, respectively. Each temporal fact within G is
structured as a quadruple (es, r, eo, t) ∈ F , where a relation
r ∈ R exists between a subject entity es ∈ E and an object
entity eo ∈ E at time t ∈ T . Additionally, we employ inverse
relations to enrich temporal facts and acquire (eo, r

−1, es, t)
for each quadruple. Let O = (es, r, eo, t)|t ∈ [t0, T ] repre-
sent the set of observable known facts, where [t0, T ] denotes
the accessible time interval. When presented with a query
Q = (eq, rq, ?, tq), our TKG extrapolation endeavors to de-
duce the missing object entity given the other three elements.
One prerequisite is tq > T , indicating the initiation of extrap-
olation to infer future events based on past facts.

3.2 A Causal View on Extrapolation

Figure 2: Structural causal model for TKG extrapolation.

We analyze the causal aspects of the process of TKG ex-
trapolation from a causal perspective and depict a structural
causal model (SCM) [Pearl and others, 2000] in Figure 2.
The SCM illustrates the causal relationships among six vari-
ables: temporal graph G, historical information H , query Q,
causal subhistory C, shortcut subhistory S, representation R,
prediction Y . Specifically, the query can be further refined as
Q = (eq, rq, ?, tq). And each arrow→ in the SCM represents
a causal-effect relationship, where cause→ effect. Below are
the explanations for each causal-effect relationship:

• G → H ← Q. The variable H denotes the historical
information that occurred before the query Q (i.e., prior
to tq) and is derived from the temporal graph G. Gen-
erally, only the entities within a specific distance from
eq and their connections within G could be taken into
account in H .

• H → C ← Q. The variable C denotes the causal fea-
ture specific to the query Q, which truly reflects the in-
trinsic property of the historical history H , indicating the
causal features that influence reasoning and their close
correlation with the query.

• H → S ← Q. The variable S represents the short-
cut or redundant feature specific to the query Q, which
is spuriously correlated with the prediction and usually
caused by the data biases.

• C → R← S. The variable R denotes the representa-
tion of the missing entity to be predicted. R is obtained
by fusing information from message passing and aggre-
gation operations on both the causal subhistory and the
shortcut subhistory.

• R→ Y . The ultimate goal of the representation learn-
ing is to predict the missing object entity given the query
Q = (eq, rq, ?, tq). The classifier will make a prediction
based learned representation R.

By analyzing the SCM, we can identify three backdoor
paths that hinder the model’s ability to learn the causal re-
lationship between C and Y : C ← H → S → R → Y ,
C ← Q → S → R → Y , and C ← Q → H → S → R →
Y . Note that our reasoning is to infer the missing entitiy for a
given query, meaning that the query Q has been known to us.
Thus, the latter two backdoor paths C ← Q→ S → R→ Y
and C ← Q → H → S → R → Y can be effectively
blocked by conditioning on Q. However, the only remaining
backdoor path, C ← H → S → R → Y , will establish a
spurious correlation between C and Y , leading the model to
make predictions based on S rather than C. Therefore, it is
crucial to block the backdoor path and enable the model to
utilize the causal graph for prediction.

3.3 Backdoor Adjustment
We have realized that the shortcut feature S has a confound-
ing effect when analyzing the causal effect between C and
Y . Hence, safeguarding our reasoning model against the
impact of S is an essential challenge to face. Fortunately,
causal theory [Pearl and others, 2000; Pearl, 2014] provides
us with a flexible approach: we can exploit the do-calculus
on the variable C through backdoor adjustment, which in-
volves stratifying the confounding element S. Ultimately,
our backdoor adjustment can cut off the backdoor path C ←
H → S → R → Y , and obtain an intervened distribution
P̂ (Y |C,Q) = P (Y |do(C), Q).1 And our backdoor adjust-
ment can be formulated as follows:

P (Y |do(C), Q) = P̂ (Y |C,Q)

=
∑
s∈Ts

P̂ (Y |C,Q, s)P̂ (s|C,Q) (Bayes Rule)

=
∑
s∈Ts

P̂ (Y |C,Q, s)P̂ (s|Q) (Independency)

=
∑

s∈Tsc

P (Y |C,Q, s)P (s|Q) ,

(1)
where Ts denotes the confounder set, P (Y |C,Q, s) denotes
the conditional probability of the prediction given the causal
feature C, the query Q, and the confounder s. P (s|Q)
is the conditional probability of the confounder given the
query Q. Under the causal intervention, the causal vari-
ables C and the confounder S are independent, as de-
noted by P̂ (s|C,Q) = P̂ (s|Q). Additionally, we have
P̂ (Y |C,Q, s) = P (Y |C,Q, s) and P̂ (s|Q) = P (s|Q) be-
cause cutting off the backdoor path does not affect the con-

1The symbol P̂ indicates that the probability is under the causal
intervention.
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Figure 3: The overview of the CSI framework.

ditional distribution of Y given C,Q, s, while the conditional
distribution of s given Q remains unchanged.

Despite the effectiveness of backdoor adjustment in miti-
gating the confounder, there are three challenges in practical
implementation: 1) The confounder set is often unobservable
and difficult to obtain. 2) The dynamic evolution and multi-
relational nature of TKGs present a significant challenge for
direct manipulation of TKG data. 3) Due to the close rela-
tionship between the variable C and the query Q, the process
of identifying the causal feature from H is inherently query-
specific, adding complexity to the task. To address these is-
sues, we propose an effective causal subhistory identification
framework in Section 4.

4 Methodology
In this section, we provide a detailed description of our
Causal Subhistory Identification (CSI) strategy for TKG ex-
trapolation tasks, as illustrated in Figure 3.

4.1 Query-Relevant Subhistory Extraction
In the pursuit of efficiently predicting unknown future events
based on historical information, our approach involves tar-
geted extraction query-relevant background information from
a vast amount of historical data, referred to as “query-relevant
subhistory”, to guide our reasoning. The concept of a sub-
history can be essentially represented as a localized subgraph
with time information. Given a query Q = (eq, rq, ?, tq),
we closely focus on the query entity eq and consider the rel-
evance with the query relation rq to obtain a subset of the
historical data, i.e., the query-relevant subhistory, which is
significant in addressing the query. The extraction process
focuses on creating an entity-centric subgraph that is tempo-
rally and contextually relevant to the query entity, ensuring a
focused and tailored representation of the historical data pre-
ceding the query time.

Consequently, the obtained subhistory is formed as a lo-
calized subgraph GQ = {EQ,RQ, TQ,FQ}, where EQ ⊆ E ,
RQ ⊆ R, TQ ⊆ T , and FQ ⊆ F denote the sets of enti-
ties, relations, timestamps (prior to tq) and facts related to the
given query, respectively. The subhistory itself presents a tar-
geted perspective on the query-relevant historical data, pro-
viding sufficient relevancy to support us in reasoning about

the query. And all the pertinent historical information re-
quired to address the query has been effectively incorporated.

4.2 Disentangled Causal & Shortcut Subhistory
We have already discussed in Section 3.2 that the histori-
cal information relevant to the query essentially includes the
causal feature and the shortcut feature. Thus, given the ex-
tracted query-relevant subhistory GQ = {EQ,RQ, TQ,FQ},
we further attempt to disentangle it into two parts: a causal
subhistory Gc and a shortcut subhistory Gs.

To achieve disentanglement, we formulate soft masks for
the facts in GQ, where each element in the masks represents
the attention score relevant to the task of interest, typically
ranging between 0 and 1. Due to the mutual exclusivity of
causal and non-causal features, Gc and Gs are complementary
to each other. We assign the mask M to Gc and the mask
M = 1 − M to Gs, where 1 is a matrix filled with ones.
Specifically, for the i-th fact in FQ, M

i|Q represents the level
of its involvement in Gc given Q, while M

i|Q represents the
level of its involvement in Gs given Q.

In practice, to obtain quantifiable masks, we turn to the
graph attention mechanism [Velickovic et al., 2018] for assis-
tance. We denote the i-th fact inFQ by (FQ)i = (es, r, eo, t).
Within the extracted query-relevant GQ, we first need a mes-
sage passing module, which enables nodes to exchange and
aggregate information in a localized and adaptive manner,
capturing the structural dependencies and patterns present in
both Gc and Gs. We focus on the message passing from the
subject entity es to the object entity eo, and take the message
value as a combination of the representations of the subject
es, the relation r, and the time t:

Msg
i
= hes + hr + ht , (2)

where we use the same dimension d for hes , hr, and ht.
Causal Mask. For the message Msg

i
, we then make use of

a multi-layer perception (MLP) to calculate the query-specific
attention weight:

α
i|Q = MLP([hes , hr, hrq , ht]) , (3)

where hrq is the representation of the query relation rq , and
conditioning on Q implies that the weight scores vary de-
pending on different queries.
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To map the obtained weight score into the range of (0,1),
we employ a sigmoid function to get the causal mask:

M
i|Q = σ(α

i|Q) . (4)
By applying the sigmoid function, we ensure that the weights
are transformed into a probabilistic representation, allowing
for a more intuitive interpretation of their significance within
the causal subhistory.
Shortcut Mask. We use a shortcut mask to represent statis-
tical associations outside of causality in FQ, i.e., the shortcut
or confounding features:

M
i|Q = 1−M

i|Q . (5)

This choice of M
i|Q or M

i|Q implies that the resulting val-
ues represent the probability of the corresponding fact being
present in the causal subhistory or the shortcut subhistory. Ul-
timately, we can divide the full query-relevant subhistory GQ
into: the causal subhistory Gc = {EQ,RQ, TQ,FQ⊙M} and
the shortcut subhistory Gs = {EQ,RQ, TQ,FQ ⊙M}.

The soft masks, M and M , are associated with each fact
through a weight score between 0 and 1, controlling the con-
tribution of it in the information propagation and aggrega-
tion within the subhistory. Adhering to causal theory, the soft
masks dynamically weight each fact according to its causal
relationship strength to addressing the query. This weighting
mechanism enables the encoder to handle causal relationships
more effectively and highlight significant causal paths.

4.3 Learning for Prediction
With messages and the weights obtained, we adopt two GNN
encoders to obtain entity representations in Gc and Gs condi-
tioned on Q:

Hc|Q = Encoderc(Gc,Msg,M) , (6)

Hs|Q = Encoders(Gs,Msg,M) , (7)
where Hc ∈ R|EQ|×d and Hs ∈ R|EQ|×d.

To obtain the likelihood of the entities, we utilize two MLP
layers which act as powerful feature extractors from Gc and
Gs. Then, the sigmoid function is applied to each output to
transform it into a probabilistic range between 0 and 1.

pc |Q = σ(MLPc(Hc|Q)) , (8)
ps |Q = σ(MLPs(Hs|Q)) , (9)

This transformation represents the likelihood of the entities
serving as candidate answers for the given query, where val-
ues closer to 1 indicate a higher likelihood of the entities be-
ing relevant answers to the query.
Loss for Causal Subhistory. We expect the final predic-
tion to be determined by the causal subhistory, and it is desir-
able for the causal subhistory to reflect as much information
about the predicted label as possible. With labels available,
we employ a multi-class log-loss function to obtain a super-
vised loss and train the neural networks for our TKG Reason-
ing, which has been proven effective [Lacroix et al., 2018;
Zhang and Yao, 2022]:

Lsup =
∑

(Q,ea)∈Ttrain

(
−p

c
(ea)|Q+ log

(∑
∀e∈E

e
pc (e)|Q

))
,

(10)

where ea is the answer entity for the query Q in the training
set Ttrain, and pc(e)|Q denotes the likelihood of the entity e
serves as a candidate answer for the given query Q.
Loss for Shortcut Subhistory. Simultaneously, we encour-
age the shortcut subhistory to contain as little information as
possible that is related to the predicted label, in other words,
to depersonalize the shortcut subhistory. And we expect it to
approximate a uniform distribution:

Lunif = KL(y
unif

, p
s
|Q) , (11)

where KL denotes the KL-Divergence, y
unif

represents the
uniform distribution. The approximation of a uniform distri-
bution further ensures diverse and evenly spread contextual
cues in the shortcut subhistory, reducing the risk of being in-
fluenced by irrelevant factors and improving the model’s gen-
eralization capability.

By leveraging Lpred and Lunif , we successfully accom-
plish a disentanglement between the causal subhistory and
the shortcut subhistory. These loss functions enable us to dif-
ferentiate between these two subhistories by promoting the
causal subhistory to capture significant contextual cues that
are pertinent to the predicted label. Simultaneously, they en-
courage the shortcut subhistory to encompass impartial and
varied cues that are unrelated to the label.

4.4 Causal Intervention
As analyzed in Section 3.3, the key to backdoor adjust-
ment lies in intervening on the causal variable C. How-
ever, directly intervening on data-level is not practical due to
TKGs’ dynamic evolution and multi-relational nature. There-
fore, we consider implicitly intervening on representation-
level, by generating the counterfactual unconfounded sam-
ples in embedding space. More specifically, we randomly
permute shortcut representations in each mini-batch and ob-
tain H|Q(do) = Hc|Q+ Ĥs|Q, where Ĥs|Q denotes the ran-
domly permuted shortcut representations of Hs|Q. We also
prepare a MLP layer MLPdo and the sigmoid function for the
intervened H|Q(do): p

do
|Q = σ(MLPdo(H|Q(do))). With

the generated unconfounded samples, we utilize the follow-
ing loss function guided by the backdoor adjustment:

Lcaus =
∑

(Q,ea)∈Ttrain

(
−pdo(ea)|Q+ log

(∑
∀e∈E

e
p
do

(e)|Q
))

,

(12)
which leverages causal features to ensure the predictions re-
main invariant and stable across diverse contexts.

Together with the losses for two subhistories, our total loss
function is defined as:

L = Lsup + λ1Lunif + λ2Lcaus , (13)

where λ1 and λ2 are hyper-parameters that control the
strength of disentanglement and causal intervention.

5 Experiments
In this section, we assess the effectiveness of our proposed
CSI on four key datasets, aiming to answer four pivotal ques-
tions through experimental results and analysis:
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Model GDELT ICEWS14* WIKI ICEWS05-15
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

RE-NET [2020] 19.6 12.4 21.0 34.0 38.3 28.7 41.3 54.5 49.7 46.9 51.2 43.5 43.3 33.4 47.8 63.1
TANGO [2021b] 19.2 12.2 20.4 32.8 26.3 17.3 29.1 44.2 50.4 48.5 51.5 53.6 42.9 32.7 48.1 62.3
CyGNet [2021] 18.5 11.5 19.6 32.0 32.7 23.7 36.3 50.7 58.8 47.9 66.4 78.7 36.8 26.6 41.6 56.2

TITer [2021] 20.2 14.1 22.2 31.2 41.7 32.7 46.5 58.4 73.9 71.7 75.4 77.0 47.7 38.0 52.9 65.8
RE-GCN [2021] 19.8 12.5 21.0 34.0 41.8 31.6 46.7 61.5 78.5 74.5 81.6 84.7 48.0 37.3 53.9 68.3
xERTE [2021a] 18.9 12.3 20.1 30.3 40.8 32.7 45.7 57.3 71.1 68.1 76.1 79.0 46.6 37.8 52.3 63.9
TiRGN [2022a] 21.7 13.6 23.3 37.6 45.1 34.4 51.3 65.0 81.7 77.8 85.1 87.1 50.0 39.3 56.1 70.7

HiSMatch [2022b] 22.0 14.5 23.8 36.6 45.8 35.8 50.8 65.1 78.1 73.9 81.32 84.7 52.9 42.0 59.1 73.3
TLogic [2022] 19.8 12.2 21.7 35.6 43.0 33.6 48.3 61.2 79.7 75.4 81.9 85.2 47.0 36.2 53.1 67.4

DaeMon [2023] 20.7 13.7 22.5 34.2 - - - - 82.4 78.3 86.0 88.0 - - - -
RPC [2023] 22.4 14.4 24.4 38.3 44.6 34.9 49.8 65.1 81.2 76.3 85.4 88.7 51.4 39.9 57.0 71.8
CSI (ours) 25.6 18.2 28.5 40.7 47.5 37.4 52.8 67.0 83.7 80.4 87.9 89.6 53.3 42.5 59.2 73.6

Table 1: Performance (in percentage) for link prediction on four benchmarks with time-aware metrics.

Datasets GDELT ICEWS14* WIKI ICEWS05-15

Entities 7,691 7,128 12,554 10,094
Relations 240 230 24 251
Train 1734,399 63,685 539,286 368,868
Validation 238,765 13,823 67,538 46,302
Test 305,241 13,222 63,110 46,159
Time granularity 15 mins 24 hours 1 year 24 hours
Time Stamps 2975 365 232 4017

Table 2: Statistics of the datasets.

Q1: Superiority. How does our CSI perform compared to
existing methods?
Q2: Improvement. How does each component of CSI con-
tribute to the performance improvement?
Q3: Explainability. How does CSI enhance the explain-
ability of reasoning?
Q4: Robustness. How does the robustness of CSI perform
under data sparsity & data noise?

5.1 Experimental Setup
Benchmark Datasets
Four TKGR benchmark datasets are leveraged to evaluate our
CSI, including ICEWS14* [Han et al., 2021a], ICEWS05-
15 [Garcı́a-Durán et al., 2018], WIKI [Leblay and Chekol,
2018], and GDELT [Jin et al., 2020]. Details of the four
datasets we use are shown in Table 2. ICEWS14* and
ICEWS05-15 are two subsets of the large-scale event-based
database, Integrated Crisis Early Warning System [Lauten-
schlager et al., 2015]. The ICEWS14* dataset encompass
events that took place in 2014, while the ICEWS05-15 dataset
includes events that occurred between 2005 and 2015. We
take drop the month and date information of WIKI here for
ease of processing, and obtain the same year-level granular-
ity as [Jin et al., 2020]. GDELT is extracted from the global
database of events, language, and tone [Leetaru and Schrodt,
2013], which has a fine-grained time granularity of 15 min-
utes.

Evaluation Protocol
The evaluation for TKG extrapolation involves the adoption
of a link prediction task. This task focuses on inferring in-
complete time-wise facts that contain a missing entity, rep-
resented as either (es, r, ?, t) or (?, r, eo, t). We use the

ground truths for extrapolation, as is the case with many pre-
vious methods [Jin et al., 2020; Li et al., 2021]. Specifi-
cally, for all of the training, validation and testing, we pre-
dict future events assuming ground truths of the preced-
ing events are given at inference time [Han et al., 2021a].
And we use the time-wise filtered setting [Xu et al., 2019;
Goel et al., 2020] to report the experimental results. The per-
formance is reported on the standard evaluation metrics: the
proportion of correct triples ranked in the top 1, 3 and 10
(Hits@1, Hits@3, and Hits@10), and Mean Reciprocal Rank
(MRR). All the metrics are the higher the better. For all ex-
periments, we report averaged results across 5 runs, and we
omit the variance as it is generally low.

Baselines
We compare with eleven up-to-date TKG extrapolation base-
line methods, including RE-NET [Jin et al., 2020], TANGO
[Han et al., 2021b], CyGNet [Zhu et al., 2021], TITer [Sun
et al., 2021], RE-GCN [Li et al., 2021], xERTE [Han et
al., 2021a], TiRGN [Li et al., 2022a], HiSMatch [Li et al.,
2022b], TLogic [Liu et al., 2022], DaeMon [Dong et al.,
2023], RPC [Liang et al., 2023].

5.2 Performance Comparison (RQ1)
The experimental results obtained from four different ex-
trapolation datasets are presented in Table 1. The datasets
employed in our evaluation exhibit significant differences in
scale, number of entities, and number of relations, as shown
in Table 2. Our findings demonstrate the effectiveness of our
proposed method in performing efficient TKG extrapolation
of varying sizes and complexity levels. One notable observa-
tion is that our method outperforms all baseline approaches
across all four datasets. This finding highlights the superior-
ity of our reasoning performance and indicates the potential
of our proposed model to tackle complex reasoning tasks over
knowledge graphs. Our approach is particularly promising
for addressing real-world problems involving vast amounts
of semantic data from multiple sources, where accurate rea-
soning is crucial for making informed decisions.

5.3 Ablation Study (RQ2)
According to Equation 13, λ1 and λ2 control the strength
of disentanglement and causal intervention, respectively.
We then conduct ablation studies on two datasets, namely
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Model ICEWS14* ICEWS05-15
MRR H@10 MRR H@10

CSI 47.5 67.0 53.3 73.6
-λ1 45.9 65.8 52.1 71.8
-λ2 46.7 66.4 53.0 73.2

-λ1-λ2 45.2 65.5 51.5 71.0

Table 3: Ablation studies on ICEWS14* and ICEWS05-15.

Figure 4: Case study of TKG extrapolation on ICEWS14*, where
the query is indicated by the red dashed line, and “ inv” denotes the
inverse relation.

ICEWS14* and ICEWS05-15, to investigate the impact of
individual components on the performance of our proposed
CSI in extrapolation. The MRR and Hits@10 performances
are shown in Table 3, where three sub-models are com-
pared, including (1) the original CSI, (2) CSI without de-
personalizing shortcut subhistory, denoted as “-λ1”, (3) CSI
without representation-level intervene, denoted as “-λ2”, (4)
CSI without both depersonalizing shortcut subhistory and
representation-level intervention, denoted as “-λ1-λ2”. By
comparing the results, we can find out that “-λ1”, “-λ2”, and
“-λ1-λ2” all lead to a decrease in the performance of our CSI,
indicating that both the shortcut term and the causal interven-
tion term contribute to the improvement of our results. Ad-
ditionally, “-λ1” has a greater reduction in performance than
“-λ2”, suggesting that the shortcut term has a larger impact
on reasoning performance.

5.4 Case Study: Reasoning Explainability (RQ3)
Case studies are taken to illustrate the advantages of our CSI
in reasoning explainability. Figure 4 depicts a reasoning di-
agram for the query (North Korea, Threaten with military
force, ?, 2014-02-17), including a causal clue (C-1 → C-2
→ C-3→ C-4) and two spurious paths (Shortcut 1 and Short-
cut 2) generated by shortcut features. It is evident that while it
is possible to reach the answer from the query entity through
these spurious paths, they lack explanatory power and fail to
provide an adequate justification for compelling reasoning to

CSI Casual Clue Spurious Clue
Shortcut 1 Shortcut 2

W/ 0.22 0.04 0.13
W/O 0.09 0.12 0.10

Table 4: Path scores for causal clue and spurious clues.

resolve the query. The scores for these paths, obtained by
combining the fact scores, are displayed in Table 4, with and
without the utilization of our proposed CSI. It is notewor-
thy that without the employment of CSI, the reasoning model
tends to prioritize spurious paths, whereas our CSI effectively
mitigates the influence of such paths.

5.5 Robustness Evaluation (RQ4)

(a) Data sparsity (b) Data noise

Figure 5: Robustness evaluation on ICEWS14*.

To evaluate the robustness of CSI, we experiment with two
scenarios: data sparsity and data noise, by deleting or adding
facts to ICEWS14*. Specifically, we randomly remove (if
facts exist) or add (if no such facts) 25%, 50%, 75% facts
in the training set. Figure 5 shows a performance compar-
ison across varying degrees of data sparsity and data noise,
where we compare our CSI with two baselines: the rule-based
TLogic [Liu et al., 2022] and the GNN-based xERTE [Han et
al., 2021a]. Compared to them, our CSI shows remarkable
performance across a broad spectrum of sparsity and noise
levels. In particular, even when the level of sparsity or noise
comes to 75%, our CSI continues to achieve a high MRR
value exceeding 45. This highlights its exceptional robustness
and ability to handle sparse data and noisy data effectively.

6 Conclusion

In this paper, we delve into the intricacies of Temporal
Knowledge Graph (TKG) extrapolation through the lens of
causality, introducing a novel approach known as the Causal
Subgraph Interventions (CSI) strategy. By prioritizing the
causal subhistory and excluding non-causal correlations, we
achieve greater clarity and transparency in our reasoning,
which enables us to explain the rationale behind our conclu-
sions more effectively. Extensive experiments demonstrate
the promising capacity of our CSI from four aspects, i.e., su-
periority, improvement, explainability, and robustness.
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